Система солнечного теплоснабжения. Одноконтурная. Советское и российское солнечное теплоснабжение — научные и инженерные школы Достоинства и недостатки солнечных тепловых электростанций

Селективные покрытия

По типу механизма, ответственного за избирательность оптических свойств, различают четыре группы селективных покрытий:

1) собственные;

2) двухслойные, у которых верхний слой обладает большим коэффициентом поглощения в видимой области и малым в ИК-области, а нижний слой – высоким коэффициентом отражения в ИК-области;

3) с микрорельефом, обеспечивающим требуемый эффект;

4) интерференционные.

Собственной избирательностью оптических свойств обладает небольшое число известных материалов, например W, Cu 2 S, HfC.

Интерференционные селективные поверхности образованы несколькими перемежающимися слоями металла и диэлектрика, в которых коротковолновое излучение гасится за счет интерференции, а длинноволновое – свободно отражается.

Классификация и основные элементы гелиосистем

Системами солнечного отопления называются системы, использующие в качестве теплоисточника энергию солнечной радиации. Их характерным отличием от других систем низкотемпературного отопления является применение специального элемента – гелиоприемника, предназначенного для улавливания солнечной радиации и преобразования ее в тепловую энергию.

По способу использования солнечной радиации системы солнечного низкотемпературного отопления подразделяют на пассивные и активные.

Пассивными называются системы солнечного отопления, в которых в качестве элемента, воспринимающего солнечную радиацию и преобразующего ее в теплоту, служат само здание или его отдельные ограждения (здание-коллектор, стена-коллектор, кровля-коллектор и т. п. (рис. 4.1.1)).

Активными называются системы солнечного низкотемпературного отопления, в которых гелиоприемник является самостоятельным отдельным устройством, не относящимся к зданию. Активные гелиосистемы могут быть подразделены:

По назначению (системы горячего водоснабжения, отопления, комбинированные системы для целей теплохолодоснабжения);

По виду используемого теплоносителя (жидкостные – вода, антифриз и воздушные);

По продолжительности работы (круглогодичные, сезонные);

По техническому решению схем (одно-, двух-, многоконтурные).

Воздух является широко распространенным незамерзающим во всем диапазоне рабочих параметров теплоносителем. При применении его в качестве теплоносителя возможно совмещение систем отопления с системой вентиляции.

Сезонные гелиосистемы горячего водоснабжения обычно одноконтурные и функционируют в периоды с положительной температурой наружного воздуха. Они могут иметь дополнительный источник теплоты или обходиться без него в зависимости от назначения обслуживаемого объекта и условий эксплуатации.



Гелиосистемы отопления зданий обычно двухконтурные или чаще всего многоконтурные, причем для разных контуров могут быть применены различные теплоносители (например, в гелиоконтуре – водные растворы незамерзающих жидкостей, в промежуточных контурах – вода, а в контуре потребителя – воздух).

Комбинированные гелиосистемы круглогодичного действия для целей теплохолодоснабжения зданий многоконтурные и включают дополнительный источник теплоты в виде традиционного теплогенератора, работающего на органическом топливе, или трансформатора теплоты.

Основными элементами активной солнечной системы является гелиоприемник, аккумулятор теплоты, дополнительный источник или трансформатор теплоты (тепловой насос), ее потребитель (системы отопления и горячего водоснабжения зданий). Выбор и компоновка элементов в каждом конкретном случае определяются климатическими факторами, назначением объекта, режимом теплопотребления, экономическими показателями.

Почти половина всей производимой энергии используется для обогрева воздуха. Солнце светит и зимой, но его излучение обычно недооценивается.

Декабрьским днем недалеко от Цюриха физик А. Фишер генерировал пар; это было, когда солнце находилось в своей самой низкой точке, а температура воздуха была 3°С. Днем позже солнечный коллектор площадью 0,7 м2 нагрел 30 л холодной воды из садового водопровода до +60°С.

Солнечная энергия зимой может легко использоваться для обогрева воздуха в помещениях. Весной и осенью, когда часто бывает солнечно, но холодно, солнечный обогрев помещений позволит не включать основное отопление. Это дает возможность сэкономить часть энергии, а соответственно и деньги. Для домов, которыми редко пользуются, или для сезонного жилья (дачи, бунгало), обогрев солнечной энергией особенно полезен зимой, т.к. исключает чрезмерное охлаждение стен, предотвращая разрушение от конденсации влаги и плесени. Таким образом, ежегодные эксплуатационные расходы в основном снижаются.

При отоплении домов с помощью солнечного тепла необходимо решать проблему теплоизоляции помещений на основе архитектурно-конструктивных элементов, т.е. при создании эффективной системы солнечного отопления следует возводить дома, имеющие хорошие теплоизоляционные свойства.


Стоимость тепла
Вспомогательное отопление

Солнечный вклад в отопление дома
К сожалению, период поступления тепла от Солнца далеко не всегда совпадает по фазе с периодом появления тепловых нагрузок.

Большая часть энергии, которая имеется в нашем распоряжении в течение летнего периода, теряется из-за отсутствия постоянного спроса на нее (на самом деле коллекторная система является до некоторой степени системой саморегулирующейся: когда температура носителя достигает равновесного значения, тепловосприятие прекращается, поскольку тепловые потери от солнечного коллектора становятся равными воспринимаемому теплу).

Количество полезного тепла, поглощенного солнечным коллектором, зависит от 7 параметров:

1. величины поступающей солнечной энергии;
2. оптических потерь в прозрачной изоляции;
3. поглощающих свойств тепловоспринимающей поверхности солнечного коллектора;
4. эффективности теплоотдачи от теплоприемника (от тепловоспринимающей поверхности солнечного коллектора к жидкости, т.е. от величины эффективности теплоприемника);
5. пропускательной способности прозрачной теплоизоляции, которая определяет уровень тепловых потерь;
6. температуры тепловоспринимающей поверхности солнечного коллектора, которая в свою очередь зависит от скорости теплоносителя и температуры теплоносителя на входе в солнечный коллектор;
7. температуры наружного воздуха.

Эффективность солнечного коллектора, т.е. отношение использованной энергии и падающей, будет определяться всеми этими параметрами. При благоприятных условиях она может достичь 70%, а при неблагоприятных снизиться до 30%. Точное значение эффективности можно получить при предварительном расчете только путем полного моделирования поведения системы с учетом всех факторов, перечисленных выше. Очевидно, что такая задача может быть решена только с применением компьютера.

Поскольку плотность потока солнечной радиации постоянно меняется, то для расчетных оценок можно пользоваться полными суммами радиации за день или даже за месяц.

В табл. 1 в качестве примера приведены:

  • средние месячные суммы поступления солнечной радиации, измеренные на горизонтальной поверхности;

  • суммы, рассчитанные для вертикальных стен, обращенных на юг;

  • суммы для поверхностей с оптимальным углом наклона 34° (для Кью, близ Лондона).
  • Таблица 1. Месячные суммы прихода солнечной радиации для Кью (близ Лондона)

    Из таблицы видно, что поверхность с оптимальным углом наклона получает (в среднем в течение 8 зимних месяцев) примерно в 1,5 раза больше энергии, чем горизонтальная поверхность. Если известны суммы прихода солнечной радиации на горизонтальную поверхность, то для пересчета на наклонную поверхность их можно умножить на произведение этого коэффициента (1,5) и принятого значения эффективности солнечного коллектора, равного 40%, т.е.

    1,5*0,4=0,6

    При этом получится количество полезной энергии, поглощенной наклонной тепловоспринимающей поверхностью в течение данного периода.

    Для того, чтобы определить эффективный вклад солнечной энергии в теплоснабжение здания даже путем ручного подсчета, необходимо составить по крайней мере месячные балансы потребностей и полезного тепла, получаемого от Солнца. Для наглядности рассмотрим пример.

    Если использовать приведенные выше данные и рассмотреть дом, для которого интенсивность тепловых потерь составляет 250 Вт/°C, местоположение характеризуется годовым числом градусо-дней равным 2800 (67200°C*ч). а площадь солнечных коллекторов составляет, например, 40 м2, то получается следующее распределение по месяцам (см. табл. 2).

    Таблица 2. Расчет эффективного вклада солнечной энергии

    Месяц °C*ч/мес Сумма радиации на горизонтальной поверхности, кВт*ч/м2 Полезное тепло на единицу площади коллектора (D*0,6), кВт*ч/м2 Суммарное полезное тепло (E*40 м2), кВт*ч Солнечный вклад, кВт*ч/м2
    A B C D E F G
    Январь 10560 2640 18,3 11 440 440
    Февраль 9600 2400 30,9 18,5 740 740
    Март 9120 2280 60,6 36,4 1456 1456
    Апрель 6840 1710 111 67,2 2688 1710
    Май 4728 1182 123,2 73,9 2956 1182
    Июнь - - 150,4 90,2 3608 -
    Июль - - 140,4 84,2 3368 -
    Август - - 125,7 75,4 3016 -
    Сентябрь 3096 774 85,9 51,6 2064 774
    Октябрь 5352 1388 47,6 28,6 1144 1144
    Ноябрь 8064 2016 23,7 14,2 568 568
    Декабрь 9840 2410 14,4 8,6 344 344
    Сумма 67200 16800 933 559,8 22392 8358

    Стоимость тепла
    Подсчитав количество тепла, обеспечиваемого за счет Солнца, необходимо представить его в денежном выражении.

    Стоимость выработанного тепла зависит от:

  • стоимости топлива;

  • теплотворной способности топлива;

  • общей эффективности системы.
  • Полученные таким образом эксплуатационные расходы можно затем сравнить с капитальными затратами на солнечную отопительную систему.

    В соответствии с этим, если считать, что в рассмотренном выше примере солнечная отопительная система используется вместо традиционной системы отопления, потребляющей, например, газовое топливо и вырабатывающей тепло стоимостью 1,67 руб/кВт*ч, то, чтобы определить полученную годовую экономию, надо 8358 кВт*ч, обеспечиваемых за счет солнечной энергии (согласно расчетам табл. 2 для площади коллектора 40 м2), умножить на 1,67 руб/кВт*ч, что дает

    8358*1,67 = 13957,86 руб.

    Вспомогательное отопление
    Одним из вопросов, наиболее часто задаваемых людьми, которые хотят понять использование солнечной энергии для отопления (или другой цели), является вопрос: «Что делать, когда солнце не светит?» Поняв концепцию запасания энергии, они задают следующий вопрос: «Что делать, когда в аккумуляторе не остается больше тепловой энергии?» Вопрос закономерен, и необходимость в дублирующей, часто традиционной системе является серьезным камнем преткновения для широкого принятия солнечной энергии в качестве альтернативы существующим источникам энергии.

    Если мощности системы солнечного теплоснабжения недостаточно, чтобы продержать здание в течение периода холодной, пасмурной погоды, то последствия, даже один раз за зиму, могут быть достаточно серьезными, заставляющими предусматривать в качестве дублирующей обычную полномерную систему отопления. Большинство зданий, отапливаемых солнечной энергией, нуждаются в полномерной дублирующей системе. В настоящее время в большинстве районов солнечная энергия должна рассматриваться в качестве средства снижения расхода традиционных видов энергии, а не как полный их заменитель.

    Обычные отопители являются подходящими дублерами, но существует немало и других альтернатив, например:

    Камины;
    - дровяные печи;
    - дровяные калориферы.

    Предположим, однако, что нам захотелось сделать систему солнечного теплоснабжения достаточно большой, чтобы обеспечить теплом помещение в наиболее неблагоприятных условиях. Поскольку сочетание очень холодных дней и долгих периодов облачной погоды случается редко, то дополнительные размеры солнечной энергетической установки (коллектор и аккумулятор), которые потребуются для этих случаев, обойдутся слишком дорого при сравнительно небольшой экономии топлива. Кроме того, большую часть времени система будет работать при мощности ниже номинальной.

    Система солнечного теплоснабжения, рассчитанная на обеспечение 50% отопительной нагрузки, может дать достаточно тепла только на 1 день очень холодной погоды. При удвоении размеров солнечной системы дом будет обеспечен теплом в течение 2 холодных пасмурных дней. Для периодов более 2 дней последующее увеличение размеров будет столь же неоправданным, как и предыдущее. Кроме того, будут периоды мягкой погоды, когда второе увеличение не потребуется.

    Теперь, если увеличить площадь коллекторов отопительной системы еще в 1,5 раза, чтобы продержаться 3 холодных и облачных дня, то теоретически она будет достаточной для обеспечения 1/2 всей потребности дома в течение зимы. Но, разумеется, на практике этого может не быть, поскольку случается иногда 4 (и более) дня подряд холодной облачной погоды. Чтобы учесть этот 4-ый день, нам потребуется система солнечного отопления, которая теоретически может собрать в 2 раза больше тепла, чем это необходимо зданию в течение отопительного сезона. Ясно, что холодные и облачные периоды могут быть более продолжительными, чем предусмотрено в проекте системы солнечного теплоснабжения. Чем больше коллектор, тем менее интенсивно используется каждое дополнительное приращение его размеров, тем меньше энергии экономится на единицу площади коллектора и тем меньше окупаемость капиталовложений на каждую дополнительную единицу площади.

    Тем не менее, предпринимались смелые попытки накопить достаточное количество тепловой энергии солнечного излучения для покрытия всей потребности в отоплении и отказаться от вспомогательной системы отопления. За редким исключением таких систем, как солнечный дом Г. Хэя, долговременное аккумулирование тепла является, пожалуй, единственной альтернативой вспомогательной системе. Г. Томасон близко подошел к 100%-ному солнечному отоплению в своем первом доме в Вашингтоне; только 5% отопительной нагрузки покрывалось за счет стандартного отопителя на жидком топливе.

    Если вспомогательная система покрывает лишь небольшой процент всей нагрузки, то есть смысл использовать электроотопление, несмотря на то, что оно требует производства значительного количества энергии на электростанции, которая затем преобразуется в тепло для обогрева (на электростанции расходуется 10500...13700 кДж для производства 1 кВт*ч тепловой энергии в здании). В большинстве случаев электрообогреватель будет дешевле нефтяной или газовой печи, а сравнительно небольшое количество электроэнергии, необходимой для обогрева здания, может оправдать его применение. Кроме того, электронагреватель - менее материалоемкое устройство благодаря сравнительно небольшому количеству материала (по сравнению с отопителем), идущему на изготовление электроспиралей.

    Так как КПД солнечного коллектора существенно возрастает, если эксплуатировать его при низких температурах, то отопительная система должна рассчитываться на использование как можно более низких температур - даже на уровне 24...27°C. Одно из достоинств системы Томасона, использующей теплый воздух, заключается в том, что она продолжает извлекать полезное тепло из аккумулятора при температурах, почти равных температуре помещения.

    В новом строительстве отопительные системы можно рассчитывать на использование более низких температур, например, путем удлинения трубчато-ребристых радиаторов с горячей водой, увеличения размеров радиационных панелей или увеличения объема воздуха более низкой температуры. Проектировщики чаще всего останавливают свой выбор на отоплении помещения с помощью теплого воздуха или на применении увеличенных радиационных панелей. В системе воздушного отопления лучше всего используется низкотемпературное запасенное тепло. Лучистые отопительные панели имеют длительное запаздывание (между включением системы и нагревом воздушного пространства) и обычно требуют более высоких рабочих температур теплоносителя, чем системы с горячим воздухом. Поэтому тепло из аккумулирующего устройства не используется в полной мере при более низких температурах, которые приемлемы для систем с теплым воздухом, да и общий КПД такой системы ниже. Превышение размеров системы из радиационных панелей для получения результатов, аналогичных результатам при использовании воздуха, может повлечь за собой значительные дополнительные затраты.

    Для повышения общего КПД системы (солнечного отопления и вспомогательной дублирующей системы) и одновременного снижения общих затрат путем ликвидации простоя составных частей, многие проектировщики избрали путь интегрирования солнечного коллектора и аккумулятора со вспомогательной системой. Общими являются такие составные элементы, как:

    Вентиляторы;
    - насосы;
    - теплообменники;
    - органы управления;
    - трубы;
    - воздуховоды.

    На рисунках статьи Системное проектирование показаны различные схемы таких систем.

    Ловушкой при проектировании стыковых элементов между системами является увеличение органов управления и движущихся частей, что повышает вероятность механических поломок. Искушение увеличить на 1...2% КПД путем добавления еще одного устройства на стыке систем является почти непреодолимым и может быть наиболее распространенной причиной выхода из строя солнечной отопительной системы. Обычно вспомогательный обогреватель не должен нагревать отсек аккумулятора солнечного тепла. Если это происходит, то фаза сбора солнечного тепла будет менее эффективной, так как почти всегда этот процесс будет протекать при более высоких температурах. В других системах снижение температуры аккумулятора благодаря использованию тепла зданием повышает общий КПД системы.

    Причины других недостатков этой схемы объясняются большой потерей тепла из аккумулятора из-за его постоянно высоких температур. В системах, в которых вспомогательное оборудование не нагревает аккумулятор, последний будет терять значительно меньше тепла при отсутствии солнца в течение нескольких дней. Даже в спроектированных таким путем системах потери тепла из контейнера составляют 5...20% всего тепла, поглощенного системой солнечного отопления. С аккумулятором, обогреваемом вспомогательным оборудованием, потеря тепла будет значительно выше и может быть оправдана только в том случае, если контейнер аккумулятора находится внутри отапливаемого помещения здания

    Доктор технических наук Б.И.Казанджан
    Московский Энергетический Институт
    (технический университет), Россия
    Журнал Энергия, №12, 2005.

    1. Введение.

    Основными причинами, побудившими человечество заняться широкомасштабным промышленным освоением возобновляемых источников энергии являются:
    -климатические изменения обусловленные увеличением содержания СО2 в атмосфере;
    -сильная зависимость многих развитых стран, особенно европейских, от импорта топлива;
    -ограниченность запасов органического топлива на Земле.
    Недавнее подписание Киотского протокола большинством развитых стран мира поставило на повестку дня ускоренное развитие технологий способствующих сокращению выбросов СО2 в окружающую среду. Стимулом для развития этих технологий является не только осознание угрозы изменения климата и связанных с этим экономических потерь, но и тот факт, что квоты на выброс парниковых газов стали товаром, имеющим вполне реальную стоимость. Одной из технологий, позволяющей снизить расход органического топлива и уменьшить выбросы СО2, является производство низкопотенциального тепла для систем горячего водоснабжения, отопления, кондиционирования воздуха, технологических и иных нужд за счет солнечной энергии. В настоящее время более 40% первичной энергии расходуемой человечеством приходится на покрытие именно этих потребностей, и именно в этом секторе технологии использования солнечной энергии являются наиболее зрелыми и экономически приемлемыми для широкого практического использования. Для многих стран использование солнечных систем теплоснабжения - это еще и способ уменьшить зависимость экономики от импорта ископаемых топлив. Эта задача особенно актуальна для стран Европейского Союза, экономика которого уже сейчас на 50% зависит от импорта ископаемых энергоресурсов, а до 2020 года эта зависимость может возрасти до 70%, что является угрозой экономической независимости этого региона

    2.Масштабы использования солнечных систем теплоснабжения

    О масштабах современного использования солнечной энергии для нужд теплоснабжения свидетельствуют следующие статистические данные .
    Общая площадь солнечных коллекторов установленных в странах ЕС к концу 2004 года достигла 13960000 м2, а в мире превысила 150000000 м2. Ежегодный прирост площади солнечных коллекторов в Европе в среднем составляет 12% , а в отдельных странах достигает уровня 20-30% и более. По количеству коллекторов на тысячу жителей населения мировым лидером является Кипр, где 90% домов оборудованы солнечными установками (на тысячу жителей здесь приходится 615,7 м2 солнечных коллекторов), за ним следуют Израиль, Греция и Австрия. Абсолютным лидером по площади установленных коллекторов в Европе является Германия - 47%, далее следуют Греция - 14%, Австрия - 12%, Испания - 6%, Италия - 4%, Франция - 3%. Европейские страны являются бесспорными лидерами в разработке новых технологий систем солнечного теплоснабжения, однако сильно уступают Китаю в объемах ввода в эксплуатацию новых солнечных установок. Статистические данные по увеличению количества вводимых в эксплуатацию солнечных коллекторов в мире по итогам 2004 года дают следующее распределение: Китай - 78%, Европа - 9%, Турция и Израиль - 8%, остальные страны - 5%.
    По экспертной оценке ESTIF (Европейская Федерация промышленности солнечных тепловых установок) технико-экономический потенциал по использованию солнечных коллекторов в системах теплоснабжения только в странах ЕС составляет более 1,4 млрд.м2 способных производить более 680 000 ГВтч тепловой энергии в год. Планы на ближайшую перспективу предусматривают установку в этом регионе 100 000000 м2 коллекторов к 2010 году.

    3. Солнечный коллектор - ключевой элемент солнечной системы теплоснабжения

    Солнечный коллектор является основным компонентом любой солнечной системы теплоснабжения. Именно в нем происходит преобразование солнечной энергии в тепло. От его технического совершенства и стоимости зависит эффективность работы всей системы солнечного теплоснабжения и ее экономические показатели.
    В системах теплоснабжения используются в основном два типа солнечных коллекторов: плоский и вакуумный.

    Плоский солнечный коллектор состоит из корпуса, прозрачного ограждения, абсорбера и тепловой изоляции (фиг.1).

    Фиг. 1 Типичная конструкция плоского солнечного коллектора

    Корпус является основной несущей конструкцией,.прозрачное ограждение пропускает солнечную радиацию внутрь коллектора, защищает абсорбер от воздейсквия внешней среды и уменьшает тепловые потери с лицевой стороны коллектора. Абсорбер поглощает солнечную радиацию и по трубкам соедененным с его теплоприемной поверхностью передает тепло теплоносителю. Тепловая изоляция уменьшает тепловые потери с тыльной и боковой поверхностей коллектора.
    Теплоприемная поверхность абсорбера имеет селективное покрытие, имеющее высокий коэффициент поглощения в видимой и ближней инфракрасной области солнечного спектра и низкий коэффициент излучения в области спектра соответствующего рабочим температурам коллектора. У лучших современных коллекторов коэффициет поглощения находитвя в пределах 94-95%, коэффициет излучения 3-8%, а кпд в области рабочих температур типичных для систем теплоснабжения превышает 50% Неселективное черное покрытие абсорбера в современных коллекторах используется редко из-за высоких потерь на излучение. На рис 2 показаны примеры современных плоских коллекторов.

    В вакуумных коллекторах (рис 3) каждый элемент абсорбера помещается в отдельную стеклянную трубу, внутри которой создается вакуум, благодаря чему потери тепла за счет конвекции и теплопроводности воздуха подавяются практически полностью. Селективное покрытие на поверхности абсорбера позволяет минимизировать потери на излучение. В результате к.п.д вакуумного коллектора получается существенно выше чем у плоского коллектора, на и стоимость его заначительно выше.

    аб

    Рис 2 Плоские солнечные коллектры

    а) фирма Вагнер, б) фирма Ферон

    а б

    Рис 3 Вакуумный коллектор фирмы Виссман
    а) общий вид, б) монтажная схема

    3. Тепловые схемы солнечных систем теплоснабжения

    В мировой практике наиболее широко распространены малые системы солнечного теплоснабжения. Как правило, такие системы включают в себя солнечные коллекторы общей площадью 2-8м2, бак аккумулятор, емкость которого определяется площадью используемых коллекторов, циркуляционный насос или насосы (в зависимости от типа тепловой схемы) и другое вспомогательное оборудование. В небольших системах, циркуляция теплоносителя между коллектором и баком-аккумулятором может осуществяться и без насоса, за счет естественной конвекции (термосифонный принцип). В этом случае бак-аккумулятор должен располагаться выше коллектора. Простейшим типом таких установок является коллектор, спаренный с баком аккумулятором, расположенным на верхнем торце коллектора (рис.4). Системы такого типа используются обычно для нужд горячего водоснабжения в небольших односемейных домах коттеджного типа.

    Рис.4 Термосифонная солнечная система теплоснабжения.

    На Рис. 5 показан пример активной системы большего размера, в которой бак аккумулятор расположен ниже коллекторов и циркуляция теплоносителя осуществляется с помощью насоса. Такие системы используются для нужд и горячего водоснабжения и отопления. Как правило, в активных системах, участвующих в покрытии части нагрузки отопления, предусматривается дублирующий источник тепла, использующий электроэнергию или газ.

    Рис 5 Тепловая схема активной солнечной системы горячего водоснабжения и отопления

    Сравнительно новым явлением в практике использования солнечного теплоснабжения являются крупные системы способные обеспечить нужды горячего водоснабжения и отопления многоквартирных домов или целых жилых кварталов. В таких системах используется либо суточное, либо сезонное аккумулирование тепла.
    Суточное аккумулирование предполагает возможность работы системы с использованием накопленного тепла в течение нескольких суток, сезонное - в течение нескольких месяцев.
    Для сезонного аккумулирования тепла используют большие подземные резервуары, наполненные водой, в которые сбрасываются все излишки тепла, получаемого от коллекторов в течение лета. Другим вариантом сезонного аккумулирования является прогрев грунта с помощью скважин с трубами, по которым циркулирует горячая вода, поступающая от коллекторов.

    В таблице 1. приведены основные параметры крупных солнечных систем с суточным и сезонным аккумулированием тепла в сравнении с малой солнечной системой для односемейного дома.

    Тип системы

    Площадь коллекторов в расчете на одного человека м2/чел

    Объем теплового аккумулятора, л/м2кол

    Доля нагрузки горячего водоснабжения покрываемая за счет солнечной энергии %

    Доля общей нагрузки, покрываемая за счет солнечной энергии

    Стоимость тепла получаемого за счет солнечной энергии для условий Германии Евро/кВтч

    В среднем по году, в зависимости от климатических условий и широты местности, поток солнечного излучения на земную поверхность составляет от 100 до 250 Вт/м 2 , достигая пиковых значений в полдень при ясном небе, практически в любом (независимо от широты) месте, около 1 000 Вт/м 2 . В условиях средней полосы России солнечное излучение «приносит» на поверхность земли энергию, эквивалентную примерно 100-150 кг условного топлива на м 2 в год.

    Математическое моделирование простейшей солнечной водонагревательной установки, проведенное в Институте высоких температур Российской академии наук с использованием современных программных средств и данных типичного метеогода показало, что в реальных климатических условиях средней полосы России целесообразно использование сезонных плоских солнечных водонагревателей, работающих в период с марта по сентябрь. Для установки с отношением площади солнечного коллектора к объему бака-аккумулятора 2 м 2 /100 л вероятность ежедневного нагрева воды в этот период до температуры не менее чем 37 ° С составляет 50-90%, до температуры не менее чем 45°С — 30-70%, до температуры не менее чем 55 ° С — 20-60%. Максимальные значения вероятности относятся к летним месяцам.

    «Ваш Солнечный Дом» разрабатывает, комплектует и поставляет , как с пассивной, так и с активной циркуляцией теплоносителя. Описание этих систем вы можете найти в соответствующих разделах нашего сайта. Заказ и покупка осуществляется через .

    Очень часто задается вопрос, можно ли использовать солнечные нагревательные установки для отопления в условиях России. По этому поводу написана отдельная статья — «Солнечная поддержка отопления»

    Продолжить чтение

    Nbsp; РАСЧЕТ Системы теплоснабжения с использованием солнечных тепловых коллекторов Методические указания к выполнению расчетно-графической работы для студентов всех форм обучения специальности Энергетические установки, электростанции на базе нетрадиционных и возобновляемых источников энергии РАСЧЕТ Системы теплоснабжения с использованием солнечных тепловых коллекторов: методические указания к выполнению расчетно-графической работы для студентов всех форм обучения специальности Энергетические установки, электростанции на базе нетрадиционных и возобновляемых источников энергии/ А. В. ОГЛАВЛЕНИЕ 1. ТЕОРЕТИЧЕСКИЕ ПОЛЖЕНИЯ 1.1. Конструкция и основные характеристики плоского солнечного коллектора 1.2. Основные элементы и принципиальные схемы систем солнечного теплоснабжения 2. ЭТАПЫ ПРОЕКТИРОВАНИЯ 3. РАСЧЁТ ТЕПЛОТЫ НА ОТОПЛЕНИЯ ЗДАНИЯ 3.1. Основные положения 3.2. Определение трансмиссионных тепловых потерь 3.3. Определение расхода теплоты на подогрев вентиляционного воздуха 3.4. Определение затрат теплоты на горячее водоснабжение 4. РАСЧЕТ СИСТЕМЫ СОЛНЕЧНОГО ТЕПЛОСНАБЖЕНИЯ БИБЛИОГРАФИЯ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

    Конструкция и основные характеристики плоского солнечного коллектора

    Плоский солнечный коллектор (СК) является основным элементом систем солнечного отопления и горячего водоснабжения. Принцип его действия прост. Большая часть солнечной радиации, падающей на коллектор, поглощается поверхностью, которая является «черной» по отношению к солнечному излучению. Часть поглощенной энергии передается жидкости, циркулирующей через коллектор, а остальная теряется в результате теплообмена с окружающей средой. Тепло, уносимое жидкостью, представляет собой полезное тепло, которое либо аккумулируется, либо используется для покрытия отопительной нагрузки.

    Основные элементы коллектора следующие: поглощающая пластина, обычно из металла, с неотражающим черным покрытием, обеспечивающим максимальное поглощение солнечного излучения; трубы или каналы по которым циркулирует жидкость пли воздух и которые находятся в тепловом контакте с поглощающем пластиной; тепловая изоляция днища и боковых кромок пластины; один или несколько воздушных промежутков, разделенных прозрачными покрытиями в целях теплоизоляции пластины сверху; и наконец, корпус, обеспечивающий долговечность и устойчивость к воздействию погодных факторов. На рис. 1 показаны поперечные сечения водо- и воздухонагревателя.

    Рис. 1. Схематичное изображение солнечных коллекторов с водяным и воздушным теплоносителями: 1 – тепловая изоляция; 2 – воздушный канал; 3 – прозрачные покрытия; 4 – поглощающая пластина; 5 – трубы, соединенные с пластиной.

    Прозрачное покрытие обычно делают из стекла. Стекло обладает превосходной стойкостью к атмосферным воздействиям и хорошими механическими свойствами. Оно относительно недорого и при низком содержании окиси железа может иметь высокую прозрачность. Недостатками стекла являются хрупкость и большая масса. Наряду со стеклом возможно применение и пластмассовых материалов. Пластмасса обычно менее подвержена поломке, легка и в виде топких листов недорога. Однако она, как правило, не обладает столь же высокой устойчивостью к воздействию погодных факторов, как стекло. На поверхность пластмассового листа легко наносятся царапины и многие пластмассы со временем деградируют и желтеют, в результате чего снижается их пропускательная способность по отношению к солнечному излучению и ухудшается механическая прочность. Еще одним преимуществом стекла по сравнению с пластмассами является то, что стекло поглощает или отражает все падающее на него длинноволновое (тепловое) излучение, испускаемое поглощающей пластиной. Потери тепла в окружающую среду путем излучения снижаются при этом более эффективно, чем в случае пластмассового покрытия, которое пропускает часть длинноволнового излучения.

    Плоский коллектор поглощает как прямое, так и диффузное излучение. Прямое излучение вызывает отбрасывание тени освещаемым солнцем предметом. Диффузное излучение отражается и рассеивается облаками и пылью, прежде чем достигает поверхности земли; в отличие от прямого излучения оно не приводит к образованию теней. Плоский коллектор обычно устанавливают неподвижно на здании. Его ориентация зависит от местоположения и времени года, в течение которого должна работать солнечная энергетическая установка. Плоский коллектор обеспечивает низкопотенциальное тепло, требуемое для нагрева воды и отопления помещения.

    Фокусирующие (концентрирующие) солнечные коллекторы, в том числе с параболическим концентратором или концентратором Френеля, могут применяться в системах солнечного теплоснабжения. Большая часть фокусирующих коллекторов использует только прямую солнечную радиацию. Преимущество фокусирующего коллектора по сравнению с плоским состоит в том, что он имеет меньшую площадь поверхности, с которой тепло теряется в окружающую среду, а следовательно, рабочая жидкость может быть нагрета в нем до более высоких температур, чем в плоских коллекторах. Однако для нужд отопления и горячего водоснабжения более высокая температура почти (или совсем) не имеет значения. Для большинства концентрирующих систем коллектор должен следить за положением солнца. Системы, не дающие изображения солнца, обычно требуют регулировки несколько раз в год.

    Следует различать мгновенные характеристики коллектора (т. е. характеристики в данный момент времени, зависящие от метеорологических и рабочих условий в этот момент), и его долгосрочные характеристики. На практике коллектор системы солнечного теплоснабжения работает в широком диапазоне условий в течение года. В некоторых случаях рабочий режим характеризуется высокой температурой и низкой эффективностью коллектора, в других случаях, наоборот, низкой температурой и высокой эффективностью.

    Для рассмотрения работы коллектора при переменных условиях необходимо определить зависимость его мгновенных характеристик от метеорологических и режимных факторов. Для описания характеристик коллектора необходимы два параметра, один из которых определяет количество поглощенной энергии, а другой - потери тепла в окружающую среду. Эти параметры лучшее всего определяются в результате испытаний, в которых измеряется мгновенная эффективность коллектора в соответствующем диапазоне условий.

    Полезная энергия, отводимая из коллектора в данный момент времени, - это разность количества солнечной энергии, поглощенной пластиной коллектора, и количества энергии, теряемой в окружающую среду. Уравнение, которое применимо для расчета почти всех существующих конструкций плоского коллектора, имеет вид:

    где - полезная энергия, отводимая из коллектора в единицу времени, Вт; - площадь коллектора, м 2 ; - коэффициент отвода тепла из коллектора; - плотность потока суммарной солнечной радиации в плоскости коллектора Вт/м 2 ; - пропускательная способность прозрачных покрытии по отношению к солнечному излучению; - поглотительная способность пластины коллектора по отношению к солнечному излучению; - полный коэффициент тепловых потерь коллектора, Вт/(м 2 °С); -температура жидкости на входе в коллектор, °С; - температура окружающей среды, °С.

    Солнечная радиация, падающая на коллектор, в любой момент времени состоит из трех частей: прямой радиации, диффузной радиации и радиации, отраженной от земли или окружающих предметов, количество которой зависит от угла наклона коллектора к горизонту и характера этих предметов. Когда проводятся испытании коллектора, плотность потока радиации I измеряют с помощью пиранометра, установленного под тем же, что и коллектор, углом наклона к горизонту. Применяемый при расчетах f -метод требует знания средних месячных приходов солнечной радиации на поверхность коллектора. Чаще всего в справочниках имеются данные по средним месячным приходам радиации на горизонтальную поверхность.

    Плотность потока солнечной радиации, поглощаемой пластиной коллектора в некоторый момент времени, равна произведению плотности потока падающей радиации I , пропускательной способности системы прозрачных покрытий t и поглощательной способности пластины коллектора a . Обе последние величины зависят от материала и угла падения солнечного излучения (т. е. угла между нормалью к поверхности и направлением солнечных лучей). Прямая, диффузная и отраженная составляющие солнечной радиации поступают на поверхность коллектора под различными углами. Поэтому оптические характеристики t и a должны рассчитываться с учетом вклада каждой из компонент.

    Коллектор теряет тепло различными способами. Потери тепла от пластины к прозрачным покрытиям и от верхнего покрытия к наружному воздуху происходят путем излучения и конвекции, но соотношение этих потерь в первом и втором случаях не одинаково. Потери тепла через изолированные днище и боковые стенки коллектора обусловлены теплопроводностью. Коллекторы должны проектироваться таким образом, чтобы все тепловые потерн были наименьшими.

    Произведение полного коэффициента потер U L и разности температур в уравнении (1) представляет собой потери тепла от поглощающей пластины при условии, что ее температура всюду равна температуре жидкости на входе. При нагревании жидкости пластина коллектора имеет более высокую температуру, чем температура жидкости па входе. Это необходимое условие переноса тепла от пластины к жидкости. Поэтому фактические потери тепла от коллектора больше значения произведения . Разница потерь учитывается с помощью коэффициента отвода тепла F R .

    Полный коэффициент потерь U L равен сумме коэффициентов потерь через прозрачную изоляцию, днище и боковые стенки коллектора. Для хорошо спроектированного коллектора сумма последних двух коэффициентов обычно составляет около 0,5 - 0,75 Вт/(м 2 °С). Коэффициент потерь через прозрачную изоляцию зависит от температуры поглощающей пластины, числа и материала прозрачных покрытий, степени черноты пластины в инфракрасной части спектра, температуры окружающей среды и скорости ветра.

    Уравнение (1) удобно для расчета солнечных энергетических систем, поскольку полезная энергия коллектора определяется по температуре жидкости па входе. Однако потери тепла в окружающую среду зависят от средней температуры поглощающей пластины, которая всегда выше температуры на входе, если жидкость нагревается, проходя через коллектор. Коэффициент отвода тепла F R равен отношению фактической полезной энергии, когда температура жидкости в коллекторе увеличивается в направлении потока, к полезной энергии, когда температура всей поглощающей пластины равна температуре жидкости на входе.

    Коэффициент F R зависит от расхода жидкости через коллектор и конструкции поглощающей пластины (толщины, свойств материала, расстояния между трубами и т. п.) и почти не зависит от интенсивности солнечной радиации и температур поглощающей пластины и окружающей среды.

    Основные элементы и принципиальные схемы систем солнечного теплоснабжения

    Системы солнечного теплоснабжения (или гелиоустановки) можно разделить на пассивные и активные. Самыми простыми и дешевыми являются пассивные системы, или «солнечные дома», которые для сбора и распределения солнечной энергии используют архитектурные и строительные элементы здания и не требуют дополнительного оборудования. Чаще всего такие системы включают в себя зачерненную стену здания, обращенную на юг, на некотором расстоянии от которой расположено прозрачное покрытие. В верхней и нижней части стены имеются отверстия, соединяющие пространство между стеной и прозрачным покрытием с внутренним объемом здания. Солнечная радиация нагревает стену: воздух, омывающий стену, нагревается от нее и поступает через верхнее отверстие в помещения здания. Циркуляция воздуха обеспечивается либо за счет естественной конвекции, либо вентилятором. Несмотря на некоторые преимущества пассивных систем, используются в основном активные системы со специально установленным оборудованием для сбора, хранения и распространения солнечной радиации, так как эти системы позволяют улучшить архитектуру здания, повысить эффективность использования солнечной энергии, а также обеспечивают большие возможности регулирования тепловой нагрузки и расширяют область применения. Выбор, состав и компоновка элементов активной системы солнечного теплоснабжения в каждом конкретном случае, определяются климатическими факторами, типом объекта, режимом теплопотребления, экономическими показателями. Специфическим элементом этих систем является солнечный коллектор; применяемые элементы, такие как теплообменные устройства, аккумуляторы, дублирующие источники теплоты, сантехническая арматура, широко используются в промышленности. Солнечный коллектор обеспечивает преобразование солнечного излучения в теплоту, передаваемую нагреваемому теплоносителю, циркулирующему в коллекторе.

    13
    Аккумулятор является важным компонентом системы солнечного теплоснабжения, так как из-за периодичности поступления солнечной радиации в течение дня, месяца, года максимум теплопотребления объекта не совпадает с максимумом теплопоступления. Выбор объема аккумулятора зависит отхарактеристик системы. Аккумулятор может быть выполнен в виде бака или другой емкости, заполненной аккумулирующим теплоту веществом. В эксплуатируемых системах обычно на 1 м 2 солнечного коллектора приходится от 0,05 до 0,12 м 3 вместимости бака-аккумулятора. Существуют проекты межсезонного аккумулирования солнечной энергии, при этом вместимость бака-аккумулятора достигает 100 - 200 м 3 . Баки-аккумуляторы могут работать за счет теплоемкости рабочего вещества или теплоты фазовых превращений различных материалов. Однако на практике из-за простоты, надежности и сравнительной дешевизны наибольшее распространение получили аккумуляторы, в которых рабочим веществом является вода или воздух. Водяные аккумуляторы представляют собой цилиндрические стальные резервуарысо слоем теплоизоляции. Чаще всего они располагаются в подвале дома. В воздушных аккумуляторах применяют засыпку из гравия, гранита и других твердых наполнителей. Дублирующий источник теплоты также является необходимым элементом солнечной установки. Назначение источника - полное обеспечение объекта теплотой в случае недостатка или отсутствия солнечной радиации. Выбор типа источника определяется местными условиями. Это может быть, либо электробойлер, либо водогрейный котел или котельная на органическом топливе. В качестве теплообменных устройств используются различные типы теплообменников, широко применяемых в энергетике и теплотехнике, например, скоростные теплообменники, водяные подогреватели и т. д.

    Кроме основных элементов, описанных выше, солнечные систем теплоснабжения могут включать в себя насосы, трубопроводы, элементы системы КИП и автоматики и т. д. Различное сочетание этих элементов приводит к большому разнообразию систем солнечного теплоснабжения по их характеристикам и стоимости. На базе использования гелиоустановок могут быть решены задачи отопления, охлаждения и горячего водоснабжения жилых, административных зданий, промышленных и сельскохозяйственных объектов.

    Гелиоустановки имеют следующую классификацию:

    1) по назначению:

    Системы горячего водоснабжения;

    Системы отопления;

    Комбинированные установки для целей теплохладоснабжения;

    2) по виду используемого теплоносителя:

    Жидкостные;

    Воздушные;

    3) по продолжительности работы:

    Круглогодичные;

    Сезонные;

    4) по техническому решению схемы:

    Одноконтурные;

    Двухконтурные;

    Многоконтурные.

    Наиболее часто применяемыми теплоносителями в системах солнечного теплоснабжения являются жидкости (вода, раствор этиленгликоля, органические вещества) и воздух. Каждый из них имеет определенные преимущества и недостатки. Воздух не замерзает, не создает больших проблем, связанных с утечками и коррозией оборудования. Однако из-за низкой плотности и теплоемкости воздуха размеры воздушных установок, расходы мощности на перекачку теплоносителя выше, чем у жидкостных систем. Поэтому в большинстве эксплуатируемых систем солнечного теплоснабжения предпочтение отдается жидкостям. Для жилищно-коммунальных нужд основной теплоноситель - вода.

    При работе солнечных коллекторов в периоды с отрицательной температурой наружного воздуха необходимо либо использовать в качестве теплоносителя антифриз, либо каким-то способом избегать замерзания теплоносителя (например, своевременным сливом воды, нагревом ее, утеплением солнечного коллектора).

    Системы солнечного теплоснабжения малой производительности, обеспечивающие небольших отдаленных потребителей, часто работают по принципу естественной циркуляции теплоносителя. Бак с водой располагается выше солнечного коллектора. Эта вода подается в нижнюю часть СК, расположенного под определенным углом, где начинает нагреваться изменять свою плотность и самотеком подниматься вверх по каналам коллектора. Затем она поступает в верхнюю часть бака, а ее место в коллекторе занимает холодная вода из его нижней части. Устанавливается режим естественной циркуляции. В более мощных и производительных системах циркуляция воды в контуре солнечного коллектора обеспечивается при помощи насоса.

    Принципиальные схемы систем солнечного теплоснабжения, представленны на рис. 2, 3 , можно разделить на две основные группы: установки, работающие по разомкнутой или прямоточной схеме (рис. 2); установки, работающие по замкнутой схеме (рис. 3). В установках первой группы теплоноситель подается в солнечные коллекторы (рис. 2 а, б) или в теплообменник гелиоконтура (рис. 2 в), где он нагревается и поступает либо непосредственно к потребителю, либо в бак-аккумулятор. Если температура теплоносителя после гелиоустановки оказывается ниже заданного уровня, то теплоноситель догревается в дублирующем источнике теплоты. Рассмотренные схемы находят применение, в основном, в промышленных объектах, в системах с долговременным аккумулированием теплоты. Чтобы обеспечить постоянный температурный уровень теплоносителя на выходе из коллектора, необходимо изменять расход теплоносителя в соответствии с законом изменения интенсивности солнечной радиации в течение дня, что требует применения автоматических устройств и усложняет систему. В схемах второй группы передача теплоты от солнечных коллекторов осуществляется либо через бак-аккумулятор, либо путем непосредственного смешения теплоносителей (рис. 3 а), либо через теплообменник, который может быть расположен как внутри бака (рис. 1.4 б), так и вне его (рис. 3 в). К потребителю нагретый теплоноситель поступает через бак и в случае необходимости догревается в дублирующем источнике теплоты. Установки, работающие по схемам, представленным на рис. 3, могут быть одноконтурными (рис. 3 а), двухконтурными (рис.3 б) или многоконтурными (рис. 3 в, г).

    Рис. 2. Принципиальные схемы прямоточных систем: 1-солнечный коллектор; 2- аккумулятор; 3-теплообменник

    Рис. 3. Принципиальные схемы систем солнечного теплоснабжения

    Применение того или иного варианта схемы зависит от характера нагрузки, типа потребителя климатических, экономических факторов и других условий. Рассмотренные на рис. 3 схемы нашли в настоящее время наибольшее применение, так как отличаются сравнительной простотой, надежностью в эксплуатации.

    Этапы ВЫПОЛНЕНИЯ РАБОТЫ

    Расчетно-графическая работа состоит из следующих основных этапов:

    1) Выполнение чертежа «План здания».

    2) Выбор тепловой схемы системы отопления с использованием солнечных коллекторов

    3) Выполнение чертежа «Схема отопления и ГВС с использованием солнечных тепловых коллекторов»

    4) Расчет отопительной нагрузки (отопление и ГВС).

    5) Расчет системы солнечного теплоснабжения и доли тепловой нагрузки, обеспечиваемой за счет солнечной энергии f - методом.

    6) Оформление пояснительной записки.

    gastroguru © 2017