П пи пид пд закон регулирования. Регуляторы с линейным законом регулирования. Реакция регулятора на единичное ступенчатое воздействие

П,ПИ,ПИД,ПД ЗАКОН РЕГУЛИРОВАНИЯ.

Общее описание

Принцип ПИД-регуляторов

Для позиционных регуляторов процесс регулирования представляет собой колебания вокруг заданной точки. Естественно это связано с «релейной» статической характеристикой Y(U-X).

РЕГУЛЯТОРЫ
С ПИД-ЗАКОНОМ РЕГУЛИРОВАНИЯ На рисунке показана линейная статическая Y(U-X) характеристика.

пропорционального регулятора

Если входная Е = U-X (невязка) и выходная величина сигнала регулятора Y связаны простым соотношением Y=K·(U-X), такой регулятор называется пропорциональным. Естественно что линейный участок статической характеристики не бесконечен, он ограничен максимально возможным значением выходной величины: Ymax. Например, при регулировании температуры воды в баке: Х — температура воды; U — заданное значение требуемой температуры; Y — выходной сигнал регулятора (мощность нагревателя, Вт); Ymax, например, 750 Вт. Если при максимальной мощности величина Е = 75оС, то К = 0,1оС/Вт.
При очень большом коэффициенте усиления К пропорциональный регулятор вырождается в позиционный с нулевой зоной нечувствительности. При меньшем значении К регулирование происходит без колебаний
(см.рис. 2).



П-регулятором при скачкообразном изменении
задания с 0 до U (разгонная кривая)

Отметим, что значение регулируемой величины Х никогда не достигнет задания U. Образуется, так называемая статическая ошибка: d (см. рис. 2). Действительно, при приближении температуры воды Х к заданию U постепенно уменьшается подаваемая мощность Y, т.к. Y=К·(U-X). Но теплота, рассеиваемая в окружающую среду, увеличивается, и равновесие наступит при Y = K·d и d не достигнет 0, т.к. если d будет равно 0, то и Y=0 и Х=0. Таким образом на выходе регулятора устанавливается некоторое значение Y=K·d , которое приводит регулируемую величину Х в состояние отличное от задания. Чем больше К, тем меньше d. Однако при достаточно большом К САР и объект могут перейти в автоколебания. Этот предельный коэффициент усиления определяется соотношением наклона разгонной кривой R и транспортным запаздыванием to объекта: Kmax = 2/(R·to) (см. рис. 2).
В ряде случаев, при малом транспортном запаздывании, статическая ошибка находится в необходимых пределах, поэтому П-регуляторы находят некоторое применение. Для устранения статической ошибки d при формировании выходной величины Y вводят интегральную составляющую отклонения от задания:
Y = K·(U-X) + In(U-X)/Ti ,
где Тi — постоянная интегрирования.
Таким образом, чем больше время, в течение которого величина Х меньше задания, тем больше интегральная составляющая, тем больше выходной сигнал. Регулятор с таким законом формирования выходного сигнала называется пропорционально-интегральным ПИ-регулятором.
В установившемся режиме (d=0) в интеграторе содержится величина In/Т, которая равна выходной мощности, требуемой для получения необходимой Х. Таким образом интегратор как бы находит статический коэффициент передачи объекта. Для достижения установившегося режима в интеграторе требуется достаточно большее время. Поэтому ПИ-регулятор можно применять в случае, когда и внешние воздействия достаточно медленные.
В случае резких изменений внешних и внутренних факторов (например, налили холодной воды в бак или резко изменили задание) ПИ-регулятору требуется время для компенсации этих изменений.
Для ускорения реакции САР на внешние воздействия и изменения в задании в регулятор вводят дифференциальную составляющую D(U-X):
Y = K·(U-X) + In(U-X)/Ti+Тd·D(U-X),
где Тd — постоянная дифференцирования.
Чем быстрее растет Е, тем больше D(U-X). Регулятор с таким законом управления называется ПИД-регулятором. Подобрав для конкретного объекта К,Тi и Td можно оптимизировать качество работы регулятора: уменьшить время выхода на задание, снизить влияние внешних возмущений, уменьшить отклонение от задания. При очень большом Тi регулятор очень медленно выводит объект на задание. При малом Тi происходит перерегулирование, т.е. регулируемый параметр Х проскакивает задание (рис.7), а затем сходится к нему. Ниже описаны методики настройки регуляторов, т.е. расчет коэффициентов в зависимости от динамических свойств объекта. Без настройки ПИ-регулятор может обладать худшим качеством работы, чем даже Т-регулятор. Приведем передаточные функции П-, ПИ- и ПИД-регуляторов, принятые в теории автоматического управления.
Пропорциональный регулятор – П:
y = К(u -x) , т.е. в обратную связь заводится отклонение от уставки.
Пропорционально-Интегральный – ПИ:
y = (u-x)(Kp + /pTi) , т.е. в обратную связь заводится также интеграл от отклонения, это позволяет избежать статической ошибки.
Пропорционально-Интегрально- Дифференциальный – ПИД:
y = (u-x)·(Kp + 1/pTi + p·Td) , т.е. в обратную связь заводится также производная отклонения, это позволяет улучшить динамические характеристики регулятора.
Блок схема ПИД регулятора показана на рис. 3.


Структурная схема ПИД-регулятора

Величина рассогласования Е подвергается диференцированию и интегрированию. Выходная вели-чина — Y ПИД-регулятора формируется суммированием с весовыми коэффициентами дифференциальной, пропорциональной и интегральной составляющих. По наличию этих составляющих регуляторы и имеют сокращенное название П, ПИ, ПИД.
Существуют модификации ПИД-регуляторов:
а) при наличии интегратора на выходе или в исполнительном механизме (например сервопривод задвижки водяного отопления) ПД-регулятор как бы превращается в ПИ-регулятор, а вычислительная схема ПИД-регулятора требует двойного дифференцирования;
б) дифференциальная составляющая часто вычисляется только по Х, что дает более плавный выход на режим при изменении задания U.

Настройка регуляторов При применении ПИД- регуляторов для каждого конкретного объекта необходимо настраивать от одного до трех коэффициентов. Возможны САР с автоматизированной настройкой. Для типовых регуляторов известны простейшие аналитические и табличные методы настройки (например две методики Цидлера).

Настройка по реакции на входной скачок Алгоритм настройки:
— на вход САР подается новое задание (уставка) – нагреватель включается на максимальную мощность, и по переходному процессу X(t) определяются t0, R, tи (см. рис. 4):


Разгонная кривая для объекта с транспортным запаздыванием:
to — время транспортного запаздывания;
tи — постоянная времени (время согласования) определяется инерционностью объекта;
Xy — установившееся значение;
R — наклон разгонной кривой dX/dt (макс. скорость изменения Х)

— вычисляются коэффициенты настройки согласно следующим примерным соотношениям:
для П-регулятора К= 1/R·t0
для ПД-регулятора К= 1/R·t0, Td=0.25·t0
для ПИ-регулятора К= 0.8/R·t0, Ti= 3·t0
для ПИД-регулятора К= 1.2/R·t0, Ti= 2·t0, Td=0.4·t0.
Не обязательно выводить объект на максимально возможную величину Х. Однако, следует иметь в виду, что слишком маленький скачок не позволяет определить R с достаточно высокой точностью.

Настройка по методу максимального коэффициента усиления Этот способ применяется, если допустим колебательный процесс, при котором значения регулируемой величины значительно выходят за пределы задания U.


К настройке по методу максимального
коэффициента усиления

Алгоритм настройки:
— определяется предельный коэффициент Кмах усиления при котором САР и объект переходят в колебательный режим, т.е. без интегральной и дифференциальной части (Тd=0, Тi=Ґ). Вначале К=0, затем он увеличивается до тех пор, пока САР и объект переходит в колебательный режим. САР соответствует схеме П-регулятора (см.рис.2).
— определяется период колебаний tc (см. рис. 5);

для П-регулятора К= 0.5·Kмах
для ПД-регулятора К= 0.5·Кмах, Td=0.05·tc
для ПИ-регулятора К= 0.45·Кмах, Ti= 0.8·tс
для ПИД -регулятора К= 0.6·Кмах, Ti= 0.5·tс, Td=0.12·tc.

Настройка по процессу двухпозиционного регулирования по релейному закону

К настройке по процессу двухпозиционного
регулирования

Эта методика удобна, если применялся Т-регулятор, который затем заменяется на ПИД- регулятор:
— система переводится в режим двухпозиционного регулирования по релейному закону (см. рис. 6);
определяется амплитуда — А и период колебаний tс;
— вычисляются коэффициенты настройки согласно следующим примерным соотношениям:
для П-регулятора К = 0.45/А
для ПД-регулятора К = 0.45/А, Td=0.05·tc
для ПИ-регулятора К = 0.4/А, Ti= 0.8·tc
для ПИД-регулятора К = 0.55/А, Ti= 0.5·tс, Td=0.12·tc.
Если объект не меняет структуру и свои параметры, то системы с ПИД-регуляторами обеспечивают необходимое качество регулирования при больших внешних возмущающих воздействиях и помехах, то есть близкое к 0 рассогласование Е (см. рис. 7). Как правило, точно согласовать параметры регулятора и объекта сразу не удается. Если Ti меньше оптимального в два раза, процесс регулирования может перейти в колебательный режим. Если Ti существенно больше оптимального, то регулятор медленно выходит на новый режим и слабо реагирует на быстрые возмущения — G. Таким образом, как правило необходима дополнительная подстройка. На рис. 7 показано влияние неоптимальных настроек ПИД-регуляторов на вид переходной функции (реакции САР и объекта на единичный скачок в задании).

Регуляторы с линейным законом регулирования по математической зависимости между входными и выходными сигналами подразделяются на следующие основные виды:

  • 1) П-регулятор (пропорциональный);
  • 2) И-регулятор (интегральный);
  • 3) ПИ-регулятор (пропорционально-интегральный (изодром- ный));
  • 4) регуляторы с предварением (с опережением):
    • ПД-регулятор (пропорционально-дифференциальный);
    • ПИД-регулятор (пропорционально-интегрально-дифференциальный).

В системах автоматического регулирования наиболее распространенными являются П-регулятор, ПИ-регулятор, ПИД-регулятор.

В зависимости от задающего воздействия и параметров объекта регулирования подбирают регулятор с определенной характеристикой W p . Изменение W p адекватно ведет к изменению коэффициентов дифференциального уравнения общего передаточного звена (регулятор-объект), и тем самым достигается необходимое качество регулирования. В промышленных регуляторах эти величины называются параметрами настройки. Параметрами настройки являются: коэффициент усиления; зона нечувствительности; постоянная времени интегрирования; постоянная времени дифференцирования и т.д. Для изменения параметров настройки в регуляторах имеются органы настройки (управления) . Наиболее распространены регуляторы на один контур, но в настоящее время все больше появляется многоконтурных регуляторов. Такие регуляторы часто позволяют реализовать взаимосвязанное регулирование параметров.

Рассмотрим смысл закона регулирования регулятора на примере САР температуры целевого продукта в теплообменнике (рис. 3.9). Эта схема нам уже известна. Это САР по отклонению. Здесь а - сигнал рассогласования 90° - 100° = - 10°С =о. Закон регулирования регулятора (контроллера) определяет характер перемещения затвора регулирующего органа в новое положение. На место регулятора (контроллера) в данной схеме будем поочередно ставить линейные регуляторы и исследовать влияние регулирующего воздействия р от каждого закона регулирования на характер перемещения затвора регулирующего органа. Рассматриваем линейные регуляторы с идеальными характеристиками.

П-регулятор. Это регулятор, у которого ц пропорционально о, т.е. где К - коэффициент передачи (коэффициент усиления).

Рис. 3.9.

При скачке входной величины а на значение (минус 10°С) затвор регулирующего органа переходит в новое ц-положение скачком (рис. 3.10). Регуляторы, действующие по П-закону, просты по устройству и при эксплуатации надежны. Однако их характеризуют малое перестановочное усилие на регулирующем органе, низкая точность поддержания заданного параметра. Параметром настройки регулятора является коэффициент передачи К.

Рис 3.10.

Достоинство такого регулирования: регулирующий орган быстро перемещается на новое положение, т.е. высокая скорость регулирования. Недостаток: имеет место остаточное отклонение, т.е. имеет место некоторая ошибка регулирования (рис. 3.11). Поэтому П-ре- гуляторы применяются там, где нет строгого требования к точности регулирования.

Рис. 3.11.

И-регулятор. Это регулятор, у которого ц пропорционально интегралу а:

При скачке входной величины на значение минус КТС затвор регулирующего органа медленно переходит в новое положение (рис. 3.12). Как бы ни было мало отклонение регулируемой величины от заданного значения, интегральный регулятор будет продолжать перемещать регулирующий орган вплоть до необходимого положения. Достоинство: отсутствие остаточного отклонения регулируемого параметра от заданного значения. Недостаток: низкая скорость регулирования, т.е. затвор в новое положение перемещается медленно.

ПИ-регулятор. Это параллельное соединение П- и И- регуляторов. ПИ-регулятор сочетает положительные моменты П- и И-регу- ляторов. ПИ-регулятор оказывает воздействие на регулирующий орган пропорционально отклонению и интегралу отклонения регулируемой величины. У ПИ-регулятора (рис. 3.13) регулирующее воздействие р перемещает затвор пропорционально отклонению параметра о и интегралу отклонения о.

Рис. 3.12.

Рис. 3.13.

где К (коэффициент усиления) и Т к (постоянная времени интегрирования) - параметры настройки регулятора.

Как видим, математическое выражение данного закона - это сумма двух предыдущих формул. Затвор регулирующего органа часть пути (а, б) пройдет скачком по П-закону, а оставшуюся часть (б, в) - медленно по И-закону.

Переходный процесс при пропорционально-интегральном регулировании (ПИ-регулировании) показан на рис. 3.14.

Регуляторы с предварением

П- и ПИ- регуляторы не могут упреждать ожидаемое отклонение регулируемой величины, реагируя только на уже имеющееся отклонение. Возникает необходимость в регуляторе, который вырабатывал бы дополнительное регулирующее воздействие, пропорциональное скорости отклонения регулируемой величины от заданного значения. Такое регулирующее воздействие используется в дифференциальных ПД- и ПИД-регуляторах.

Рис. 3.14.

ПД-регулятор. Это такой регулятор (рис. 3.15), у которого выходной сигнал р пропорционален входному сигналу о и производной do/ 5т, т.е.

где К - коэффициент усиления; T d

Рис. 3.15.

Производная dc/dx характеризует тенденцию изменения (отклонения) регулируемой величины. Величина и знак воздействия от производной позволяют регулятору как бы предвидеть, в какую сторону и насколько отклонилась бы регулируемая величина под действием данного возмущения. Это предвидение позволяет регулятору предварять своим воздействием возможное отклонение регулируемой величины. В результате процесс регулирования завершается в более короткое время. Сначала затвор скачком переходит из точки а в точку в (П-закон), т.е. больше, чем надо, затем отскакивает назад в точку б (дифференциальное действие) и остается в этом положении.

ПИД-регулятор. ПИД-регуляторы воздействуют на объект пропорционально отклонению регулируемой величины, интегралу от этого отклонения и скорости изменения регулируемой величины. ПИД-регулятор сочетает достоинства П-регулятора, И-регулятора, ПД-регулятора (рис. 3.16). Соответственно, в уравнении регулятора присутствуют три формулы законов регулирования:

где К - коэффициент пропорциональности; Г и - постоянная времени интегрирования; Т д - постоянная времени дифференцирования.

Эти параметры можно настроить вручную.

Параметрами настройки ПИД-регуляторов являются: коэффициент пропорциональности регулятора к р; постоянная времени интегрирования Г и; постоянная времени дифференцирования Т д.

Рис.

При скачкообразном изменении регулируемой величины ПИД- регулятор в начальный момент времени оказывает мгновенное бесконечно большое воздействие на объект регулирования, затем величина воздействия резко падает до значения, определяемого пропорциональной составляющей, после чего постепенно начинает оказывать влияние интегральная составляющая регулятора. Переходный процесс при этом (рис. 3.17-3.18) имеет минимальные отклонения по амплитуде и по времени. При наличии аналогового управляющего сигнала регулятор может иметь один или два дискретных сигнала для реализации функций сигнализации, защиты или других. Так, например, ПИД-регулятор температуры может формировать сигналы тревоги при выходе регулируемого параметра за указанные границы.

Рис. 3.17.

Рис. 3.18.

ПИД-закон используется во многих контроллерах. Сначала затвор скачком переходит из точки а в точку в (П-закон) (т.е. больше, чем надо), затем отскакивает назад в точку б (дифференциальное действие), а далее затвор медленно перемещается в конечное положение г (И-закон). В результате процесс регулирования завершается в более короткое время и с меньшей погрешностью регулирования.

Часто в системах автоматического регулирования циклических процессов требуется по определенной программе менять величину задания регулятора. Для этого используется программный задатчик. Параметрами оценки таких регуляторов являются число шагов программы, максимальная и минимальная длина шага программы, возможность плавного изменения задания на шаге.

Итак, рассмотрены идеальные характеристики линейных регуляторов. В реальности все происходит во времени (рис. 3.19).

В графиках нужно учитывать также запаздывание (чистое (транспортное) т 0 и емкостное запаздывание т е.


Рис. 3.19. ПИД-закон идеальный а и реальный б с учетом действия по времени

В данном разделе приведены описания алгоритмов работы и непрерывных П-, ПИ-, ПД-, ПИД-регуляторов с различными структурами выходного сигнала - аналоговым выходом, дискретным (импульсным) выходом или ШИМ-выходом (широтно импульсным модулированным сигналом).

Структурные схемы непрерывных регуляторов

В данном разделе приведены структурные схемы непрерывных регуляторов с аналоговым выходом -рис.2, с импульсным выходом - рис.3 и с ШИМ (широтно импульсным модулированным) выходом -рис.4.

В процессе работы система автоматического регулирования АР (регулятор) сравнивает текущее значение измеряемого параметра Х, полученного от датчика Д, с заданным значением (заданием SP) и устраняет рассогласование регулирования E (B=SP-PV). Внешние возмущающие воздействия Z также устраняются регулятором. Работа приведенных структурных схем отличается методом формирования выходного управляющего сигнала регулятора.

Непрерывный регулятор с аналоговым выходом

Структурная схема непрерывного регулятора с аналоговым выходом приведена на рис.2.

Выход Y регулятора АР (например, сигнал 0-20мА, 4-20мА, 0-5мА или 0-10В) воздействует через электропневматический Е/Р сигналов (например, с выходным сигналом 20-100кПа) или электропневматический позиционный регулятор на исполнительный элемент К (регулирующий орган).

Рисунок 2 - Структурная схема регулятора с аналоговым выходом

где:
АР - непрерывный ПИД-регулятор с аналоговым выходом,



Д - датчик,
НП - нормирующий преобразователь (в современных регуляторах является входным устройством)
Y - выходной аналоговый управляющий сигнал Е/Р - электропневматический преобразователь,

Непрерывный регулятор с импульсным выходом

Структурная схема непрерывного регулятора с импульсным выходом приведена на рис.3.

Выходные управляющие сигналы регулятора - сигналы Больше и Меньше (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Рисунок 3 - Структурная схема регулятора с импульсным выходом

где:
АР - непрерывный ПИД-регулятор с импульсным выходом,
SP - узел формирования заданной точки,
PV=X- регулируемый технологический параметр,
Е - рассогласование регулятора,
Д - датчик,
НП - нормирующий преобразователь (в современных регуляторах является входным устройством) ИМП - импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=\Y\/100. Сигналы Больше и Меньше - управляющие воздействия,

К - клапан регулирующий (регулирующий орган).

Непрерывный регулятор с ШИМ (широтно импульсным модулированным) выходом

Структурная схема непрерывного регулятора с ШИМ (широтно импульсным модулированным) выходом приведена на рис.4.

Выходной управляющий сигнал регулятора (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Непрерывные регуляторы с ШИМ выходом широко применяются в системах регулирования температуры, где выходной управляющий симисторный элемент (или твердотельное реле, пускатель) воздействуют на термоэлектрический нагреватель ТЭН, или вентилятор.

Рисунок 4 - Структурная схема регулятора с ШИМ выходом

АР - непрерывный ПИД-регулятор с импульсным ШИМ выходом,
SP - узел формирования заданной точки,
PV=X- регулируемый технологический параметр,
Е - рассогласование регулятора,
Д - датчик,
НП - нормирующий преобразователь (в современных регуляторах является входным устройством) ШИМ - импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=\Y\/100.
П - пускатель контактный или бесконтактный,
К - клапан регулирующий (регулирующий орган).

Согласование выходных устройств непрерывных регуляторов

В ыходной сигнал регулятора должен быть согласован с исполнительным механизмом и исполнительным устройством.

В соответствии с видом привода и исполнительным механизмом необходимо использовать выходное устройство непрерывного регулятора соответствующего типа, см. таблицу 1.

Таблица 1 - Согласование выходных устройств непрерывных регуляторов

Выходное устройство непрерывного регулятора Тип выходного устройства Исполнительный механизм или устройство Вид привода Регулирующий орган
Аналоговый выход ЦАП с выходом 0-5мА, 0-20мА, 4-20мА, 0-10В П-, ПИ-,ПД-, ПИД-закон Преобразователи и позиционные регуляторы электро-пневматические и гидравлические Пневматические исполнительные приводы (с сжатым воздухом в качестве вспомогательной энергии) и электропневматические преобразователи сигналов или электропневматические позиционные регуляторы, электрические (частотные привода)
Импульсный выход Транзистор, реле, симистор П-, ПИ-, ПД-, ПИД-закон Электрические приводы (с редуктором), в т. ч. реверсивные
ШИМ выход Транзистор, реле, симистор П-, ПИ-, ПД-, ПИД-закон Контактные (реле) и бесконтактные (симисторные) пускатели Термоэлектрический нагреватель(ТЭН) и др.

Реакция регулятора на единичное ступенчатое воздействие

Если на вход регулятора подается скачкообразная функция изменения заданной точки - см. рис. 5, то на выходе регулятора возникает реакция на единичное ступенчатое воздействие в соответствии с характеристикой регулятора в функции времени.

Не знаю имеется ли в этом смысл но вот:

Закончил специальность АТП - автоматизирование технологических процессов, расчет регуляторов является большей частью для моей специальности.

Выходная точность зависит от 2 компонентов - качества измерительной техники и качества управляющей техники.

Измерительная составляющая.

Термистор EPCOS NTC G560 100K - такой стоит у меня в принтере.

Имеет класc точности (1), при разбросе измеряемых температур 355 имеет погрешность в 3,55 градуса.

Номинальное сопротивление имеет 100 ом - это сопротивление при 23.5 градусах, замеряется скорее всего ток (так как плата имеет источник напряжение на входовыходах), в среднем типовые амперметры имеют класс точности 1,5 - это 200мА и 3мА погрешности (1 - 1,5 градуса).

В сумме имеем погрешность в 5 градусов Цельсия.

Управляющий механизм.

Немного полиграфии:

Пропорционально-интегро-дифференцирующий (ПИД) регулятор - устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе - интеграл сигнала рассогласования, третье - производная сигнала рассогласования.

И по делу:

Пропорциональная составляющая в логическом смысле нас не интересует.

Интегральная составляющая нужна для устранения статической ошибки (без нее регулируемая величина может иметь фиксированное отклонение, что-то вроде +5 градусов на все время регулирования).

Дифференциальная составляющая - это достаточно забавный способ регулирования. Для расчета значения в момент времени Т, она использует значение величины в момент времени Т+1. С математической точки зрения проблем нет, но в реальной жизни будущее значение нам не известно, и в реальности дифференциальная составляющая идет с задержкой по времени. Поясняю в момент времени Т мы исполняем расчетное изменения для момента Т-1. Дифференциальная составляющая собственно и регулирует.

Это был небольшой вводный курс в ТАУ.

Есть множество вариантов расчетов ПИД регуляторов, чаще всего используют метод Зиглера, есть уже готовые калькуляторы на матлабе и маткаде.

Если бы мы имели большую вычислительную емкость, на нашей плате, можно было бы использовать опытную схему регулирования (гигантские таблицы с входными изменениями и ответной регулировкой на них). Самый оптимум так как там можно задать воздействия куллера.

Подведу итог: Погрешность измерительных приборов и датчиков сводит на нет точность настройки ПИД регулятора, Если вы закажете высокоточные датчики сразу с преобразованием в hart протокол, rs232 или какой либо еще, и сможете настроить его на своей плате, у вас появится смысл точной (до 0,02) настройки ПИД. Самый легкий способ - пойти в вуз в котором преподают ТАУ (нефтяные, производственные направления) и заплатить преподавателю за расчет с настройкой (не обращайтесь к студентам они все под ответ подгоняют - ТАУ никогда не сходится).

Наиболее удачным вариантом для стабилизации температуры - это материал сопла с высокой теплоемкостью (будет долго нагревается но и колебаться температура будет меньше). Из опыта могу предложить изолировать сопло от ветра(хоть тем же каптоновым скотчем слоев на 20).

Надеюсь я ответил на большинство вопросов по этой теме.

ПИД-регулятор является готовым устройством, которое позволит пользователю реализовывать программный алгоритм управления тем или иным оборудованием автоматизированной системы. Построение и настройка систем управления становится существенно проще если использовать готовые устройства наподобие универсального ПИД-регулятора ТРМ148 на 8 каналов компании Овен.

Скажем, вам нужно автоматизировать поддержание правильных климатических условий в теплице: учесть температуру почвы возле корней растений, давление воздуха, влажность воздуха и почвы, и поддерживать заданные параметры посредством управления и вентиляторами. Нет ничего проще, достаточно настроить ПИД-регулятор.

Давайте вспомним сначала, что же представляет собой ПИД-регулятор? ПИД-регулятор - это особое устройство, осуществляющее непрерывную точную регулировку выходных параметров тремя путями: пропорционально, интегрально и дифференциально, а исходные параметры - входные, получаемые с датчиков (давления, влажности, температуры, освещенности и т.д).

Входной параметр подается на вход ПИД-регулятора с датчика, допустим, с датчика влажности. Регулятор принимает величину напряжения или тока, измеряет ее, затем производит вычисления по своему алгоритму, и осуществляет в итоге подачу сигнала на соответствующий выход, в результате автоматизируемая система получает управляющее воздействие. Влажность почвы снизилась - включился на несколько секунд полив.

Цель - достигнуть заданной пользователем величины влажности. Или например: освещенность понизилась - включить над растениями фитолампы и т.д.

ПИД-регулирование

На самом деле, хотя с виду все просто, внутри регулятора математика посложнее, не в один шаг все происходит. После включения полива ПИД-регулятор снова делает замер, измеряя, насколько же изменилась теперь входная величина, - так находится ошибка регулирования. Следующее воздействие на исполнительный орган будет уже скорректировано с учетом измеренной ошибки регулирования, и так на каждом шагу управления, пока цель - заданный пользователем параметр - не будет достигнута.

Три составляющих участвуют в регулировании: пропорциональная, интегральная и дифференциальная. Каждая составляющая имеет свою степень значимости в каждой конкретной системе, и чем больший вклад вносит та или иная составляющая - тем существеннее именно она и должна быть изменена в процессе регулирования.

Пропорциональная составляющая - самая простая, чем больше изменение - тем больше коэффициент (пропорциональности в формуле), и чтобы воздействие уменьшить, достаточно просто уменьшить коэффициент (множитель).

Допустим, влажность почвы в теплице сильно ниже установленной - тогда время полива должно быть дольше во столько же раз, во сколько текущая влажность ниже установленной. Это грубый пример, но принцип в общих чертах именно таков.

Интегральная составляющая - она необходима для повышения точности управления с опорой на предыдущие события регулирования: предыдущие ошибки интегрируются, на них и делается поправка, чтобы в итоге получить нулевое отклонение при регулировании в будущем.

Наконец, дифференциальная составляющая. Здесь берется в расчет скорость изменения регулируемой величины. Плавно ли, резко ли изменяется задаваемая величина, - соответственно и регулирующее воздействие не должно приводить к чрезмерным отклонениям величины во время регулирования.

Остается выбрать прибор для ПИД-регулирования. Сегодня их на рынке много, есть многоканальные, позволяющие изменять сразу несколько параметров, как в приведенном выше примере с теплицей.

Рассмотрим устройство регулятора на примере универсального ПИД-регулятора ТРМ148 от компании Овен.

Входные восемь датчиков подают сигналы на соответствующие входы. Сигналы масштабируются, фильтруются, корректируются, их значения можно просмотреть на дисплее, произведя переключение кнопками.

Выходы прибора изготавливаются в разных модификациях в требуемых комбинациях из следующих:

    реле 4 А 220 В;

    транзисторные оптопары n–p–n-типа 400 мА 60 В;

    симисторные оптопары 50 мА 300 В;

    ЦАП «параметр–ток 4...20 мА»;

    ЦАП «параметр–напряжение 0...10 В»;

    выход 4...6 В 100 мА для управления твердотельным реле.

Так, управляющее воздействие может быть аналоговым или цифровым. - это импульсы изменяемой ширины, а аналоговый - в форме плавно изменяемого напряжения или тока в унифицированном диапазоне: от 0 до 10 В для напряжения, и от 4 до 20 мА - для токового сигнала.

Данные выходные сигналы как раз и служат для управления исполнительными приборами, скажем насосом системы полива или реле, включающим и выключающим ТЭН либо мотор управления задвижкой. На панели регулятора присутствуют сигнальные индикаторы.


Для взаимодействия с ПК, регулятор ТРМ148 оснащен интерфейсом RS-485, который позволяет:

    конфигурировать прибор на ПК (программы для конфигурирования предоставляются бесплатно);

    передавать в сеть текущие значения измеренных величин, выходной мощности регулятора, а также любых программируемых параметров;

  • получать из сети оперативные данные для генерации управляющих сигналов.
gastroguru © 2017