Исследовать функцию на непрерывность в указанных точках онлайн. Исследование функции на непрерывность онлайн

На этой странице мы постарались собрать для вас наиболее полную информацию об исследовании функции. Больше не надо гуглить! Просто читайте, изучайте, скачивайте, переходите по отобранным ссылкам.

Общая схема исследования

Для чего нужно это исследование, спросите вы, если есть множество сервисов, которые построят для самых замудренных функций? Для того, чтобы узнать свойства и особенности данной функции: как ведет себя на бесконечности, насколько быстро меняет знак, как плавно или резко возрастает или убывает, куда направлены "горбы" выпуклости, где не определены значения и т.п.

А уже на основании этих "особенностей" и строится макет графика - картинка, которая на самом-то деле вторична (хотя в учебных целях важна и подтверждает правильность вашего решения).

Начнем, конечно же, с плана . Исследование функции - объемная задача (пожалуй, самая объемная из традиционного курса высшей математики, обычно от 2 до 4 страниц с учетом чертежа), поэтому, чтобы не забыть, что в каком порядке делать, следуем пунктам, описанным ниже.

Алгоритм

  1. Найти область определения. Выделить особые точки (точки разрыва).
  2. Проверить наличие вертикальных асимптот в точках разрыва и на границах области определения.
  3. Найти точки пересечения с осями координат.
  4. Установить, является ли функция чётной или нечётной.
  5. Определить, является ли функция периодической или нет (только для тригонометрических функций).
  6. Найти точки экстремума и интервалы монотонности.
  7. Найти точки перегиба и интервалы выпуклости-вогнутости.
  8. Найти наклонные асимптоты. Исследовать поведение на бесконечности.
  9. Выбрать дополнительные точки и вычислить их координаты.
  10. Построить график и асимптоты.

В разных источниках (учебниках, методичках, лекциях вашего преподавателя) список может иметь отличный от данного вид: некоторые пункты меняются местами, объединяются с другими, сокращаются или убираются. Учитывайте требования/предпочтения вашего учителя при оформлении решения.

Схема исследования в формате pdf: скачать .

Полный пример решения онлайн

Провести полное исследование и построить график функции $$ y(x)=\frac{x^2+8}{1-x}. $$

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя. $$1-x=0, \quad \Rightarrow \quad x=1.$$ Исключаем единственную точку $x=1$ из области определения функции и получаем: $$ D(y)=(-\infty; 1) \cup (1;+\infty). $$

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка $x=1$ является разрывом второго рода, прямая $x=1$ - вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат $Oy$, для чего приравниваем $x=0$:

Таким образом, точка пересечения с осью $Oy$ имеет координаты $(0;8)$.

Найдем точки пересечения с осью абсцисс $Ox$, для чего положим $y=0$:

Уравнение не имеет корней, поэтому точек пересечения с осью $Ox$ нет.

Заметим, что $x^2+8>0$ для любых $x$. Поэтому при $x \in (-\infty; 1)$ функция $y>0$ (принимает положительные значения, график находится выше оси абсцисс), при $x \in (1; +\infty)$ функция $y\lt 0$ (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых $y"=0$):

Получили три критические точки: $x=-2, x=1, x=4$. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При $x \in (-\infty; -2), (4;+\infty)$ производная $y" \lt 0$, поэтому функция убывает на данных промежутках.

При $x \in (-2; 1), (1;4)$ производная $y" >0$, функция возрастает на данных промежутках.

При этом $x=-2$ - точка локального минимума (функция убывает, а потом возрастает), $x=4$ - точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума $(-2;4)$, точка максимума $(4;-8)$.

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:



Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда $x \in (-\infty; 1)$ выполняется $y"" \gt 0$, то есть функция вогнутая, когда $x \in (1;+\infty)$ выполняется $y"" \lt 0$, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида $y=kx+b$. Вычисляем значения $k, b$ по известным формулам:


Получили, у что функции есть одна наклонная асимптота $y=-x-1$.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

$$ y(-5)=5.5; \quad y(2)=-12; \quad y(7)=-9.5. $$

10) По полученным данным построим график, дополним его асимптотами $x=1$ (синий), $y=-x-1$ (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Примеры решений по исследованию функции

Разные функции (многочлены, логарифмы, дроби) имеют свои особенности при исследовании (разрывы, асимптоты, количество экстремумов, ограниченная область определения), поэтому здесь мы пострались собрать примеры из контрольных на исследование функций наиболее часто встречающихся типов. Удачи в изучении!

Задача 1. Исследовать функцию методами дифференциального исчисления и построить график.

$$y=\frac{e^x}{x}.$$

Задача 2. Исследовать функцию и построить ее график.

$$y=-\frac{1}{4}(x^3-3x^2+4).$$

Задача 3. Исследовать функцию с помощью производной и построить график.

$$y=\ln \frac{x+1}{x+2}.$$

Задача 4. Провести полное исследование функции и построить график.

$$y=\frac{x}{\sqrt{x^2+x}}.$$

Задача 5. Исследовать функцию методом дифференциального исчисления и построить график.

$$y=\frac{x^3-1}{4x^2}.$$

Задача 6. Исследовать функцию на экстремумы, монотонность, выпуклость и построить график.

$$y=\frac{x^3}{x^2-1}.$$

Задача 7. Проведите исследование функции с построением графика.

$$y=\frac{x^3}{2(x+5)^2}.$$

Как построить график онлайн?

Даже если преподаватель требует вас сдавать задание, написанное от руки , с чертежом на листке в клеточку, вам будет крайне полезно во время решения построить график в специальной программе (или сервисе), чтобы проверить ход решения, сравнить его вид с тем, что получается вручную, возможно, найти ошибки в своих расчетах (когда графики явно ведут себя непохоже).

Ниже вы найдете несколько ссылок на сайты, которые позволяют построить удобно, быстро, красиво и, конечно, бесплатно графики практически любых функций. На самом деле таких сервисов гораздо больше, но стоит ли искать, если выбраны лучшие?

Графический калькулятор Desmos

Вторая ссылка практическая, для тех, кто хочет научиться строить красивые графики в Desmos.com (см. выше описание): Полная инструкция по работе с Desmos . Эта инструкция довольно старая, с тех пор интерфейс сайта поменялся в лучшую сторону, но основы остались неизменными и помогут быстро разобраться с важными функциями сервиса.

Официальные инструкции, примеры и видео-инструкции на английском можно найти тут: Learn Desmos .

Решебник

Срочно нужна готовая задача? Более сотни разных функций с полным исследованием уже ждут вас. Подробное решение, быстрая оплата по SMS и низкая цена - около 50 рублей . Может, и ваша задача уже готова? Проверьте!

Полезные видео-ролики

Вебинар по работе с Desmos.com. Это уже полноценный обзор функций сайта, на целых 36 минут. К сожалению, он на английском языке, но базовых знаний языка и внимательности достаточно, чтобы понять большую часть.

Классный старый научно-популярный фильм "Математика. Функции и графики". Объяснения на пальцах в прямом смысле слова самых основ.

Непрерывность и построение графиков кусочно-заданных функций – сложная тема. Учиться строить графики лучше непосредственно на практическом занятии. Здесь в основном показано исследование на непрерывность.

Известно, что элементарная функция (см. с. 16) непрерывна во всех точках, в которых определена. Поэтому нарушение непрерывности у элементарных функций возможно только в точках двух типов:

а) в точках, где функция «переопределяется»;

б) в точках, где функция не существует.

Соответственно только такие точки и проверяются при исследовании на непрерывность, что показано в примерах.

Для неэлементарных функций исследование сложнее. Например, функция (целая часть числа) определена на всей числовой оси, но терпит разрыв при каждом целомx . Подобные вопросы выходят за рамки пособия.

Перед изучением материала следует повторить по лекции или учебнику, какими (какого рода) бывают точки разрыва.

Исследование кусочно-заданных функций на непрерывность

Функция задана кусочно , если она на разных участках области определения задаётся разными формулами.

Основная идея при исследовании таких функций – выяснить, задана ли функция в тех точках, в которых переопределяется, и как. Затем проверяется, совпадают ли значения функции слева и справа от таких точек.

Пример 1. Покажем, что функция
непрерывна.

Функция
элементарна и потому непрерывна в тех точках, в которых определена. Но, очевидно, она определена во всех точках. Следовательно, во всех точках она и непрерывна, в том числе при
, как требует условие.

То же справедливо для функции
, и при
она непрерывна.

В таких случаях непрерывность может нарушаться только там, где функция переопределяется. В нашем примере это точка
. Проверим её, для чего найдём пределы слева и справа:

Пределы слева и справа совпадают. Остаётся узнать:

а) определена ли функция в самой точке
;

б) если да, то совпадает ли
со значениями пределов слева и справа.

По условию, если
, то
. Поэтому
.

Видим, что (все равны числу 2). Это означает, что в точке
функция непрерывна . Итак, функция непрерывна на всей оси, включая точку
.

Замечания к решению

а) При вычислениях не играло роли, подставляем мы в конкретную формулу число
или
. Обычно это важно, когда получается деление на бесконечно малую величину, поскольку влияет на знак бесконечности. Здесь же
и
отвечают только завыбор функции;

б) как правило, обозначения
и
равноправны, то же касается обозначений
и
(и справедливо для любой точки, а не только для
). Дальше для краткости применяются обозначения вида
;

в) когда пределы слева и справа равны, для проверки на непрерывность фактически остаётся посмотреть, будет ли одно из неравенств нестрогим . В примере таковым оказалось 2-е неравенство.

Пример 2. Исследуем на непрерывность функцию
.

По тем же причинам, что в примере 1, непрерывность может нарушаться только в точке
. Проверим:

Пределы слева и справа равны, но в самой точке
функция не определена (неравенства строгие). Это означает, что
– точкаустранимого разрыва .

«Устранимый разрыв» означает, что достаточно или сделать любое из неравенств нестрогим, или придумать для отдельной точки
функцию, значение которой при
равно –5, или просто указать, что
, чтобы вся функция
стала непрерывной.

Ответ: точка
– точка устранимого разрыва.

Замечание 1. В литературе устранимый разрыв обычно считается частным случаем разрыва 1-го рода, однако студентами чаще понимается как отдельный тип разрыва. Во избежание разночтений будем придерживаться 1-й точки зрения, а «неустранимый» разрыв 1-го рода оговаривать особо.

Пример 3. Проверим, непрерывна ли функция

В точке

Пределы слева и справа различны:
. Независимо от того, определена ли функция при
(да) и если да, то чему равна (равна 2), точка
точка неустранимого разрыва 1-го рода .

В точке
происходитконечный скачок (от 1 к 2).

Ответ: точка

Замечание 2. Вместо
и
обычно пишут
и
соответственно.

Возможен вопрос: чем отличаются функции

и
,

а также их графики? Правильный ответ:

а) 2-я функция не определена в точке
;

б) на графике 1-й функции точка
«закрашена», на графике 2-й – нет («выколотая точка»).

Точка
, где обрывается график
, не закрашена на обоих графиках.

Сложнее исследовать функции, по-разному определённые на трёх участках.

Пример 4. Непрерывна ли функция
?

Так же, как в примерах 1 – 3, каждая из функций
,
инепрерывна на всей числовой оси, в том числе – на участке, на котором задана. Разрыв возможен только в точке
или (и) в точке
, где функция переопределяется.

Задача распадается на 2 подзадачи: исследовать на непрерывность функции

и
,

причём точка
не представляет интереса для функции
, а точка
– для функции
.

1-й шаг. Проверяем точку
и функцию
(индекс не пишем):

Пределы совпадают. По условию,
(если пределы слева и справа равны, то фактически функция непрерывна, когда одно и из неравенств нестрогое). Итак, в точке
функция непрерывна.

2-й шаг. Проверяем точку
и функцию
:

Поскольку
, точка
– точка разрыва 1-го рода, и значение
(и то, есть ли оно вообще) уже не играет роли.

Ответ: функция непрерывна во всех точках, кроме точки
, где имеет место неустранимый разрыв 1-го рода – скачок от 6 к 4.

Пример 5. Найти точки разрыва функции
.

Действуем по той же схеме, что в примере 4.

1-й шаг. Проверяем точку
:

а)
, поскольку слева от
функция постоянна и равна 0;

б) (
– чётная функция).

Пределы совпадают, но при
функция по условию не определена, и получается, что
– точка устранимого разрыва.

2-й шаг. Проверяем точку
:

а)
;

б)
– значение функции не зависит от переменной.

Пределы различны: , точка
– точка неустранимого разрыва 1-го рода.

Ответ:
– точка устранимого разрыва,
– точка неустранимого разрыва 1-го рода, в остальных точках функция непрерывна.

Пример 6. Непрерывна ли функция
?

Функция
определена при
, поэтому условие
превращается в условие
.

С другой стороны, функция
определена при
, т.е. при
. Значит, условие
превращается в условие
.

Получается, что должно выполняться условие
, и область определения всей функции – отрезок
.

Сами по себе функции
и
элементарны и потому непрерывны во всех точках, в которых определены – в частности, и при
.

Остаётся проверить, что происходит в точке
:

а)
;

Поскольку
, смотрим, определена ли функция в точке
. Да, 1-е неравенство – нестрогое относительно
, и этого достаточно.

Ответ: функция определена на отрезке
и непрерывна на нём.

Более сложные случаи, когда одна из составляющих функций неэлементарна или не определена в какой-либо точке своего отрезка, выходят за рамки пособия.

НФ1. Постройте графики функций. Обратите внимание, определена ли функция в той точке, в которой переопределяется, и если да – каково значение функции (слово «если » в определении функции для краткости пропущено):

1) а)
б)
в)
г)

2) а)
б)
в)
г)

3) а)
б)
в)
г)

4) а)
б)
в)
г)

Пример 7. Пусть
. Тогда на участке
строим горизонтальную прямую
, а на участке
строим горизонтальную прямую
. При этом точка с координатами
«выколота», а точка
«закрашена». В точке
получается разрыв 1-го рода («скачок»), и
.

НФ2. Исследуйтена непрерывность функции, по-разному определённые на 3-х интервалах. Постройте графики:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

Пример 8. Пусть
. На участке
строим прямую
, для чего находим
и
. Соединяем точки
и
отрезком. Сами точки не включаем, поскольку при
и
функция по условию не определена.

На участке
и
обводим осьOX (на ней
), однако точки
и
«выколоты». В точке
получаем устранимый разрыв, а в точке
– разрыв 1-го рода («скачок»).

НФ3. Постройте графики функций и убедитесь в их непрерывности:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

НФ4. Убедитесь в непрерывности функций и постройте их графики:

1) а)
б)
в)

2 а)
б)
в)

3) а)
б)
в)

НФ5. Постройте графики функций. Обратите внимание на непрерывность:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ6. Постройте графики разрывных функций. Обратите внимание на значение функции в той точке, где функция переопределяется (и существует ли оно):

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ7. То же задание, что и в НФ6:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

Подборка онлайн калькуляторов для полного исследования функции и построение графика.

Найти Область определения функции

Вычислить Четность функции

Вычисление точек пересечения графика с осью (нули функции)

Найти экстремумы функции

Точки перегиба, интервалы выпуклости и вогнутости

Построить график функции

Данный калькулятор предназначен для нахождения точек разрыва функции онлайн.

Точки разрыва функции – это точки, в которых функция имеет разрыв, при этом функция в этих точках не является непрерывной.

Существует определенная классификация точек разрыва функции. Точки разрыва функции делятся на точки разрыва первого рода и точки разрыва второго рода.

Точки разрыва первого рода при x=a имеют место быть, если существуют левосторонний и правосторонний пределы: lim(x→a-0)⁡f(x) и lim(x→a+0)⁡f(x). Эти пределы должны быть конечны. Если хотя бы один из односторонних пределов равен нулю или бесконечности, то в таком случае функция имеет точки разрыва второго рода.

Для того чтобы найти точки разрыва функции онлайн, необходимо указать функцию и значение аргумента.

Для получения полного хода решения нажимаем в ответе Step-by-step.

Исследовать функцию, построить график

План исследования функций и построения графика .

Ответ означает следующее: even - функция четная, odd - функция нечетная, neither even nor odd - функция ни четная ни нечетная.

3. Точки пересечения графика функции с осями координат;

4. Непрерывность функции, точки разрыва;

5. Асимптоты графика функции;

6. Интервалы монотоности и критические точки;

7 . Интервалы выпуклости и точки перегиба;

8. Посторение графика на основании проведённого исследования.

Образовательные онлайн сервисы: теория и практика

Решения типовых задач - Математический анализ

Исследовать функцию на непрерывность, определить характер разрыва.

Пример 1 .

Функция не определена в точках, уже нарушено первое условие непрерывности, следовательно, в этих точках функция испытывает разрыв.

Для выяснения характера разрыва нужно вычислить односторонние пределы в точках.

Так как левый предел в точке равен бесконечности, то в ней разрыв II рода.

Так как правый предел в точке равен бесконечности, то в ней разрыв II рода.

Пример 2 Функция определена на всей числовой прямой, но при этом она не является непрерывной, так как, т.е. правый и левый пределы в нуле не равны между собой и не равны значению функции в нуле, нарушены 2 и 3 условия непрерывности. Так как правый и левый пределы в нуле существуют и конечны, то это разрыв I рода.

Пример 3 Функция неопределена в нуле, следовательно, – точка разрыва.

Так как и, то это устранимый разрыв, функцию можно в нуле доопределить “по непрерывности”, положив равной единице.

Пример 4

Функция является элементарной, поэтому она непрерывна в области её определения. В область определения не входят точки, следовательно, они являются точками разрыва данной функции.

Определим тип точек разрыва.

Так как, то точка является точкой

разрыва второго рода функции.

Односторонние пределы функции в точке равны, но функция при не определена, следовательно, является устранимой точкой разрыва первого рода.

Так как заданная функция является четной функцией, то, очевидно, что

И является точкой разрыва второго рода функции.

Для построения эскиза графика функции исследуем поведение функции при

и. Так как функция четная, то

Построим эскиз графика функции.

Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики

Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики.

Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением.

Построим (исследуем) график функции y=f(x), для этого задайте функцию f(x)

Важно : a должно быть меньше b , иначе график не сможет построиться. Cледите за масштабом - если графика на рисунке нету, значит стоит поварьировать значения a и b

С применением степени

(квадрат и куб) и дроби

С применением синуса и косинуса

Гиберболические синус и косинус

Гиберболические тангенс и котангенс

Гиберболические арксинус и арккосинус

Гиберболические арктангенс и арккотангенс

Для периодических функций идет исследование графика функции только на промежутке периода

Наш калькулятор позволяет исследовать график функции. Но пока что нет возможности находить область определения функции

Что умеет находить этот калькулятор:

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x) Абсолютное значение x

(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x

(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) sign(x) Функция - Знак x erf(x) Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание

Контрольная работа РУ - калькуляторы онлайн

Исследование функции на непрерывность в точке проводится по уже накатанной рутинной схеме, которая состоит в проверке трёх условий непрерывности:

Пример 1

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение :

1) Под прицел попадает единственная точка , в которой функция не определена.


Односторонние пределы конечны и равны.

Таким образом, в точке функция терпит устранимый разрыв.

Как выглядит график данной функции?

Хочется провести упрощение , и вроде бы получается обычная парабола. НО исходная функция не определена в точке , поэтому обязательна следующая оговорка:

Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит устранимый разрыв.

Функцию можно доопределить хорошим или не очень способом, но по условию этого не требуется.

Вы скажете, пример надуманный? Ничуть. Десятки раз встречалось на практике. Почти все задачи сайта родом из реальных самостоятельных и контрольных работ.

Разделаемся с любимыми модулями:

Пример 2

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение : почему-то студенты боятся и не любят функции с модулем, хотя ничего сложного в них нет. Таких вещей мы уже немного коснулись на уроке Геометрические преобразования графиков . Поскольку модуль неотрицателен, то он раскрывается следующим образом: , где «альфа» - некоторое выражение. В данном случае , и наша функция должна расписаться кусочным образом:

Но дроби обоих кусков предстоит сократить на . Сокращение, как и в предыдущем примере, не пройдёт без последствий. Исходная функция не определена в точке , так как знаменатель обращается в ноль. Поэтому в системе следует дополнительно указать условие , и первое неравенство сделать строгим:

Теперь об ОЧЕНЬ ПОЛЕЗНОМ приёме решения : перед чистовым оформлением задачи на черновике выгодно сделать чертёж (независимо от того, требуется он по условию или нет). Это поможет, во-первых, сразу увидеть точки непрерывности и точки разрыва, а, во-вторых, 100%-но убережёт от ошибок при нахождении односторонних пределов.

Выполним чертёж. В соответствии с нашими выкладками, слева от точки необходимо начертить фрагмент параболы (синий цвет), а справа - кусок параболы (красный цвет), при этом функция не определена в самой точке :

Если есть сомнения, возьмите несколько значений «икс», подставьте их в функцию (не забывая, что модуль уничтожает возможный знак «минус») и сверьтесь с графиком.


Исследуем функцию на непрерывность аналитически:

1) Функция не определена в точке , поэтому сразу можно сказать, что не является в ней непрерывной.

2) Установим характер разрыва, для этого вычислим односторонние пределы:

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Заметьте, что не имеет значения, определена функция в точке разрыва или нет.

Теперь остаётся перенести чертёж с черновика (он сделан как бы с помощью исследования;-)) и завершить задание:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком.

Иногда требуют дополнительно указать скачок разрыва. Вычисляется он элементарно - из правого предела нужно вычесть левый предел: , то есть в точке разрыва наша функция прыгнула на 2 единицы вниз (о чём нам сообщает знак «минус»).

Пример 3

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Сделать чертёж.

Это пример для самостоятельного решения, примерный образец решения в конце урока.

Перейдём к наиболее популярной и распространённой версии задания, когда функция состоит из трёх кусков:

Пример 4

Исследовать функцию на непрерывность и построить график функции

.

Решение : очевидно, что все три части функции непрерывны на соответствующих интервалах, поэтому осталось проверить только две точки «стыка» между кусками. Сначала выполним чертёж на черновике, технику построения я достаточно подробно закомментировал в первой части статьи. Единственное, необходимо аккуратно проследить за нашими особенными точками: в силу неравенства значение принадлежит прямой (зелёная точка), и в силу неравенство значение принадлежит параболе (красная точка):


Ну вот, в принципе, всё понятно =) Осталось оформить решение. Для каждой из двух «стыковых» точек стандартно проверяем 3 условия непрерывности:

I)

1)


Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке .

Вычислим скачок разрыва как разность правого и левого пределов:
, то есть, график рванул на одну единицу вверх.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

- односторонние пределы конечны и равны, значит, существует общий предел.

3)

На завершающем этапе переносим чертёж на чистовик, после чего ставим финальный аккорд:

Ответ : функция непрерывна на всей числовой прямой, кроме точки , в которой она терпит разрыв первого рода со скачком.

Пример 5

Исследовать функцию на непрерывность и построить её график .

Это пример для самостоятельного решения, краткое решение и примерный образец оформления задачи в конце урока.

Может сложиться впечатление, что в одной точке функция обязательно должна быть непрерывной, а в другой - обязательно должен быть разрыв. На практике это далеко не всегда так. Постарайтесь не пренебрегать оставшимися примерами - будет несколько интересных и важных фишек:

Пример 6

Дана функция . Исследовать функцию на непрерывность в точках . Построить график.

Решение : и снова сразу выполним чертёж на черновике:

Особенность данного графика состоит в том, что при кусочная функция задаётся уравнением оси абсцисс . Здесь данный участок прорисован зелёным цветом, а в тетради его обычно жирно выделяют простым карандашом. И, конечно же, не забываем про наших баранов: значение относится к ветке тангенса (красная точка), а значение принадлежит прямой .

Из чертежа всё понятно - функция непрерывна на всей числовой прямой, осталось оформить решение, которое доводится до полного автоматизма буквально после 3-4-х подобных примеров:

I) Исследуем на непрерывность точку

2) Вычислим односторонние пределы:

, значит, общий предел существует.

Случился тут небольшой курьёз. Дело в том, что я создал немало материалов о пределах функции , и несколько раз хотел, да несколько раз забывал об одном простом вопросе. И вот, невероятным усилием воли таки заставил себя не потерять мысль =) Скорее всего, некоторые читатели-«чайники» сомневаются: чему равен предел константы? Предел константы равен самой константе. В данном случае предел нуля равен самому нулю (левосторонний предел).

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

И здесь, в правостороннем пределе - предел единицы равен самой единице.

- общий предел существует.

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

Как обычно, после исследования переносим наш чертёж на чистовик.

Ответ : функция непрерывна в точках .

Обратите внимание, что в условии нас ничего не спрашивали про исследование всей функции на непрерывность, и хорошим математическим тоном считается формулировать точный и чёткий ответ на поставленный вопрос. Кстати, если по условию не требуется строить график, то вы имеете полное право его и не строить (правда, потом преподаватель может заставить это сделать).

Небольшая математическая «скороговорка» для самостоятельного решения:

Пример 7

Дана функция .

Исследовать функцию на непрерывность в точках . Классифицировать точки разрыва, если они есть. Выполнить чертёж.

Постарайтесь правильно «выговорить» все «слова» =) И график нарисовать поточнее, точность, она везде лишней не будет;-)

Как вы помните, я рекомендовал незамедлительно выполнять чертёж на черновике, но время от времени попадаются такие примеры, где не сразу сообразишь, как выглядит график. Поэтому в ряде случаев выгодно сначала найти односторонние пределы и только потом на основе исследования изобразить ветви. В двух заключительных примерах мы, кроме того, освоим технику вычисления некоторых односторонних пределов:

Пример 8

Исследовать на непрерывность функцию и построить её схематический график.

Решение : нехорошие точки очевидны: (обращает в ноль знаменатель показателя) и (обращает в ноль знаменатель всей дроби). Малопонятно, как выглядит график данной функции, а значит, сначала лучше провести исследование:

I) Исследуем на непрерывность точку

2) Найдём односторонние пределы:

Обратите внимание на типовой приём вычисления одностороннего предела : в функцию вместо «икса» мы подставляем . В знаменателе никакого криминала: «добавка» «минус ноль» не играет роли, и получается «четыре». А вот в числителе происходит небольшой триллер: сначала в знаменателе показателя убиваем -1 и 1, в результате чего получается . Единица, делённая на , равна «минус бесконечности», следовательно: . И, наконец, «двойка» в бесконечно большой отрицательной степени равна нулю: . Или, если ещё подробнее: .

Вычислим правосторонний предел:

И здесь - вместо «икса» подставляем . В знаменателе «добавка» снова не играет роли: . В числителе проводятся аналогичные предыдущему пределу действия: уничтожаем противоположные числа и делим единицу на:

Правосторонний предел бесконечен, значит, функция терпит разрыв 2-го рода в точке .

II) Исследуем на непрерывность точку

1) Функция не определена в данной точке.

2) Вычислим левосторонний предел:

Метод такой же: подставляем в функцию вместо «икса» . В числителе ничего интересного - получается конечное положительно число . А в знаменателе раскрываем скобки, убираем «тройки», и решающую роль играет «добавка» .

По итогу, конечное положительное число, делённое на бесконечно малое положительное число , даёт «плюс бесконечность»: .

Правосторонний предел, как брат близнец, за тем лишь исключением, что в знаменателе выплывает бесконечно малое отрицательное число :

Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке .

Таким образом, у нас две точки разрыва, и, очевидно, три ветки графика. Для каждой ветки целесообразно провести поточечное построение, т.е. взять несколько значений «икс» и подставить их в . Заметьте, что по условию допускается построениесхематического чертежа, и такое послабление естественно для ручной работы. Я строю графики с помощью проги, поэтому не имею подобных затруднений, вот достаточно точная картинка:

Прямые являются вертикальными асимптотами для графика данной функции.

Ответ : функция непрерывна на всей числовой прямой кроме точек , в которых она терпит разрывы 2-го рода.

Более простая функция для самостоятельного решения:

Пример 9

Исследовать на непрерывность функцию и выполнить схематический чертёж.

Примерный образец решения в конце, который подкрался незаметно.

До скорых встреч!

Решения и ответы:

Пример 3: Решение : преобразуем функцию: . Учитывая правило раскрытия модуля и тот факт, что , перепишем функцию в кусочном виде:


Исследуем функцию на непрерывность.

1) Функция не определена в точке .


Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком. Скачок разрыва: (две единицы вверх).

Пример 5: Решение : каждая из трёх частей функции непрерывна на своём интервале.
I)
1)

2) Вычислим односторонние пределы:


, значит, общий предел существует.
3) - предел функции в точке равен значению данной функции в данной точке.
Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.
II) Исследуем на непрерывность точку

1) - функция определена в данной точке. функция терпит разрыв 2-го рода, в точке

Как найти область определения функции?

Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия - Область определения функции . Активное обсуждение данного понятия началось на первом же уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает области определения основных функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, логарифма, синуса, косинуса. Они определены на . За тангенсы, арксинусы, так и быть, прощаю =) Более редкие графики запоминаются далеко не сразу.

Область определения - вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения - это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: - значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения - там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения, поэтому графика там нет.

Да, кстати, если что-нибудь не понятно из терминологии и/или содержания первых абзацев, таки лучше вернуться к статье Графики и свойства элементарных функций .

Определение. Пусть на некотором промежутке определена функция f(x) и x 0 – точка этого промежутка. Если , то f(x) называется непрерывной в точке x 0 .
Из определения следует, что о непрерывности можно говорить лишь по отношению к тем точкам, в которых f(x) определена (при определении предела функции такого условия не ставилось). Для непрерывных функций , то есть операции f и lim перестановочны. Соответственно двум определениям предела функции в точке можно дать два определения непрерывности – «на языке последовательностей» и «на языке неравенств» (на языке ε-δ). Предлагается это сделать самостоятельно.
Для практического использования иногда более удобно определение непрерывности на языке приращений.
Величина Δx=x-x 0 называется приращением аргумента, а Δy=f(x)-f(x 0) – приращением функции при переходе из точки x 0 в точку x.
Определение. Пусть f(x) определена в точке x 0 . Функция f(x) называется непрерывной в точке x 0 , если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть Δy→0 при Δx→0.

Пример 1. Доказать, что функция y=sinx непрерывна при любом значении x.
Решение. Пусть x 0 – произвольная точка. Придавая ей приращение Δx, получим точку x=x 0 +Δx. Тогда . Получаем .
Определение. Функция y=f(x) называется непрерывной в точке x 0 справа (слева), если
.
Функция, непрерывная во внутренней точке, будет одновременно непрерывной справа и слева. Справедливо и обратное утверждение: если функция непрерывна в точке слева и справа, то она будет непрерывной в этой точке. Однако функция может быть непрерывной только с одной стороны. Например, для , , f(1)=1, следовательно, эта функция непрерывна только слева (график этой функции см. выше в пункте 5.7.2).
Определение. Функция называется непрерывной на некотором промежутке, если она непрерывна в каждой точке этого промежутка.
В частности, если промежутком является отрезок , то на его концах подразумевается односторонняя непрерывность.

Свойства непрерывных функций

1. Все элементарные функции непрерывны в своей области определения.
2. Если f(x) и φ(x), заданные на некотором промежутке, непрерывны в точке x 0 этого промежутка, то в этой точке будут также непрерывны функции .
3. Если y=f(x) непрерывна в точке x 0 из X, а z=φ(y) непрерывна в соответствующей точке y 0 =f(x 0) из Y, то и сложная функция z=φ(f(x)) будет непрерывной в точке x 0 .

Разрывы функции и их классификация

Признаком непрерывности функции f(x) в точке x 0 служит равенство , которое подразумевает наличие трех условий:
1) f(x) определена в точке x 0 ;
2) ;
3) .
Если хотя бы одно из этих требований нарушено, то x 0 называют точкой разрыва функции. Другими словами, точкой разрыва называется точка, в которой эта функция не является непрерывной. Из определения точек разрыва следует, что точками разрыва функции являются:
а) точки, принадлежащие области определения функции, в которых f(x) теряет свойство непрерывности,
б) точки, не принадлежащие области определения f(x), которые являются смежными точками двух промежутков области определения функции.
Например, для функции точка x=0 есть точка разрыва, так как функция в этой точке не определена, а функция имеет разрыв в точке x=1, являющейся смежной для двух промежутков (-∞,1) и (1,∞) области определения f(x) и не существует.

Для точек разрыва принята следующая классификация.
1) Если в точке x 0 имеются конечные и , но f(x 0 +0)≠f(x 0 -0), то x 0 называется точкой разрыва первого рода , при этом называют скачком функции .

Пример 2. Рассмотрим функцию
Разрыв функции возможен только в точке x=2 (в остальных точках она непрерывна как всякий многочлен).
Найдем , . Так как односторонние пределы конечны, но не равны друг другу, то в точке x=2 функция имеет разрыв первого рода. Заметим, что , следовательно функция в этой точке непрерывна справа (рис. 2).
2) Точками разрыва второго рода называются точки, в которых хотя бы один из односторонних пределов равен ∞ или не существует.

Пример 3. Функция y=2 1/ x непрерывна для всех значений x, кроме x=0. Найдем односторонние пределы: , , следовательно x=0 – точка разрыва второго рода (рис. 3).
3) Точка x=x 0 называется точкой устранимого разрыва , если f(x 0 +0)=f(x 0 -0)≠f(x 0).
Разрыв «устраним» в том смысле, что достаточно изменить (доопределить или переопределить) значение функции в этой точке, положив , и функция станет непрерывной в точке x 0 .
Пример 4. Известно, что , причем этот предел не зависит от способа стремления x к нулю. Но функция в точке x=0 не определена. Если доопределим функцию, положив f(0)=1, то она окажется непрерывной в этой точке (в остальных точках она непрерывна как частное непрерывных функций sinx и x).
Пример 5. Исследовать на непрерывность функцию .
Решение. Функции y=x 3 и y=2x определены и непрерывны всюду, в том числе и в указанных промежутках. Исследуем точку стыка промежутков x=0:
, , . Получаем, что , откуда следует, что в точке x=0 функция непрерывна.
Определение. Функция, непрерывная на промежутке за исключением конечного числа точек разрыва первого рода или устранимого разрыва, называется кусочно-непрерывной на этом промежутке.

Примеры разрывных функций

Пример 1. Функция определена и непрерывна на (-∞,+∞) за исключением точки x=2. Определим тип разрыва. Поскольку и , то в точке x=2 разрыв второго рода (рис. 6).
Пример 2. Функция определена и непрерывна при всех x, кроме x=0, где знаменатель равен нулю. Найдем односторонние пределы в точке x=0:
Односторонние пределы конечны и различны, следовательно, x=0 – точка разрыва первого рода (рис. 7).
Пример 3. Установить, в каких точках и какого рода разрывы имеет функция
Эта функция определена на [-2,2]. Так как x 2 и 1/x непрерывны соответственно в промежутках [-2,0] и , то разрыв может быть только на стыке промежутков, то есть в точке x=0. Поскольку , то x=0 является точкой разрыва второго рода.

Пример 4. Можно ли устранить разрывы функций:
а) в точке x=2;
б) в точке x=2;
в) в точке x=1?
Решение. О примере а) сразу можно сказать, что разрыв f(x) в точке x=2 устранить невозможно, так как в этой точке бесконечные односторонние пределы (см. пример 1).
б) Функция g(x) хотя имеет конечные односторонние пределы в точке x=2

(,),


но они не совпадают, поэтому разрыв также устранить нельзя.
в) Функция φ(x) в точке разрыва x=1 имеет равные односторонние конечные пределы: . Следовательно, разрыв может быть устранен переопределением функции в точке x=1, если положить f(1)=1 вместо f(1)=2.

Пример 5. Показать, что функция Дирихле


разрывна в каждой точке числовой оси.
Решение. Пусть x 0 – любая точка из (-∞,+∞). В любой ее окрестности найдутся как рациональные, так и иррациональные точки. Значит, в любой окрестности x 0 функция будет иметь значения, равные 0 и 1. В таком случае не может существовать предела функции в точке x 0 ни слева, ни справа, значит функция Дирихле в каждой точке числовой оси имеет разрывы второго рода.

Пример 6. Найти точки разрыва функции


и определить их тип.
Решение. Точками, подозрительными на разрыв, являются точки x 1 =2, x 2 =5, x 3 =3.
В точке x 1 =2 f(x) имеет разрыв второго рода, так как
.
Точка x 2 =5 является точкой непрерывности, так как значение функции в этой точке и в ее окрестности определяется второй строкой, а не первой: .
Исследуем точку x 3 =3: , , откуда следует, что x=3 – точка разрыва первого рода.

Для самостоятельного решения.
Исследовать функции на непрерывность и определить тип точек разрыва:
1) ; Ответ: x=-1 – точка устранимого разрыва;
2) ; Ответ: Разрыв второго рода в точке x=8;
3) ; Ответ: Разрыв первого рода при x=1;
4)
Ответ: В точке x 1 =-5 устранимый разрыв, в x 2 =1 – разрыв второго рода и в точке x 3 =0 - разрыв первого рода.
5) Как следует выбрать число A, чтобы функция

была бы непрерывной в точке x=0?
Ответ: A=2.
6) Можно ли подобрать число A так, чтобы функция

была бы непрерывной в точке x=2?
Ответ: нет.

gastroguru © 2017