Допускаемое напряжение как обозначается. Допускаемые напряженияи механические свойства материалов. Примеры решения задач

Допускаемое (допустимое) напряжение - это значение напряжения, которое считается предельно приемлемым при вычислении размеров поперечного сечения элемента, рассчитываемого на заданную нагрузку. Можно говорить о допускаемых напряжениях растяжения, сжатия и сдвига. Допускаемые напряжения либо предписываются компетентной инстанцией (скажем, отделом мостов управления железной дороги), либо выбираются конструктором, хорошо знающим свойства материала и условия его применения. Допускаемым напряжением ограничивается максимальное рабочее напряжение конструкции.

При проектировании конструкций ставится цель создать конструкцию, которая, будучи надежной, в то же время была бы предельно легкой и экономной. Надежность обеспечивается тем, что каждому элементу придают такие размеры, при которых максимальное рабочее напряжение в нем будет в определенной степени меньше напряжения, вызывающего потерю прочности этим элементом. Потеря прочности не обязательно означает разрушение. Машина или строительная конструкция считается отказавшей, когда она не может удовлетворительно выполнять свою функцию. Деталь из пластичного материала, как правило, теряет прочность, когда напряжение в ней достигает предела текучести, так как при этом из-за слишком большой деформации детали машина или конструкция перестает соответствовать своему назначению. Если же деталь выполнена из хрупкого материала, то она почти не деформируется, и потеря ею прочности совпадает с ее разрушением.

Разность напряжения, при котором материал теряет прочность, и допускаемого напряжения есть тот "запас прочности", который необходимо предусматривать, учитывая возможность случайной перегрузки, неточностей расчета, связанных с упрощающими предположениями и неопределенными условиями, наличия не обнаруженных (или не обнаружимых) дефектов материала и последующего снижения прочности из-за коррозии металла, гниения дерева и пр.

Коэффициент запаса прочности какого-либо элемента конструкции равен отношению предельной нагрузки, вызывающей потерю прочности элемента, к нагрузке, создающей допускаемое напряжение. При этом под потерей прочности понимается не только разрушение элемента, но и появление в нем остаточных деформаций. Поэтому для элемента конструкции, выполненного из пластичного материала, предельным напряжением является предел текучести. В большинстве случаев рабочие напряжения в элементах конструкции пропорциональны нагрузкам, а поэтому коэффициент запаса определяется как отношение предела прочности к допускаемому напряжению (коэффициент запаса по пределу прочности).

Основной задачей расчета конструкции является обеспечение ее прочности в условиях эксплуатации.

Прочность конструкции, выполненной из хрупкого металла, считается обеспеченной, если во всех поперечных сечениях всех ее элементов фактические напряжения меньше предела прочности материала. Величины нагрузок, напряжения в конструкции и предел прочности материала нельзя установить совершенно точно (в связи с приближенностью методики расчета, способов определения предела прочности и т. д.).

Поэтому необходимо, чтобы наибольшие напряжения, полученные в результате расчета конструкции (расчетные напряжения), не превышали некоторой величины, меньшей предела прочности, называемой допускаемым напряжением. Значение допускаемого напряжения устанавливается путем деления предела прочности на величину, большую единицы, называемую коэффициентом запаса.

В соответствии с изложенным условие прочности конструкции, выполненной из хрупкого материала, выражается в виде

где - наибольшие расчетные растягивающие и сжимающие напряжения в конструкции; и [-допускаемые напряжения при растяжении и сжатии соответственно.

Допускаемые напряжения зависят от пределов прочности материала на растяжение и сжатие ствс и определяются выражениями

где - нормативный (требуемый) коэффициент запаса прочности по отношению к пределу прочности.

В формулы (39.2) и (40.2) подставляются абсолютные значения напряжений

Для конструкций из пластичных материалов (у которых пределы прочности на растяжение и сжатие одинаковы) используется следующее условие прочности:

где а - наибольшее по абсолютной величине сжимающее или растягивающее расчетное напряжение в конструкции.

Допускаемое напряжение для пластичных материалов определяется по формуле

где - нормативный (требуемый) коэффициент запаса прочности по отношению к пределу текучести.

Использование при определении допускаемых напряжений для пластичных материалов предела текучести (а не предела прочности, как для хрупких материалов) связано с тем, что после достижения предела текучести деформации могут весьма резко увеличиваться даже при незначительном увеличении нагрузки и конструкции могут перестать удовлетворять условиям их эксплуатации.

Расчет прочности, выполняемый с использованием условий прочности (39.2) или (41.2), называется расчетом по допускаемым напряжениям. Нагрузка, при которой наибольшие напряжения в конструкции равны допускаемым напряжениям, называется допускаемой.

Деформации ряда конструкций из пластичных материалов после достижения предела текучести не возрастают резко даже при существенном увеличении нагрузки, если она не превышает величины так называемой предельной нагрузки. Такими, например, являются статически неопределимые конструкции (см. § 9.2), а также конструкции с элементами, испытывающими деформации изгиба или кручения.

Расчет этих конструкций производят или по допускаемым напряжениям, т. е. с использованием условия прочности (41.2), или по так называемому предельному состоянию. В последнем случае допускаемую нагрузку называют предельно допускаемой нагрузкой, а ее величину определяют путем деления предельной нагрузки на нормативный коэффициент запаса несущей способности. Два простейших примера расчета конструкции по предельному состоянию приведены ниже в § 9.2 и примере расчета 12.2.

Следует стремиться к тому, чтобы допускаемые напряжения были полностью использованы, т. е. удовлетворялось условие если это по ряду причин (например, в связи с необходимостью стандартизации размеров элементов конструкции) не удается, то расчетные напряжения должны как можно меньше отличаться от допускаемых. Возможно незначительное превышение расчетных допускаемых напряжений и, следовательно, некоторое снижение фактического коэффициента запаса прочности (по сравнению с нормативным).

Расчет центрально растянутого или сжатого элемента конструкции на прочность должен обеспечить выполнение условия прочности для всех поперечных сечений элемента. При этом большое значение имеет правильное определение так называемых опасных сечений элемента, в которых возникают наибольшие растягивающие и наибольшие сжимающие напряжения. В тех случаях, когда допускаемые напряжения на растяжение или сжатие одинаковы, достаточно найти одно опасное сечение, в котором имеются наибольшие по абсолютной величине нормальные напряжения.

При постоянной по длине бруса величине продольной силы опасным является поперечное сечение, площадь которого имеет наименьшее значение. При брусе постоянного сечения опасным является то поперечное сечение, в котором возникает наибольшая продольная сила.

При расчет конструкций на прочность встречаются три вида задач, различающихся формой использования условий прочности:

а) проверка напряжений (проверочный расчет);

б) подбор сечений (проектный расчет);

в) определение грузоподъемности (определение допускаемой нагрузки). Рассмотрим эти виды задач на примере растянутого стержня из пластичного материала.

При проверке напряжений площади поперечных сечений F и продольные силы N известны и расчет заключается в вычислении расчетных (фактических) напряжений а в характерных сечениях элементов.

Полученное при этом наибольшее напряжение сравнивают затем с допускаемым:

При подборе сечений определяют требуемые площади поперечных сечений элемента (по известным продольным силам N и допускаемому напряжению ). Принимаемые площади сечений F должны удовлетворять условию прочности, выраженному в следующем виде:

При определении грузоподъемности по известным значениям F и допускаемому напряжению вычисляют допускаемые величины продольных сил: По полученным значениям затем определяются допускаемые величины внешних нагрузок [Р].

Для этого случая условие прочности имеет вид

Величины нормативных коэффициентов запаса прочности устанавливаются нормами. Они зависят от класса конструкции (капитальная, временная и т. п.), намечаемого срока ее эксплуатации, нагрузки (статическая, циклическая и т. п.), возможной неоднородности изготовления материалов (например, бетона), от вида деформации (растяжение, сжатие, изгиб и т. д.) и других факторов. В ряде случаев приходится снижать коэффициент запаса в целях уменьшения веса конструкции, а иногда увеличивать коэффициент запаса - при необходимости учитывать износ трущихся частей машин, коррозию и загнивание материала.

Величины нормативных коэффициентов запаса для различных материалов, сооружений и нагрузок имеют в большинстве случаев значения: - от 2,5 до 5 и - от 1,5 до 2,5.

Коэффициенты запаса прочности, а следовательно, и допускаемые напряжения для строительных конструкций регламентированы соответствующими нормами их проектирования. В машиностроении обычно выбирают требуемый коэффициент запаса прочности, ориентируясь на опыт проектирования и эксплуатации машин аналогичных конструкций. Кроме того, ряд передовых машиностроительных заводов имеет внутризаводские нормы допускаемых напряжений, часто используемые и другими родственными предприятиями.

Ориентировочные величины допускаемых напряжений при растяжении и сжатии для ряда материалов приведены в приложении II.


Допускаемые напряжения. Условие прочности.

Предел прочности и предел текучести, определенные опытным путем являются среднестатистическими величинами, т.е. имеют отклонения в большую или меньшую сторону, поэтому максимальные напряжения при расчетах на прочность сравнивают не с пределом текучести и прочности, а с напряжениями несколько меньшими, которые называются допускаемыми напряжениями.
Пластичные материалы одинаково работают на растяжение и сжатие. Опасным напряжением для них является предел текучести.
Допускаемое напряжение обозначается [σ]:

где n- коэффициент запаса прочности; n>1.Хрупкие металлы хуже работают на растяжение, а лучше на сжатие. Поэтому опасное напряжение для них предел прочности σвр.Допускаемые напряжения для хрупких материалов определяются по формулам: где n- коэффициент запаса прочности; n>1.Хрупкие металлы хуже работают на растяжение, а лучше на сжатие. Поэтому опасное напряжение для них предел прочности σвр.Допускаемые напряжения для хрупких материалов определяются по формулам:


где n- коэффициент запаса прочности; n>1.

Хрупкие металлы хуже работают на растяжение, а лучше на сжатие. Поэтому опасное напряжение для них предел прочности σвр.
Допускаемые напряжения для хрупких материалов определяются по формулам:

σвр - предел прочности при растяжении;

σвс - предел прочности при сжатии;

nр, nс - коэффициенты запаса по пределу прочности.

Условие прочности при осевом растяжении (сжатии) для пластичных материалов:

Условия прочности при осевом растяжении (сжатии) для хрупких материалов:

Nmax- максимальная продольная сила, определяется по эпюре; А - площадь поперечного сечения бруса.

Существует три типа задач расчета на прочность:
I тип задач- проверочный расчет или проверка напряжений. Производится, когда размеры конструкции уже известны и назначены и необходимо осуществить только проверку на прочность. В таком случае пользуются уравнениями (4.11) или (4.12).
II тип задач - проектировочный расчет. Производится, когда конструкция находится на стадии проектирования и некоторые характерные размеры должны быть назначены непосредственно из условия прочности.

Для пластичных материалов:

Для хрупких материалов:

Где А- площадь поперечного сечения бруса. Из двух полученных значений площади выбираем наибольшее.
III тип задач - определение допускаемой нагрузки [N]:

для пластичных материалов:

для хрупких материалов:


Из двух значений допускаемой нагрузки выбираем минимальное.

Предельным напряжением считают напряжение, при котором в материале возникает опасное состояние (разрушение или опасная деформация).

Для пластичных материалов предельным напряжением счита­ют предел текучести, т.к. возникающие пластические деформации не исчезают после снятия нагрузки:

Для хрупких материалов, где пластические деформации отсут­ствуют, а разрушение возникает по хрупкому типу (шейки не обра­зуется), за предельное напряжение принимают предел прочности:

Для пластично-хрупких материалов предельным напряжением считают напряжение, соответствующее максимальной деформации 0,2% (сто,2):

Допускаемое напряжение - максимальное напряжение, при ко­тором материал должен нормально работать.

Допускаемые напряжения получают по предельным с учетом запаса прочности:

где [σ] - допускаемое напряжение; s - коэффициент запаса прочно­сти; [s] - допускаемый коэффициент запаса прочности.

Примечание. В квадратных скобках принято обозначать допускаемое значение величины.

Допускаемый коэффициент запаса прочности зависит от каче­ства материала, условий работы детали, назначения детали, точно­сти обработки и расчета и т. д.

Он может колебаться от 1,25 для простых деталей до 12,5 для сложных деталей, работающих при переменных нагрузках в услови­ях ударов и вибраций.

Особенности поведения материалов при испытаниях на сжатие:

1. Пластичные материалы практически одинаково работают при растяжении и сжатии. Механические характеристики при растяже­нии и сжатии одинаковы.

2. Хрупкие материалы обычно обладают большей прочностью при сжатии, чем при растяжении: σ вр < σ вс.

Если допускаемое напряжение при растяжении и сжатии раз­лично, их обозначают [σ р ] (растяжение), [σ с ] (сжатие).



Расчеты на прочность при растяжении и сжатии

Расчеты на прочность ведутся по условиям прочности - нера­венствам, выполнение которых гарантирует прочность детали при данных условиях.

Для обеспечения прочности расчетное напряжение не должно превышать допускаемого напряжения:

Расчетное напряжение а зависит от нагрузки и размеров попе­речного сечения, допускаемое только от материала детали и усло­вий работы.

Существуют три вида расчета на прочность.

1. Проектировочный расчет - задана расчетная схема и на­грузки; материал или размеры детали подбираются:

Определение размеров поперечного сечения:

Подбор материала

по величине σ пред можно подобрать марку материала.

2. Проверочный расчет - известны нагрузки, материал, раз­меры детали; необходимо проверить, обеспечена ли прочность.

Проверяется неравенство

3. Определение нагрузочной способности (максимальной нагрузки):

Примеры решения задач

Прямой брус растянут силой 150 кН (рис. 22.6), материал - сталь σ т = 570 МПа, σ в = 720 МПа, запас прочности [s] = 1,5. Определить размеры поперечного сечения бруса.

Решение

1. Условие прочности:

2. Потребная площадь поперечного сече­ния определяется соотношением

3. Допускаемое напряжение для материала рассчитывается из заданных механических характеристик. Наличие предела текучести означает, что материал - пластичный.

4. Определяем величину потребной площади поперечного сече­ния бруса и подбираем размеры для двух случаев.

Сечение - круг, определяем диаметр.

Полученную величину округляем в большую сторону d = 25 мм, А = 4,91 см 2 .

Сечение - равнополочный уголок № 5 по ГОСТ 8509-86.

Ближайшая площадь поперечного сечения уголка - А = 4,29 см 2 (d = 5 мм). 4,91 > 4,29 (Приложение 1).

Контрольные вопросы и задания

1. Какое явление называют текучестью?

2. Что такое «шейка», в какой точке диаграммы растяжения она образуется?

3. Почему полученные при испытаниях механические характе­ристики носят условный характер?

4. Перечислите характеристики прочности.

5. Перечислите характеристики пластичности.

6. В чем разница между диаграммой растяжения, вычерченной автоматически, и приведенной диаграммой растяжения?

7. Какая из механических характеристик выбирается в качестве предельного напряжения для пластичных и хрупких материалов?

8. В чем различие между предельным и допускаемым напряже­ниями?

9. Запишите условие прочности при растяжении и сжатии. Отли­чаются ли условия прочности при расчете на растяжение и расчете на сжатие?


Ответьте на вопросы тестового задания.
gastroguru © 2017