Пид закон регулирования для чайников. Пропорционально-интегральный дифференциальный (ПИД)- закон регулирования. Согласование выходных устройств непрерывных регуляторов

Что же такое ПИД-регулятор? Прежде всего это алгоритм, который может быть реализован как программно, так и аппаратно. Сегодня мы рассмотрим ПИД-регулятор как законченное устройство, которое может быть использовано для построения систем управления и автоматики. В качестве примера возьмём устройство компании «ОВЕН» ТРМ210. Но для начала немного теории…

Что такое ПИД-регулятор?

ПИД-регулятор относится к . Аббревиатура «ПИД» расшифровывается как «пропорционально-интегрально-дифференциальный» (регулятор) — эти три слова полностью описывают принцип его действия. Общая структурная схема управления выглядит так:

На вход регулятора подаётся измеренная датчиком физическая величина (температура, влажность и т.д.), регулятор в соответствии со своим алгоритмом (реализующим функцию преобразования) выдаёт управляющее воздействие. Это вызывает изменение регулируемой величины (например, температуры или влажности). На следующем шаге регулятор снова делает замер регулируемого параметра и сравнивает эту величину с заданной, вычисляя ошибку регулирования. Новое управляющее воздействие формируется с учётом ошибки регулирования на каждом шаге. Значение величины, которое нужно поддерживать, задаётся пользователем.

Функция преобразования ПИД-регулятора выглядит следующим образом:

Где E — ошибка регулирования (разница между заданным значением регулируемой величины и фактическим)

В этой формуле, как вы уже догадались, есь три составляющие: интегральная пропорциональная и дифференциальная. Каждая из них имеет соответствующий коэффициент (Кп, Ки, Кд). Чем больше коэффициент, тем больший вклад данная составляющая вносит в работу регулятора. Теперь разберёмся за что отвечает каждая из них.

Пропорциональная: «Чем больше — тем больше, чем меньше — тем меньше»

Тут всё просто. Пропорциональная составляющая просто умножает величину ошибки на свой коэффициент. Например, чем больше заданная температура по сравнению с текущей, тем большую мощность регулятор установит на обогревателе.

Интегральная: «Учтём предыдущий опыт»

Интегральная составляющая необходима, чтобы учитывать предыдущий опыт работы регулятора и делать управление всё точнее и точнее со временем. Как известно, интеграл — это сумма. Регулятор суммирует все предыдущие значения ошибки регулирования и делает на них поправку. Как только система выйдет на заданный режим (например, достигнет заданной температуры) ошибка регулирования будет близка к нулю и интегральная часть со временем будет всё меньше влиять на работу регулятора. Говоря простым языком, интегральная составляющая стремиться исправить ошибки регулирования за предыдущий период.

Дифферинциальная: «Учтём скорость изменения»

Эта составляющая берёт производную от измеряемой величины. Физический смысл производной- это скорость изменения физической величины. Например, чем быстрее растёт (или падает) температура в системе, тем больше будет соответствующая производная. Дифферинциальная составляющая позволяет регулятору по-разному реагировать на резкие и плавные изменения регулируемой величины в системе, тем самым избегая «раскачивания» этой величины.

ТРМ210: Функциональная схема прибора

Краткий экскурс в теорию закончен, вернёмся к практике и рассмотрим прибор ТРМ210, реализующий данный алгоритм.

Вот его функциональная схема:

Информация с датчика преобразуется прибором с помощью шкалы масштабирования, проходит фильтрацию и коррекцию. Это необходимо, чтоб ПИД-алгоритм получил измеренное значение в удобном и понятном для него виде.

Значение измеренной величины отображается на дисплее прибора.

Управляющее воздействие регулятора может быть импульсным или аналоговым. В первом случае управляющее воздействие регулятора заключается в изменении ширины генерируемых на выходе импульсов. Во втором случае регулятор выдаёт сигнал унифицированного напряжения в диапазоне 0…10 В или тока в диапазоне 4…20 мА. С помощью этих сигналов можно управлять практически любым устройством.

В ТРМ210 предусмотрен блок сигнализации, который сообщает о выходе физической величины за заданные пределы, замыкая дискретный выход, который, например, может «зажигать» лампу «Авария».

Также в приборе имеется блок регистратора, который может передавать измеренное значение физической величины любому другому прибору или устройству с помощью токового сигнала 4…20 мА.

В дополнение ко всему выше перечисленному регулятор имеет «на борту» интерфейс RS-485, который позволяет читать с прибора значения измеряемой величины, выходной мощности регулятора и любых конфигурируемых параметров. Это может пригодиться, если нужно передавать информацию о работе прибора в диспетчерский пункт.

Пример использования

Допустим, необходимо реализовать проветривание помещения следующим образом: чем больше температура внутри, тем больше нужно открыть окно. Для этого установим на окно привод, который будет плавно поворачиваться на заданный угол, а управляться будет сигналом тока 4…20 мА (такой управляющий сигнал поддерживают практически все подобные приводы). То есть, если подать на привод сигнал 4 мА — он полностью закроет окно, а 20 мА — полностью его откроет.

Для измерения температуры можно взять любой из поддерживаемых ТРМ210 — это практически любые термопары и любые датчики имеющие унифицированные выходы 0…10 В и 4…20 мА.

Настройка ПИД-регулятора

Прибор ТРМ210 имеет функцию автонастройки. В этом режиме регулятор сам имитирует возмущающие воздействия, отслеживает реакцию системы и исходя из этих данных подстраивает свои коэффициенты. Однако, таким способом настроить регулятор получается далеко не всегда, поскольку регулятор ничего не знает о реальной системе, и генерируемые им тестовые возмущения могут не совпадать с реальными возмущениями, возникающими в этой системе. В таких случаях необходимо подобрать коэффициенты вручную. О том, как это правильно сделать мы расскажем в .

До свидания! Читайте LAZY SMART .

Полоса пропорциональности X p , как и отклонение E, выражается в единицах контролируемого параметра. Чем шире полоса пропорциональности X p , тем меньше величина выходного сигнала Y при одном и том же отклонении E.

Вне полосы пропорциональности выходной сигнал Y равен 0 или 100 %.

При действии П-закона регулятор выдает импульсы, в которых присутствует только пропорциональная составляющая величины выходного сигнала.


При работе прибора в режиме ПД-регулятора величина выходного сигнала Y i зависит не только от величины отклонения E i , но и от скорости его изменения:

Изменение выходного сигнала регулятора при ступенчатом изменении отклонения показано на рисунке. В первый период после ступенчатого изменения E i регулятор выдает управляющий импульс, в котором, кроме пропорциональной составляющей, вызванной рассогласованием E i , добавляется дифференциальная (заштрихованная часть) ΔYд, которая зависит от величины ΔE i и τ л коэффициента. В последующих импульсах присутствует только пропорциональная составляющая, так как нет изменения E i .


Из рисунка видно, что в первый момент времени, когда нет отклонения (E i =0), нет и выходного сигнала (Y i =0). С появлением отклонения E i появляются импульсы, длительность которых постепенно увеличивается. В импульсах присутствует пропорциональная составляющая, которая зависит от величины E (незаштрихованная часть импульсов) и интегральная составляющая (заштрихованная часть). Увеличение длительности импульсов происходит за счет роста интегральной составляющей, которая зависит от рассогласования E i и коэффициента τ и.

П-регулятор - Это регулятор, у которого μ пропорционально σ, т.е.μ = – Кσ.

При скачке входной величины σ на значение (–10ºС) затвор регулирующего органа переходит в новое μ - положение скачком (рис.2.10).

Рис.2.10. Закон регулирования П-регулятора.

Достоинство такого регулирования: регулирующий орган быстро перемещается на новое положение, т.е. высокая скорость регулирования (t – время).

Недостаток: имеет место остаточное отклонение, т.е. имеет место некоторая ошибка регулирования.

И-регулятор Это регулятор, у которого μ пропорционально интегралу σ

При скачке входной величины на значение (–10ºС) затвор регулирующего органа медленно переходит в новое положение (рис.2.11).

Рис.2.11. Закон регулирования И-регулятора.

Достоинство:отсутствие остаточного отклонения регулируемого параметра от зад-го знч-я.

Недостаток: низкая скорость рег-я, т.е. затвор в новое положение перемещается медленно.

ПИ-регулятор – это параллельное соединение предыдущих двух регуляторов (П и И - регуляторов). Этот регулятор сочетает положительные моменты П и И -регуляторов. У ПИ-регулятора (рис.2.12) регулирующее воздействие μ перемещает затвор пропорционально отклонению параметра σ и интегралу отклонения σ.

Где: К, Т и – параметры настройки регулятора. Как видим, формула данного закона – это сумма двух предыдущих формул. Затвор регулирующего органа часть пути пройдет скачком по П-закону, а оставшуюся часть – медленно по И - закону.

Рис.2.12. Закон регулирования ПИ-регулятора

Регуляторы с предварением

ПД-регулятор - это такой регулятор (рис.2.13), у которого выходной сигнал μ пропорционален входному сигналу σ и производной dσ/dt, т.е..

Рис.2.13. Закон регулирования ПД-регулятора.

Производная dσ/dt характеризует тенденцию изменения (отклонения) регулируемой величины. Величина и знак воздействия от производной позволяют регулятору как бы предвидеть в какую сторону и на сколько отклонилась бы регулируемая величина под действием данного возмущения. Это предвидение позволяет регулятору предварять своим воздействием возможное отклонение регулируемой величины. В результате процесс регулирования завершается в более короткое время.

Сначала затвор скачком переходит из точки а в точку в (П – закон), т.е. больше чем надо, затем отскакивает назад в точку б (дифференциальное действие), и остаётся в этом положении.

ПИД-регулятор .

У него 3 родителя: П-регулятор, И-регулятор, ПД-регулятор. Соответственно складываются 3 формулы (рис.2.14.)

.

Здесь: К, Т и, Т д – параметры настройки, которые можно настроить вручную.

Рис.2.14. Закон регулирования ПИД-регулятора.

ПИД - закон используется во всех контроллерах. Сначала затвор скачком переходит из точки а в точку в (П – закон), т.е. больше чем надо, затем отскакивает назад в точку б (дифференциальное действие), а далее затвор медленно перемещается в конечное положение (И – закон). В результате процесс регулирования завершается в более короткое время и с меньшей погрешностью регулирования.

Настройка регуляторов

Связи между показателями качества

Описанные выше показатели качества связаны между собой примерными соотношениями, справедливыми только для систем не выше второго порядка:

; t p = ; ; M = .

Для регулирования объектами управления, как правило, используют типовые регуляторы, которые можно разделить на аналоговые и дискретные. К дискретным регуляторам относятся импульсные, релейные и цифровые. Аналоговые реализуют типовые законы регулирования, названия которых соответствуют названиям типовых звеньев.

Входным сигналом для аналоговых регуляторов является величина ошибки регулирования, которая определяется как разность между заданным и текущим значениями регулируемого параметра (e = х - у). Выходным сигналом является величина управляющего воздействия u, подаваемая на объект управления. Преобразование входного сигнала в выходной производится согласно типовым законам регулирования, рассматриваемым ниже.

1) П-закон (пропорциональное регулирование) . Согласно закон пропорционального регулирования управляющее воздействие должно быть пропорционально величине ошибки. Например, если регулируемый параметр начинает отклоняться от заданного значения, то воздействие на объект следует увеличивать в соответствующую сторону. Коэффициент пропорциональности часто обозначают как K 1:

Тогда передаточная функция П-регулятора имеет вид

W П (s) = K 1 .

Если величина ошибки стала равна, например, единице, то управляющее воздействие станет равным K 1 (см. рисунок 1.52).


Рисунок 1.52

Примером системы с П-регулятором может служить система автоматического наполнения емкости (сливной бачок). На рисунке 1.53 обозначены:

L и L зад - текущий уровень в емкости (регулируемая величина) и его заданная величина,

F пр и F сток - расходы жидкости притекающей и стекающей из емкости.

Управляющим воздействием является F пр. F сток - возмущение.

Принцип действия понятен из рисунка: при опустошении емкости поплавок через кронштейн открывает задвижку подачи жидкости. Причем, чем больше разница уровней е = L зад - L, тем ниже поплавок, тем больше открыта задвижка и, соответственно, больше поток жидкости F пр. По мере наполнения емкости ошибка уменьшается до нуля и, соответственно, уменьшается F пр до полного прекращения подачи. То есть F пр = K 1 . (L зад - L).

Достоинство данного принципа регулирования в быстродействии. Недостаток - в наличии статической ошибки в системе. Например, если жидкость вытекает из емкости постоянно, то уровень всегда будет меньше заданного.

2) И-закон (интегральное регулирование) . Управляющее воздействие пропорционально интегралу от ошибки. То есть чем дольше существует отклонение регулируемого параметра от заданного значения, тем больше управляющее воздействие:


.

Передаточная функция И-регулятора:

При возникновении ошибки управляющее воздействие начинает увеличиваться со скоростью, пропорциональной величине ошибки. Например, при е = 1 скорость будет равна K 0 (см. рисунок 1.54).


Рисунок 1.54

Достоинство данного принципа регулирования в отсутствии статической ошибки, т.е. при возникновении ошибки регулятор будет увеличивать управляющее воздействие, пока не добьется заданного значения регулируемой величины. Недостаток - в низком быстродействии.

3) Д-закон (дифференциальное регулирование) . Регулирование ведется по величине скорости изменения регулируемой величины:

То есть при быстром отклонении регулирующей величины управляющее воздействие по модулю будет больше. При медленном - меньше. Передаточная функция Д-регулятора:

W Д (s) = K 2 s.

Регулятор генерирует управляющее воздействие только при изменении регулируемой величины. Например, если ошибка имеет вид ступенчатого сигнала е = 1, то на выходе такого регулятора будет наблюдаться один импульс (d-функция). В этом заключается его недостаток, который обусловил отсутствие практического использования такого регулятора в чистом виде.

На практике типовые П-, И- и Д-законы регулирования редко используются в чистом виде. Чаще они комбинируются и реализуются в виде ПИ-регуляторов, ПД-регуляторов, ПИД-регуляторов и др.

ПИ-регулятор (пропорционально-интегральный регулятор) представляет собой два параллельно работающих регулятора: П- и И-регуляторы (см. рисунок 1.55). Данное соединение сочетает в себе достоинства обоих регуляторов: быстродействие и отсутствие статической ошибки.

ПИ-закон регулирования описывается уравнением

и передаточной функцией

W ПИ (s) = K 1 + .

То есть регулятор имеет два независимых параметра (настройки): K 0 - коэффициент интегральной части и K 1 - коэффициент пропорциональной.

При возникновении ошибки е = 1 управляющее воздействие изменяется как показано на рисунке 1.56.

Рисунок 1.56

ПД-регулятор (пропорционально-дифференциальный регулятор) включает в себя П- и Д-регуляторы (см. рисунок 1.57). Данный закон регулирования описывается уравнением

и передаточной функцией:

W ПД (s) = K 1 + K 2 s.

Данный регулятор обладает самым большим быстродействием, но также и статической ошибкой. Реакция регулятора на единичное ступенчатое изменение ошибки показана на рисунке 1.58.


Рисунок 1.58

ПИД-регулятор (пропорционально-интегрально-дифференциальный регулятор) можно представить как соединение трех параллельно работающих регуляторов (см. рисунок 1.59). Закон ПИД-регулирования описывается уравнением:

и передаточной функцией

W ПИД (s) = K 1 + + K 2 s.

ПИД-регулятор в отличие от других имеет три настройки: K 0 , K 1 и K 2 .

ПИД-регулятор используется достаточно часто, поскольку он сочетает в себе достоинства всех трех типовых регуляторов. Реакция регулятора на единичное ступенчатое изменение ошибки показана на рисунке 1.60.


Можно утверждать, что наибольшее быстродействие обеспечивает П-закон , - исходя из соотношения tp / T d .

Однако, если коэффициент усиления П-регулятора Кр мал (чаще всего это наблюдается в с запаздыванием), то такой не обеспечивает высокой точности регулирования, т.к. в этом случае велика величина .

Если Кр > 10, то П-регулятор приемлем, а если Если Кр < 10, то требуется введение в закон управления составляющей.

ПИ-закон регулирования

Наиболее распространенным на практике является ПИ-регулятор, который обладает следующими достоинствами:

  1. Обеспечивает нулевую регулирования.
  2. Достаточно прост в настройке, т.к. настраиваются только два параметра, а именно коэффициент усиления Кр и постоянная времени интегрирования Ti. В таком регуляторе имеется возможность оптимизации величины отношения Кр/Ti-min, что обеспечивает управление с минимально возможной среднеквадратичной регулирования.
  3. Малая чувствительность к шумам в измерения (в отличие от ПИД-регулятора).

ПИД-закон регулирования

Для наиболее ответственных контуров регулирования можно рекомендовать использование , обеспечивающего наиболее высокое быстродействие в системе.

Однако следует учитывать, что это выполняется только при его оптимальных настройках (настраиваются три параметра).

С увеличением запаздывания в системе резко возрастают отрицательные фазовые сдвиги, что снижает эффект действия дифференциальной составляющей регулятора. Поэтому качество ПИД-регулятора для систем с большим запаздыванием становится сравнимо с качеством работы ПИ-регулятора.

Кроме этого, наличие шумов в канале измерения в системе с ПИД-регулятором приводит к значительным случайным колебаниям управляющего сигнала регулятора, что увеличивает дисперсию ошибки регулирования и износ механизма.

Таким образом, ПИД-регулятор следует выбирать для систем регулирования, с относительно малым уровнем шумов и величиной запаздывания в управления. Примерами таких систем является системы регулирования температуры.

gastroguru © 2017