Гидролиз солей щелочных металлов. ЦУ (ценные указания). Гидролиз по катиону

Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Согласно теории электролитической диссоциации, в водном растворе частицы растворенного вещества взаимодействуют с молекулами воды. Такое взаимодействие может привести к реакции гидролиза (от греч. hydro — вода, lysis — распад, разложение).

Гидролиз — это реакция обменного разложения вещества водой.

Гидролизу подвергаются различные вещества: неорганические — соли, карбиды и гидриды металлов, галогениды неметаллов; органические — галогеналканы, сложные эфиры и жиры, углеводы, белки, полинуклеотиды.

Водные растворы солей имеют разные значения рН и различные типы сред — кислотную ($рН 7$), нейтральную ($рН = 7$). Это объясняется тем, что соли в водных растворах могут подвергаться гидролизу.

Сущность гидролиза сводится к обменному химическому взаимодействию катионов или анионов соли с молекулами воды. В результате этого взаимодействия образуется малодиссоциирующее соединение (слабый электролит). А в водном растворе соли появляется избыток свободных ионов $Н^{+}$ или $ОН^{-}$, и раствор соли становится кислотным или щелочным соответственно.

Классификация солей

Любую соль можно представить как продукт взаимодействия основания с кислотой. Например, соль $KClO$ образована сильным основанием $KOH$ и слабой кислотой $HClO$.

В зависимости от силы основания и кислоты можно выделить четыре типа солей.

Рассмотрим поведение солей различных типов в растворе.

1. Соли, образованные сильным основанием и слабой кислотой.

Например, соль цианид калия $KCN$ образована сильным основанием $KOH$ и слабой кислотой $HCN$:

${KOH}↙{\text"сильное однокислотное основание"}←KCN→{HCN}↙{\text"слабая однокислотная кислота"}$

1) незначительная обратимая диссоциация молекул воды (очень слабого амфотерного электролита), которую упрощенно можно записать с помощью уравнения

$H_2O{⇄}↖{←}H^{+}+OH^{-};$

$KCN=K^{+}+CN^{-}$

Образующиеся при этих процессах ионы $Н^{+}$ и $CN^{-}$ взаимодействуют между собой, связываясь в молекулы слабого электролита — цианистоводородной кислоты $HCN$, тогда как гидроксид — ион $ОН^{-}$ остается в растворе, обусловливая тем самым его щелочную среду. Происходит гидролиз по аниону $CN^{-}$.

Запишем полное ионное уравнение происходящего процесса (гидролиза):

$K^{+}+CN^{-}+H_2O{⇄}↖{←}HCN+K^{+}+OH^{-}.$

Этот процесс обратим, и химическое равновесие смещено влево (в сторону образования исходных веществ), т.к. вода — значительно более слабый электролит, чем цианистоводородная кислота $HCN$.

$CN^{-}+H_2O⇄HCN+OH^{-}.$

Уравнение показывает, что:

а) в растворе есть свободные гидроксид-ионы $ОН^{-}$, и концентрация их больше, чем в чистой воде, поэтому раствор соли $KCN$ имеет щелочную среду ($рН > 7$);

б) в реакции с водой участвуют ионы $CN^{-}$, в таком случае говорят, что идет гидролиз по аниону . Другие примеры анионов, которые участвуют в реакции с водой:

Рассмотрим гидролиз карбоната натрия $Na_2CO_3$.

${NaOH}↙{\text"сильное однокислотное основание"}←Na_2CO_3→{H_2CO_3}↙{\text"слабая двухосновная кислота"}$

Происходит гидролиз соли по аниону $CO_3^{2-}$.

$2Na^{+}+CO_3^{2-}+H_2O{⇄}↖{←}HCO_3^{-}+2Na^{+}+OH^{-}.$

$CO_2^{2-}+H_2O⇄HCO_3^{-}+OH^{-}.$

Продукты гидролиза — кислая соль $NaHCO_3$ и гидроксид натрия $NaOH$.

Среда водного раствора карбоната натрия — щелочная ($рН > 7$), потому что в растворе увеличивается концентрация ионов $ОН^{-}$. Кислая соль $NaHCO_3$ тоже может подвергаться гидролизу, который протекает в очень незначительной степени, и им можно пренебречь.

Подведем итог тому, что вы узнали о гидролизе по аниону:

а) по аниону соли, как правило, гидролизуются обратимо;

б) химическое равновесие в таких реакциях сильно смещено влево;

в) реакция среды в растворах подобных солей щелочная ($рН > 7$);

г) при гидролизе солей, образованных слабыми многоосновными кислотами, получаются кислые соли.

2. Соли, образованные сильной кислотой и слабым основанием.

Рассмотрим гидролиз хлорида аммония $NH_4Cl$.

${NH_3·H_2O}↙{\text"слабое однокислотное основание"}←NH_4Cl→{HCl}↙{\text"сильная одноосновная кислота"}$

В водном растворе соли происходят два процесса:

1) незначительная обратимая диссоциация молекул воды (очень слабого амфотерного электролита), которую упрощенно можно записать с помощью уравнения:

$H_2O{⇄}↖{←}H^{+}+OH^{-}$

2) полная диссоциация соли (сильного электролита):

$NH_4Cl=NH_4^{+}+Cl^{-}$

Образующиеся при этом ионы $OH^{-}$ и $NH_4^{+}$ взаимодействуют между собой с получением $NH_3·H_2O$ (слабый электролит), тогда как ионы $Н^{+}$ остаются в растворе, обусловливая тем самым его кислотную среду.

Полное ионное уравнение гидролиза:

$NH_4^{+}+Cl^{-}+H_2O{⇄}↖{←}H^{+}+Cl^{-}NH_3·H_2O$

Процесс обратим, химическое равновесие смещено в сторону образования исходных веществ, т.к. вода $Н_2О$ — значительно более слабый электролит, чем гидрат аммиака $NH_3·H_2O$.

Сокращенное ионное уравнение гидролиза:

$NH_4^{+}+H_2O⇄H^{+}+NH_3·H_2O.$

Уравнение показывает, что:

а) в растворе есть свободные ионы водорода $Н^{+}$, и их концентрация больше, чем в чистой воде, поэтому раствор соли имеет кислотную среду ($рН

б) в реакции с водой участвуют катионы аммония $NH_4^{+}$; в таком случае говорят, что идет гидролиз по катиону.

В реакции с водой могут участвовать и многозарядные катионы: двухзарядные $М^{2+}$ (например, $Ni^{2+}, Cu^{2+}, Zn^{2+}…$), кроме катионов щелочноземельных металлов, трехзарядные $М^{3+}$ (например, $Fe^{3+}, Al^{3+}, Cr^{3+}…$).

Рассмотрим гидролиз нитрата никеля $Ni(NO_3)_2$.

${Ni(OH)_2}↙{\text"слабое двухкислотное основание"}←Ni(NO_3)_2→{HNO_3}↙{\text"сильная одноосновная кислота"}$

Происходит гидролиз соли по катиону $Ni^{2+}$.

Полное ионное уравнение гидролиза:

$Ni^{2+}+2NO_3^{-}+H_2O{⇄}↖{←}NiOH^{+}+2NO_3^{-}+H^{+}$

Сокращенное ионное уравнение гидролиза:

$Ni^{2+}+H_2O⇄NiOH^{+}+H^{+}.$

Продукты гидролиза — основная соль $NiOHNO_3$ и азотная кислота $HNO_3$.

Среда водного раствора нитрата никеля кислотная ($рН

Гидролиз соли $NiOHNO_3$ протекает в значительно меньшей степени, и им можно пренебречь.

Подведем итог тому, что вы узнали о гидролизе по катиону:

а) по катиону соли, как правило, гидролизуются обратимо;

б) химическое равновесие реакций сильно смещено влево;

в) реакция среды в растворах таких солей кислотная ($рН

г) при гидролизе солей, образованных слабыми многокислотными основаниями, получаются основные соли.

3. Соли, образованные слабым основанием и слабой кислотой.

Вам, очевидно, уже ясно, что такие соли подвергаются гидролизу и по катиону, и по аниону.

Катион слабого основания связывает ионы $ОН^{-}$ из молекул воды, образуя слабое основание ; анион слабой кислоты связывает ионы $Н^{+}$ из молекул воды, образуя слабую кислоту . Реакция растворов этих солей может быть нейтральной, слабокислотной или слабощелочной. Это зависит от констант диссоциации двух слабых электролитов — кислоты и основания, которые образуются в результате гидролиза.

Например, рассмотрим гидролиз двух солей: ацетата аммония $NH_4(CH_3COO)$ и формиата аммония $NH_4(HCОO)$:

1) ${NH_3·H_2O}↙{\text"слабое однокислотное основание"}←NH_4(CH_3COO)→{CH_3COOH}↙{\text"сильная одноосновная кислота"};$

2) ${NH_3·H_2O}↙{\text"слабое однокислотное основание"}←NH_4(HCOO)→{HCOOH}↙{\text"слабая одноосновная кислота"}.$

В водных растворах этих солей катионы слабого основания $NH_4^{+}$ взаимодействуют с гидроксидионами $ОН^{-}$ (напомним, что вода диссоциирует $H_2O⇄H^{+}+OH^{-}$), а анионы слабых кислот $CH_3COO^{-}$ и $HCOO^{-}$ взаимодействуют с катионами $Н^{+}$ с образованием молекул слабых кислот — уксусной $CH_3COOH$ и муравьиной $HCOOH$.

Запишем ионные уравнения гидролиза:

1) $CH_3COO^{-}+NH_4^{+}+H_2O⇄CH_3COOH+NH_3·H_2O;$

2) $HCOO^{-}+NH_4^{+}+H_2O⇄NH_3·H_2O+HCOOH.$

В этих случаях гидролиз тоже обратимый, но равновесие смещено в сторону образования продуктов гидролиза — двух слабых электролитов.

В первом случае среда раствора нейтральная ($рН = 7$), т.к. $К_Д(СН_3COOH)=К+Д(NH_3·H_2O)=1.8·10^{-5}$. Во втором случае среда раствора слабокислотная ($pH

Как вы уже заметили, гидролиз большинства солей является обратимым процессом. В состоянии химического равновесия гидролизована лишь часть соли. Однако некоторые соли полностью разлагаются водой, т.е. их гидролиз является необратимым процессом.

В таблице «Растворимость кислот, оснований и солей в воде» вы найдете примечание: «в водной среде разлагаются» — это значит, что такие соли подвергаются необратимому гидролизу. Например, сульфид алюминия $Al_2S_3$ в воде подвергается необратимому гидролизу, т. к. появляющиеся при гидролизе по катиону ионы $Н^{+}$ связываются образующимися при гидролизе по аниону ионами $ОН^{-}$. Это усиливает гидролиз и приводит к образованию нерастворимого гидроксида алюминия и газообразного сероводорода:

$Al_2S_3+6H_2O=2Al(OH)_3↓+3H_2S$

Поэтому сульфид алюминия $Al_2S_3$ нельзя получить реакцией обмена между водными растворами двух солей, например хлорида алюминия $AlCl_3$ и сульфида натрия $Na_2S$.

Возможны и другие случаи необратимого гидролиза, их нетрудно предсказать, ведь для необратимости процесса необходимо, чтобы хотя бы один из продуктов гидролиза уходил из сферы реакции.

Подведем итог тому, что вы узнали о гидролизе и по катиону, и по аниону:

а) если соли гидролизуются и по катиону, и по аниону обратимо, то химическое равновесие в реакциях гидролиза смещено вправо;

б) реакция среды при этом или нейтральная, или слабокислотная, или слабощелочная, что зависит от соотношения констант диссоциации образующихся основания и кислоты;

в) соли могут гидролизоваться и по катиону, и по аниону необратимо, если хотя бы один из продуктов гидролиза уходит из сферы реакции.

4. Соли, образованные сильным основанием и сильной кислотой, не подвергаются гидролизу.

К этому выводу, очевидно, вы пришли сами.

Рассмотрим поведение в растворе хлорида калия $KCl$.

${KOH}↙{\text"сильное однокислотное основание"}←KCl→{HCl}↙{\text"сильная одноосновная кислота"}.$

Соль в водном растворе диссоциирует на ионы ($KCl=K^{+}+Cl^{-}$), но при взаимодействии с водой слабый электролит образоваться не может. Среда раствора нейтральная ($рН=7$), т.к. концентрации ионов $Н^{+}$ и $ОН^{-}$ в растворе равны, как в чистой воде.

Другими примерами подобных солей могут быть галогениды, нитраты, перхлораты, сульфаты, хроматы и дихроматы щелочных металлов, галогениды (кроме фторидов), нитраты и перхлораты щелочноземельных металлов.

Следует также отметить, что реакция обратимого гидролиза полностью подчиняется принципу Ле Шателье. По этому гидролиз соли можно усилить (и даже сделать необратимым) следующими способами:

а) добавить воды (уменьшить концентрацию);

б) нагреть раствор, при этом усиливается эндотермическая диссоциация воды:

$H_2O⇄H^{+}+OH^{-}-57$ кДж,

а значит, увеличивается количество $Н^{+}$ и $ОН^{-}$, которые необходимы для осуществления гидролиза соли;

в) связать один из продуктов гидролиза в труднорастворимое соединение или удалить один из продуктов в газовую фазу; например, гидролиз цианида аммония $NH_4CN$ будет значительно усиливаться за счет разложения гидрата аммиака с образованием аммиака $NH_3$ и воды $Н_2О$:

$NH_4^{+}+CN^{-}+H_2O⇄NH_3·H_2O+HCN.$

$NH_3{}↖{⇄}H_2$

Гидролиз солей

Условные обозначения:

Гидролиз можно подавить (значительно уменьшить количество подвергающейся гидролизу соли), действуя следующим образом:

а) увеличить концентрацию растворенного вещества;

б) охладить раствор (для ослабления гидролиза растворы солей следует хранить концентрированными и при низких температурах);

в) ввести в раствор один из продуктов гидролиза; например, подкислять раствор, если его среда в результате гидролиза кислотная, или подщелачивать, если щелочная.

Значение гидролиза

Гидролиз солей имеет и практическое, и биологическое значение. Еще в древности в качестве моющего средства использовали золу. В золе содержится карбонат калия $K_2CO_3$, который в воде гидролизуется по аниону, водный раствор приобретает мылкость за счет образующихся при гидролизе ионов $ОН^{-}$.

В настоящее время в быту мы используем мыло, стиральные порошки и другие моющие средства. Основной компонент мыла — это натриевые и калиевые соли высших жирных карбоновых кислот: стеараты, пальмитаты, которые гидролизуются.

Гидролиз стеарата натрия $С_{17}Н_{35}COONa$ выражается следующим ионным уравнением:

$C_{17}H_{35}COO^{-}+H_2O⇄C_{17}H_{35}COOH+OH^{-}$,

т.е. раствор имеет слабощелочную среду.

В состав же стиральных порошков и других моющих средств специально вводят соли неорганических кислот (фосфаты, карбонаты), которые усиливают моющее действие за счет повышения рН среды.

Соли, создающие необходимую щелочную среду раствора, содержатся в фотографическом проявителе. Это карбонат натрия $Na_2CO_3$, карбонат калия $K_2CO_3$, бура $Na_2B_4O_7$ и другие соли, гидролизующиеся по аниону.

Если кислотность почвы недостаточна, у растений появляется болезнь — хлороз. Ее признаки — пожелтение или побеление листьев, отставание в росте и развитии. Если $рН_{почвы} > 7.5$, то в нее вносят удобрение сульфат аммония $(NH_4)_2SO_4$, которое способствует повышению кислотности благодаря гидролизу по катиону, проходящему в почве:

$NH_4^{+}+H_2O⇄NH_3·H_2O$

Неоценима биологическая роль гидролиза некоторых солей, входящих в состав нашего организма. Например, в состав крови входят соли гидрокарбонат и гидрофосфат натрия. Их роль заключается в поддержании определенной реакции среды. Это происходит за счет смещения равновесия процессов гидролиза:

$HCO_3^{-}+H_2O⇄H_2CO_3+OH^{-}$

$HPO_4^{2-}+H_2O⇄H_2PO_4^{-}+OH^{-}$

Если в крови избыток ионов $Н^{+}$, они связываются с гидроксид-ионами $ОН^{-}$, и равновесие смещается вправо. При избытке гидроксид-ионов $ОН^{-}$ равновесие смещается влево. Благодаря этому кислотность крови здорового человека колеблется незначительно.

Другой пример: в составе слюны человека есть ионы $HPO_4^{2-}$. Благодаря им в полости рта поддерживается определенная среда ($рН=7-7.5$).

Лекция: Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Гидролиз солей

Мы продолжаем изучать закономерности протекания химических реакций. При изучении темы вы узнали, что при электролитической диссоциации в водном растворе частицы, участвующих в реакции веществ растворяются в воде. Это гидролиз. Ему подвергаются различные неорганические и органические вещества, в частности, соли. Без понимания процесса гидролиза солей, вы не сможете объяснить явления, происходящие в живых организмах.

Сущность гидролиза солей сводится к обменному процессу взаимодействия ионов (катионов и анионов) соли с молекулами воды. В результате образуется слабый электролит – малодиссоциирующее соединение. В водном растворе появляется избыток свободных ионов Н + или ОН - . Вспомните, диссоциация каких электролитов образует ионы Н + , а каких ОН - . Как вы догадались, в первом случае мы имеем дело с кислотой, значит водная среда с ионами Н + будет кислой. Во втором же случае, щелочной. В самой воде среда нейтральная, поскольку она незначительно диссоциируется на одинаковые по концентрации ионы Н + и ОН - .

Характер среды можно определить с помощью индикаторов. Фенолфталеин обнаруживает щелочную среду и окрашивает раствор в малиновый цвет. Лакмус под действием кислоты становится красным, а под действием щелочи остается синим. Метилоранж - оранжевый, в щелочной среде становится желтым, в кислой среде – розовым. Тип гидролиза зависит от типа соли.


Типы солей

Итак, любую соль представляет собой можно взаимодействие кислоты и основания, которые, как вы поняли, бывают сильными и слабыми. Сильные – это те, чья степень диссоциации α близка к 100%. Следует запомнить, что сернистую (H 2 SO 3) и фосфорную (H 3 PO 4) кислоту чаще относят к кислотам средней силы. При решении задач по гидролизу, данные кислоты необходимо относить к слабым.

Кислоты:

    Сильные: HCl; HBr; Hl; HNO 3 ; HClO 4 ; H 2 SO 4 . Их кислотные остатки с водой не взаимодействуют.

    Слабые: HF; H 2 CO 3 ; H 2 SiO 3 ; H 2 S; HNO 2 ; H 2 SO 3 ; H 3 PO 4 ; органические кислоты. А их кислотные остатки взаимодействуют с водой, забирая у её молекул катионы водорода H+.

Основания:

    Сильные: растворимые гидроксиды металлов; Ca(OH) 2 ; Sr(OH) 2 . Их катионы металлов с водой не взаимодействуют.

    Слабые: нерастворимые гидроксиды металлов; гидроксид аммония (NH 4 OH). А катионы металлов здесь взаимодействуют с водой.

Исходя из данного материала, рассмотрим типы солей :

    Соли с сильным основанием и сильной кислотой. К примеру: Ba (NO 3) 2 , KCl, Li 2 SO 4 . Особенности: не взаимодействуют с водой, а значит гидролизу не подвергаются. Растворы таких солей имеют нейтральную реакцию среды.

    Соли с сильным основанием и слабой кислотой. К примеру: NaF, K 2 CO 3 , Li 2 S. Особенности: с водой взаимодействуют кислотные остатки этих солей, происходит гидролиз по аниону. Среда водных растворов - щелочная.

    Соли со слабым основанием и сильной кислотой. К примеру: Zn(NO 3) 2 , Fe 2 (SO 4) 3 , CuSO 4 . Особенности: с водой взаимодействуют только катионы металлов, происходит гидролиз по катиону. Среда - кислая.

    Соли со слабым основанием и слабой кислотой. К примеру: CH 3 COONН 4 , (NН 4) 2 CО 3 , HCOONН 4. Особенности: с водой взаимодействуют как катионы, так и анионы кислотных остатков, гидролиз происходит по катиону и аниону.

Пример гидролиза по катиону и образования кислой среды :

    Гидролиз хлорида железа FeCl 2

FeCl 2 + H 2 O ↔ Fe(OH)Cl + HCl (молекулярное уравнение)

Fe 2+ + 2Cl - + H + + OH - ↔ FeOH + + 2Cl - + Н + (полное ионное уравнение)

Fe 2+ + H 2 O ↔ FeOH + + Н + (сокращенное ионное уравнение)

Пример гидролиза по аниону и образования щелочной среды:

    Гидролиз ацетата натрия CH 3 COONa

CH 3 COONa + H 2 O ↔ CH 3 COOH + NaOH (молекулярное уравнение)

Na + + CH 3 COO - + H 2 O ↔ Na + + CH 3 COOH + OH - (полное ионное уравнение)

CH 3 COO - + H 2 O ↔ CH 3 COOH + OH - (сокращенное ионное уравнение)

Пример совместного гидролиза:

  • Гидролиз сульфида алюминия Al 2 S 3

Al 2 S 3 + 6H2O ↔ 2Al(OH) 3 ↓+ 3H 2 S

В данном случае мы видим полный гидролиз, который происходит, если соль образована слабым нерастворимым или летучим основанием и слабой нерастворимой или летучей кислотой. В таблице растворимости стоят прочерки на таких солях. Если в ходе реакции ионного обмена образуется соль, которая не существует в водном растворе, то надо написать реакцию этой соли с водой.

Например:

2FeCl 3 + 3Na 2 CO 3 ↔ Fe 2 (CO 3) 3 + 6NaCl

Fe 2 (CO 3) 3 + 6H 2 O ↔ 2Fe(OH) 3 + 3H 2 O + 3CO 2

Складываем эти два уравнения, то что повторяется в левой и правой частях, сокращаем:

2FeCl 3 + 3Na 2 CO 3 + 3H 2 O ↔ 6NaCl + 2Fe(OH) 3 ↓ + 3CO 2



Вспомните:

Реакция нейтрализации — это реакция между кислотой и щелочью, в результате которой образуются соль и вода;

Под чистой водой химики понимают химически чистую воду, не содержащую никаких примесей и растворенных солей, т. е. дистиллированную воду.

Кислотность среды

Для различных химических, промышленных и биологических процессов очень важной характеристикой является кислотность растворов, характеризующая содержание кислот или щелочей в растворах. Поскольку кислоты и щелочи являются электролитами, то для характеристики кислотности среды используют содержание ионов H+ или OH - .

В чистой воде и в любом растворе вместе с частицами растворенных веществ присутствуют также ионы H+ и OH - . Это происходит благодаря диссоциации самой воды. И хотя мы считаем воду неэлектролитом, тем не менее она может диссоциировать: H 2 O ^ H+ + OH - . Но этот процесс происходит в очень незначительной степени: в 1 л воды на ионы распадается только 1 . 10 -7 моль молекул.

В растворах кислот в результате их диссоциации появляются дополнительные ионы H+. В таких растворах ионов H+ значительно больше, чем ионов OH - , образовавшихся при незначительной диссоциации воды, поэтому эти растворы называют кислотными (рис. 11.1, слева). Принято говорить, что в таких растворах кислотная среда. Чем больше ионов H+ содержится в растворе, тем больше кислотность среды.

В растворах щелочей в результате диссоциации, наоборот, преобладают ионы OH - , а катионы H+ ввиду незначительной диссоциации воды почти отсутствуют. Среда таких растворов щелочная (рис. 11.1, справа). Чем выше концентрация ионов OH - , тем более щелочной является среда раствора.

В растворе поваренной соли количество ионов H+ и OH - одинаково и равно 1 . 10 -7 моль в 1 л раствора. Такую среду называют нейтральной (рис. 11.1, по центру). Фактически это означает, что раствор не содержит ни кислоты, ни щелочи. Нейтральная среда характерна для растворов некоторых солей (образованных щелочью и сильной кислотой) и многих органических веществ. У чистой воды также нейтральная среда.

Водородный показатель

Если сравнивать вкус кефира и лимонного сока, то можно смело утверждать, что лимонный сок намного кислее, т. е. кислотность этих растворов разная. Вы уже знаете, что в чистой воде также содержатся ионы H+, но кислого вкуса воды не ощущается. Это объясняется слишком малой концентрацией ионов H+. Часто бывает недостаточно сказать, что среда кислотная или щелочная, а необходимо количественно ее охарактеризовать.

Кислотность среды количественно характеризуют водородным показателем pH (произносится «пэ-аш»), связанным с концентрацией

ионов Гидрогена. Значение pH соответствует определенному содержанию катионов Гидрогена в 1 л раствора. В чистой воде и в нейтральных растворах в 1 л содержится 1 . 10 7 моль ионов H+, а значение pH равно 7. В растворах кислот концентрация катионов H+ больше, чем в чистой воде, а в щелочных растворах меньше. В соответствии с этим меняется и значение водородного показателя pH: в кислотной среде он находится в пределах от 0 до 7, а в щелочных — от 7 до 14. Впервые водородный показатель предложил использовать датский химик Педер Сёренсен.

Вы могли заметить, что значение pH связано с концентрацией ионов H+. Определение pH напрямую связано с вычислением логарифма числа, которое вы будете изучать на уроках математики в 11 классе. Но взаимосвязь между содержанием ионов в растворе и значением pH можно проследить по следующей схеме:



Значение рН водных растворов большинства веществ и природных растворов находится в интервале от 1 до 13 (рис. 11.2).

Рис. 11.2. Значение рН различных природных и искусственных растворов

Сёрен Педер Лауриц Сёренсен

Датский физико-химик и биохимик, президент Датского королевского общества. Окончил Копенгагенский университет. В 31 год стал профессором Датского политехнического института. Возглавлял престижную физико-химическую лабораторию при пивоваренном заводе Карлсберга в Копенгагене, где сделал свои главные научные открытия. Основная научная деятельность посвящена теории растворов: он ввел понятие о водородном показателе (рН), изучал зависимость активности ферментов от кислотности растворов. За научные достижения Сёренсен внесен в перечень «100 выдающихся химиков XX века», но в истории науки он остался прежде всего как ученый, который ввел понятия «рН» и «рН-метрия».

Определение кислотности среды

Для определения кислотности раствора в лабораториях чаще всего используют универсальный индикатор (рис. 11.3). По его окраске можно определить не только наличие кислоты или щелочи, но и значение рН раствора с точностью до 0,5. Для более точного измерения рН существуют специальные приборы — рН-метры (рис. 11.4). Они позволяют определить рН раствора с точностью до 0,001-0,01.

Используя индикаторы или рН-метры, можно следить за тем, как протекают химические реакции. Например, если к раствору натрий гидроксида приливать хлоридную кислоту, то произойдет реакция нейтрализации:

Рис. 11.3. Универсальным индикатором определяют приблизительное значение рН

Рис. 11.4. Для измерения pH растворов используют специальные приборы — рН-метры: а — лабораторный (стационарный); б — портативный

В этом случае растворы реагентов и продуктов реакции бесцветны. Если же в исходный раствор щелочи поместить электрод рН-метра, то о полной нейтрализации щелочи кислотой можно судить по значению рН образованного раствора.

Применение водородного показателя

Определение кислотности растворов имеет большое практическое значение во многих областях науки, промышленности и других сферах жизни человека.

Экологи регулярно измеряют рН дождевой воды, воды рек и озер. Резкое повышение кислотности природных вод может быть следствием загрязнения атмосферы или попадания в водоемы отходов промышленных предприятий (рис. 11.5). Такие изменения влекут за собой гибель растений, рыбы и других обитателей водоемов.

Водородный показатель очень важен для изучения и наблюдения процессов, происходящих в живых организмах, т. к. в клетках протекают многочисленные химические реакции. В клинической диагностике определяют pH плазмы крови, мочи, желудочного сока и др. (рис. 11.6). Нормальное значение pH крови — от 7,35 до 7,45. Даже небольшое изменение pH крови человека вызывает серьезные заболевания, а при рН = 7,1 и ниже начинаются необратимые изменения, которые могут привести к смерти.

Для большинства растений важна кислотность почвы, поэтому агрономы заранее проводят анализ почв, определяя их рН (рис. 11.7). Если кислотность слишком велика для определенной культуры, почву известкуют — добавляют мел или известь.

В пищевой промышленности при помощью кислотно-основных индикаторов проводят контроль качества продуктов питания (рис. 11.8). Например, в норме для молока pH = 6,8. Отклонение от этого значения свидетельствует либо о наличии посторонних примесей, либо о его скисании.

Рис. 11.5. Влияние уровня pH воды в водоемах на жизнедеятельность растений в них

Важным является значение pH для косметических средств, которые мы используем в быту. В среднем для кожи человека pH = 5,5. Если кожа контактирует со средствами, кислотность которых существенно отличается от этого значения, то это влечет преждевременное старение кожи, ее повреждение или воспаление. Было замечено, что у прачек, которые длительное время использовали для стирки обычное хозяйственное мыло (pH = 8-10) или стиральную соду (Na 2 CO 3 , pH = 12-13), кожа рук становилась очень сухой и покрывалась трещинами. Поэтому очень важно использовать различные косметические средства (гели, кремы, шампуни и т. д.) с pH, близким к естественному pH кожи.

ЛАБОРАТОРНЫЕ ОПЫТЫ № 1-3

Оборудование: штатив с пробирками, пипетка.

Реактивы: вода, хлоридная кислота, растворы NaCl, NaOH, столовый уксус, универсальный индикатор (раствор или индикаторная бумага), пищевые продукты и косметическая продукция (например, лимон, шампунь, зубная паста, стиральный порошок, газированные напитки, соки и т. д.).

Правила безопасности:

Для опытов используйте небольшие количества реактивов;

Остерегайтесь попадания реактивов на кожу, в глаза; при попадании едкого вещества смойте его большим количеством воды.

Определение ионов Гидрогена и гидроксид-ионов в растворах. Установление приблизительного значения pH воды, щелочных и кислых растворов

1. В пять пробирок налейте по 1-2 мл: в пробирку № 1 — воды, № 2 — хлоридной кислоты, № 3 — раствора натрий хлорида, № 4 — раствора натрий гидроксида и № 5 — столового уксуса.

2. В каждую пробирку добавьте по 2-3 капли раствора универсального индикатора или опустите индикаторную бумагу. Определите pH растворов, сравнивая цвет индикатора по эталонной шкале. Сделайте выводы о наличии в каждой пробирке катионов Гидрогена или гидроксид-ионов. Составьте уравнения диссоциации этих соединений.

Исследование pH пищевой и косметической продукции

Испытайте универсальным индикатором образцы пищевых продуктов и косметической продукции. Для исследования сухих веществ, например, стирального порошка, их необходимо растворить в небольшом количестве воды (1 шпатель сухого вещества на 0,5-1 мл воды). Определите pH растворов. Сделайте выводы о кислотности среды в каждом из исследованных продуктов.


Ключевая идея

Контрольные вопросы

130. Наличием каких ионов в растворе обусловлена его кислотность?

131. Какие ионы содержатся в избытке в кислотных растворах? в щелочных?

132. Какой показатель количественно описывает кислотность растворов?

133. Каково значение рН и содержание ионов H+ в растворах: а) нейтральных; б) слабокислотных; в) слабощелочных; г) сильнокислотных; д) сильнощелочных?

Задания для усвоения материала

134. Водный раствор некоторого вещества имеет щелочную среду. Каких ионов больше в этом растворе: H+ или OH - ?

135. В двух пробирках находятся растворы нитратной кислоты и нитрата калия. Какие индикаторы можно использовать для определения, в какой пробирке содержится раствор соли?

136. В трех пробирках находятся растворы барий гидроксида, нитратной кислоты и кальций нитрата. Как с помощью одного реактива распознать эти растворы?

137. Из приведенного перечня выпишите отдельно формулы веществ, растворы которых имеют среду: а) кислотную; б) щелочную; в) нейтральную. NaCl, HCl, NaOH, HNO 3 , H 3 PO 4 , H 2 SO 4 , Ba(OH) 2 , H 2 S, KNO 3 .

138. Дождевая вода имеет рН = 5,6. Что это означает? Какое вещество, содержащееся в воздухе, при растворении в воде определяет такую кислотность среды?

139. Какая среда (кислотная или щелочная): а) в растворе шампуня (рН = 5,5);

б) в крови здорового человека (рН = 7,4); в) в желудочном соке человека (рН = 1,5); г) в слюне (рН = 7,0)?

140. В составе каменного угля, используемого на теплоэлектростанциях, содержатся соединения Нитрогена и Сульфура. Выброс в атмосферу продуктов сжигания угля приводит к образованию так называемых кислотных дождей, содержащих небольшие количества нитратной или сульфитной кислот. Какие значения рН характерны для такой дождевой воды: больше 7 или меньше 7?

141. Зависит ли рН раствора сильной кислоты от ее концентрации? Ответ обоснуйте.

142. К раствору, содержащему 1 моль калий гидроксида, прилили раствор фенолфталеина. Изменится ли окраска этого раствора, если к нему добавить хлоридную кислоту количеством вещества: а) 0,5 моль; б) 1 моль;

в) 1,5 моль?

143. В трех пробирках без надписей находятся бесцветные растворы натрий сульфата, натрий гидроксида и сульфатной кислоты. Для всех растворов измерили значение рН: в первой пробирке — 2,3, во второй — 12,6, в третьей — 6,9. В какой пробирке содержится какое вещество?

144. Ученик купил в аптеке дистиллированную воду. рН-метр показал, что значение рН этой воды равно 6,0. Затем ученик прокипятил эту воду в течение длительного времени, заполнил контейнер до верха горячей водой и закрыл крышкой. Когда вода остыла до комнатной температуры, рН-метр определил значение 7,0. После этого ученик трубочкой пропускал воздух через воду, и рН-метр снова показал 6,0. Как можно объяснить результаты этих измерений рН?

145. Как вы считаете, почему в двух бутылках уксуса от одного производителя могут содержаться растворы с несколько различными значениями рН?

Это материал учебника

Гидролиз - это взаимодействие веществ с водой, в результате которого изменяется среда раствора.

Катионы и анионы слабых электролитов способны взаимодействовать с водой с образованием устойчивых малодиссоциируемых соединений или ионов, в результате чего меняется среда раствора. Формулы воды в уравнениях гидролиза обычно записывают в виде Н‑ОН. При реакции с водой катионы слабых оснований отнимают от воды гидроксил ион, и в растворе образуется избыток Н + . Среда раствора становится кислотной. Анионы слабых кислот притягивают из воды Н + , и реакция среды становится щелочной.

В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т.е. с обменным взаимодействием ионов соли с молекулами воды в процессе их растворения. Различают 4 варианта гидролиза.

1. Соль образована сильным основанием и сильной кислотой.

Такая соль гидролизу практически не подвергается. При этом равновесие диссоциации воды в присутствии ионов соли почти не нарушается, поэтому рН=7, среда нейтральная.

Na + + H 2 O Cl ‑ + H 2 O

2. Если соль образована катионом сильного основания и анионом слабой кислоты, то происходит гидролиз по аниону.

Na 2 CO 3 + HOH \(\leftrightarrow\) NaHCO 3 + NaOH

Так как в растворе накапливаются ионы ОН ‑ , то среда - щелочная, рН>7.

3. Если соль образована катионом слабого основания и анионом сильной кислоты, то гидролиз идет по катиону.

Cu 2+ + HOH \(\leftrightarrow\) CuOH + + H +

СuCl 2 + HOH \(\leftrightarrow\) CuOHCl + HCl

Так как в растворе накапливаются ионы Н + , то среда кислая, рН<7.

4. Соль, образованная катионом слабого основания и анионом слабой кислоты, подвергается гидролизу и по катиону и по аниону.

CH 3 COONH 4 + HOH \(\leftrightarrow\) NH 4 OH + CH 3 COOH

CH 3 COO ‑ + + HOH \(\leftrightarrow\) NH 4 OH + CH 3 COOH

Растворы таких солей имеют или слабокислую, или слабощелочную среду, т.е. величина рН близка к 7. Реакция среды зависит от соотношения констант диссоциации кислоты и основания. Гидролиз солей, образованных очень слабыми кислотой и основанием, является практически необратимым. Это, в основном, сульфиды и карбонаты алюминия, хрома, железа.

Al 2 S 3 + 3HOH \(\leftrightarrow\) 2Al(OH) 3 + 3H 2 S

При определении среды раствора солей необходимо учитывать, что среда раствора определяется сильным компонентом. Если соль образована кислотой, являющейся сильным электролитом, то среда раствора кислая. Если основание сильный электролит, то - щелочная.

Пример. Щелочную среду имеет раствор

1) Pb(NO 3) 2 ; 2) Na 2 CO 3 ; 3) NaCl; 4) NaNO 3

1) Pb(NO 3) 2 нитрат свинца(II). Соль образована слабым основанием и сильной кислотой , значит среда раствора кислая.

2) Na 2 CO 3 карбонат натрия. Соль образована сильным основанием и слабой кислотой, значит среда раствора щелочная.

3) NaCl; 4) NaNO 3 Соли образованы сильным основанием NaOH и сильными кислотами HCl и HNO 3 . Среда раствора нейтральная.

Правильный ответ 2) Na 2 CO 3

В растворы солей опустили индикаторную бумажку. В растворах NaCl и NaNO 3 она не изменила цвет, значит среда раствора нейтральная . В растворе Pb(NO 3) 2 окрасилась в красный цвет, среда раствора кислая. В растворе Na 2 СO 3 окрасилась в синий цвет, среда раствора щелочная.

Соли – это ионные соединения, при попадании в воду они диссоциируют на ионы. В водном растворе эти ионы ГИДРАТИРОВАНЫ – окружены молекулами воды.

Обнаружено, что водные растворы многих солей имеют не нейтральную среду, а либо слабокислую, либо щелочную.

Объяснение этого – взаимодействие ионов соли с водой. Этот процесс называется ГИДРОЛИЗОМ.

Катионы и анионы, образованные слабым основанием или слабой кислотой, взаимодействуют с водой, отрывая от нее Н или ОН.

Причина этого: образование БОЛЕЕ ПРОЧНОЙ связи, чем в самой воде.

По отношению к воде соли можно разделить на 4 группы:

1) Соль, образованная сильным основанием и сильной кислотой - НЕ ГИДРОЛИЗУЕТСЯ , в растворе только диссоциирует на ионы. Среда нейтральная.

ПРИМЕР: Не гидролизуются соли – NaCl, KNO3, RbBr, Cs2SO4, KClO3, и т. п. В растворе эти соли только

диссоциируют:

Cs2SO4 à 2 Cs++SO42 -

2) Соль, образованная сильным основанием и слабой кислотой

- гидролиз ПО АНИОНУ . Анион слабой кислоты отрывает от воды ионы водорода , связывает их. В растворе образуется избыток ионов ОН - - среда щелочная.

ПРИМЕР: Гидролизу по аниону подвергаются соли - Na2S, KF, K3PO4 , Na2CO3, Cs2SO3, KCN, KClO, и кислые соли этих кислот.

K 3 PO 4 соль, образованная слабой кислотой и сильным основанием. Гидролизуется фосфат-анион.

PO 4 3- + НОН НРО42-+ОН-

K 3 PO 4 + Н2О К2НРО4 + КОН

(это первая ступень гидролиза, остальные 2 идут в очень малой степени)

3) Соль, образованная слабым основанием и сильной кислотой - гидролиз ПО КАТИОНУ . Катион слабого основания отрывает от воды ион ОН-, связывает его. В растворе остаётся избыток ионов H+ - среда кислая.

ПРИМЕР: Гидролизу по катиону подвергаются соли - CuCl2, NH4Cl, Al(NO3)3, Cr2(SO4)3 .

Cu SO 4 – соль, образованная слабым основанием и сильной кислотой. Гидролизуется катион меди:

Cu +2 + НОН CuOH + + H +

2 CuSO 4 +2 H 2 O (CuOH )2 SO 4 + H 2 SO 4

4) Соль, образованная слабым основанием и слабой кислотой - гидролиз И ПО КАТИОНУ И ПО АНИОНУ.

Если какие-либо из продуктов выделяются в виде осадка или газа, то гидролиз необратимый , если оба продукта гидролиза остаются в растворе - гидролиз обратимый.

ПРИМЕР: Гидролизуются соли –

· Al2S3,Cr2S3(необратимо):

Al2S3 + H2O à Al(OH)3 ¯ + H2S ­

· NH4F, CH3COONH4(обратимо)

NH4F + H 2 O NH4OH + HF

Взаимный гидролиз двух солей.

Он происходит при попытке получить с помощью обменной реакции солей, которые в водном растворе полностью гидролизованы. При этом происходит взаимный гидролиз – т. е. катион металла связывает ОН-группы, а анион кислоты – Н+

1) Соли металлов со степенью окисления +3 и соли летучих кислот (карбонаты, сульфиды, сульфиты) – при их взаимном гидролизе образуется осадок гидроксида и газ:

2AlCl3 + 3K2S + 6H2O à 2Al(OH)3¯ + 3H2S + 6KCl

(Fe3+, Cr3+) (SO32-, CO32-) (SO2, CO2)

2) Соли металлов со степенью окисления +2 (кроме кальция, стронция и бария) и растворимые карбонаты также вместе гидролизуются, но при этом образуется осадок ОСНОВНОГО КАРБОНАТА металла:

2 CuCl2 + 2Na2CO3 + H2O à (CuOH)2CO3 + CO2 + 4 NaCl

(все 2+, кроме Са, Sr, Ba)

Характеристика процесса гидролиза:

1) Процесс гидролиза является обратимым , протекает не до конца, а только до момента РАВНОВЕСИЯ;

2) Процесс гидролиза – обратный для реакции НЕЙТРАЛИЗАЦИИ, следовательно, гидролиз - эндотермический процесс (протекает с поглощением теплоты).

KF + H2O ⇄ HF + KOH – Q

Какие факторы усиливают гидролиз?

1. Нагревание – при увеличении температуры равновесие смещается в сторону ЭНДОТЕРМИЧЕСКОЙ реакции – гидролиз усиливается;

2. Добавление воды – т. к. вода является исходным веществом в реакции гидролиза, то разбавление раствора усиливает гидролиз.

Как подавить (ослабить) процесс гидролиза?

Часто необходимо не допустить гидролиза. Для этого:

1. Раствор делают максимально концентрированным (уменьшают количество воды);

2. Для смещения равновесия влево добавляют один из продуктов гидролиза кислоту , если идёт гидролиз по катиону или щёлочь, если идёт гидролиз по аниону.

Пример: как подавить гидролиз хлорида алюминия ?

Хлорид алюминия AlCl 3 – это соль, образованная слабым основанием и сильной кислотой – гидролизуется по катиону:

Al +3 + HOH AlOH +2 + H +

Среда – кислая. Следовательно, для подавления гидролиза необходимо добавить еще кислоты. Кроме того, следует сделать раствор наиболее концентрированным.

gastroguru © 2017