Качественное определение свинца в биологическом материале. Исследование качества воды. Разрушение биологического материала азотной и серной кислотами

После минерализации органов серной и азотной кислотами свинец и барий будут находиться в осадке в виде BaSО 4 и PbS0 4 . Оптимальными условиями для количественного осажде-

ния Ва 2 + и Рb 2 + являются: концентрация H 2 SO 4 в минерализа-те ~20% H 2 SO 4 , отсутствие окислов азота (частичное растворе-ние PbSO 4 и в значительно меньшей степени BaS0 4 в азотной кислоте), время осаждения (~24 часа). Вследствие соосажде-ния в осадке могут также находиться Са 2 +, Fe 3+ , Al 3 +, Cr 3+ , Zn 2+ , Cu 2+ и др. При соосаждении Сг 3 + осадок окрашен в грязно-зе-леный цвет. Во избежание потерь Сr 3+ грязно-зеленый осадок обрабатывают при нагревании раствором персульфата аммония в 1°/о растворе серной кислоты. Нерастворившийся осадок под-вергают анализу на Ва 2 + и Рb 2 +, а фильтрат оставляют для ко-личественного определения хрома. В целях разделения Ва 2+ и Pb 2+ (наличие Рb 2 + мешает обнаружению Ва 2 +) осадок непо-средственно на фильтре тщательно обрабатывают 0,5-10 мл (в зависимости от величины осадка) горячего раствора ацетата амония 1 , добиваясь полноты растворения PbSO 4 ;

Качественное обнаружение

Фильтрат исследуют на свинец: а) реакцией с дитизоном (НrDz)

Дитизон (дифенилтиокарбазон) нашел широкое применение в неорганическом анализе. В зависимости от рН среды в рас-творах дитизон может существовать в двух формах:

В энольной форме реактив мало растворим в органических растворителях (хлороформ, четыреххлорнстый углерод). В ке-тоннон форме ои довольно хорошо растворяется в них, образуя окрашенные в интенсивно зеленый цвет растворы. В щелочных растворах дает анион HDz", окрашенный в оранжевый цвет.

Со многими катионами металлов [Мп, Сг, Со, Ni, Zn, Fe(III), Tl, Cu, Cd, Ag, Pb, Bi, Hg] дитизон дает внутрикомплексиые со-ли (дитизонаты), обычно растворимые в неполярных органиче-ских растворителях (СНС1 3 , СС1 4). Многие из внутрикомплекс-ных соединений ярко окрашены.

и вторичные дитизонаты:


Различают первичные дитизонаты:

Первичные дитизонаты образуются со всеми катионами . Вторичные дитизонаты образуются лишь с немногими металлами (HgDz, Ag 2 Dz, CuDz и др.). Фишер, введший дитизон в аналитическую практику (1957), приписывает им следующую структуру:

Там, где металл может давать и первичный, и вторичный ди-тизонат, все зависит от реакции рН среды: в кислой среде обра-зуется первичный дитизонат, в щелочной и при недостатке ре-агента-вторичный дитизонат.

И образование, и экстракция дитизонатов зависят в первую.очередь от рН среды.

Для обнаружения свинца раствор, полученный обработкой осадка PbS0 4 и BaS0 4 ацетатом аммония, встряхивают с рас-твором дитизона в хлороформе (СС1 4): при наличии РЬ 2 + наблю-дается (при рН 7,0-10,0)" появление пурпурно-красного окра-



Реакция обладает высокой чувствительностью - 0,05 мкг Р 2 + в 1 мл. Граница обнаружения Рb 2+ этой реакцией в орга-нах 0,02 мг.

В описанных условиях химико-токсикологического анализа реакция почти абсолютно специфична, так как получению Pb(HDz) 2 предшествует переведение Рb 2+ в PbSO 4 , т. е. отде-ление Рb 2+ от большинства других элементов. С PbSO 4 могут соосадиться главным образом Fe 3 + и Сг 3 +. При этом Fe 3+ имеет малое сродство к дитизону, а Сr 3 + с дитизоном образует неокра-шенные соединения.

Одним из преимуществ реакции является возможность соче-тать с ее помощью качественный анализ на Рb 2+ с количествен-ным определением. При этом при наличии пурпурно-красной окраски хлороформного слоя сначала производится

количествен-ное определение (см. стр. 302). Затем после измерения плотно-сти окраски Pb(HDz) 2 на фотоэлектроколориметре дитизонат свинца для дальнейших качественных реакций энергично встря-хивают в течение 60 секунд с 0,5-2 мл (в зависимости от объ-ема и интенсивности окраски экстракта) 1 н. раствора HNO 3 (или НС1):

Pb(HDz) 2 >- Pb(N0 8) 2 + 2H 2 Dz

(слой органи- (водный (слой органи-

ческого раство- слой) ческого рас-

рителя) творителя)

В зависимости от объема водного слоя раствор исследуют далее микрокристаллическими или макрохимическими реакциями.

I. При малом объеме водного слоя (0,5 мл) весь объем делят на 2 части, осторожно упаривают и производят ре-акции: а) получают двойную соль йодида цезия и с в и н ц а - CsPbl 3 . Подкисляют 1 / 2 часть остатка 30% ук-сусной кислоты и смешивают с несколькими кристаллами йодида калия:

В раствор вносят 1-2 кристалла хлорида цезия - через не-которое время выпадает зеленовато-желтый осадок йодида цезия и свинца. При рассматривании под микроскопом можно наблю-дать игольчатые кристаллы, часто собранные в пучки и сфе-роиды.

Оптимальные условия: 30°/о раствор уксусной кислоты, отсут-ствие минеральных кислот, небольшое количество CsCl и избы-ток KI.

Чувствительность реакции 0,01 мкг. Реакция позволяет обна-ружить (граница обнаружения) 0,015 мг Рb 2+ в 100 г объекта исследования;

б) образование гексанитрита калия, меди и свинца КrСuРb(NO 2) 6 . Вторую часть остатка смешивают с 1-2 каплями насыщенного раствора ацетата меди и осторожно выпаривают досуха. Остаток растворяют в 2-3 каплях 30% рас-твора уксусной кислоты и добавляют несколько кристаллов ни-трита калия. При наличии Рb 2+ через 5-10 минут по всему полю зрения появляются кристаллы КrСu Pb(NO 2) 6 в виде черных или коричневых (при малых количествах Рb 2 +) кубов. Оптимальные условия: 30% раствор СН 3 СООН, отсутствие минеральных кис-лот, избыток нитрита калия. Чувствительность реакции 0,03 мкг. Границей обнаружения Рb 2+ в биологическом материале явля-ется 0,015 мг в 100 г органа.

П. При большом объеме водного слоя (2 мл и бо-лее) его нейтрализуют до рН 5,0 по универсальной индикатор-ной бумаге, делят на 4 части и исследуют реакциями:

а) образования PbS:

Pb(N0 3) 2 + H 2 S = PbSJ + 2HN0 3 .

Осадок не растворяется в разбавленных серной и соляной кислотах, но растворяется в разбавленной азотной кислоте с вы-делением окислов азота и элементарной серы:

3PbS + 8HNO 3 = 3Pb(NO 3) 2 + 2NO + 3S + 4H 2 O;

б) образование PbS0 4:

Pb(OCOCH 3) 2 + H 2 SO 4 = PbSO 4 | + 2СН 3 СООН

Сульфат свинца мало растворим в воде (1:22 800 при 15°); в разбавленной серной кислоте растворимость его еще меньше; в спирте он практически нерастворим; значительно растворяет-ся в азотной кислоте, еще лучше - в соляной кислоте, особенно при нагревании:

При добавлении воды вновь выпадает осадок сульфата свинца.

Осадок сульфата свинца растворяется в растворах едкого нат-ра, едкого кали, ацетата и тартрата аммония (отличие от суль-фата бария и сульфата стронция):

При растворении в тартрате аммония образуется РЬ 2 0(С 4 Н 4 0 6) 2 .

в) образования PbCr0 4 ; нерастворим в уксусной кислоте, но
растворим в минеральных кислотах и едких щелочах:

2РЬ(ОСОСН 3) 3 + К 2 Сг 2 0 7 + НОН - 2СН 3 СООК + 2РЬСЮ 4 + 2СН 3 СООН.

г) четвертую часть исследуют микрохимическими реакциями
получения CsPbl 3 и К2СиРЬ(Ы0 2)е.

Количественное определение РЬ 2+ после выделения его в виде сульфата свинца возможно несколькими методами:

а) бихроматн о-й одометрическим по избытку бихро-мата, не вошедшего в реакцию с РЬ 2+ . В основу определения по-ложены следующие реакции:

Бихроматно-йодометрический метод определения дает хоро-шие результаты (93% со средней относительной ошибкой 1,4°/о) при содержании от 2 до 100 мг свинца в 100 г органа. При коли-чествах свинца меньше 2 мг (граница определения) метод явля-ется ненадежным. Например, при наличии 1 мг РЬ 2 + в 100 г ор-гана определяется в среднем всего 37%;

б) э кстр а кцион но-фото м етр и ч е с к и и по д и т и-зонату свинца. В основу метода положена приведенная вы-ше чувствительная и довольно специфичная реакция:

РЬ(ОСОСН 3) 2 4- 2H a Dz (при рЫ 7-10) - Pb(HDz) a + 2СН 3 СООН.

Полученный дитизонат экстрагируют хлороформом при рН выше 7,0 до полноты экстракции Рb 2+ . Извлечения объединяют, промывают раствором KCN п присутствии NH 4 OH, отстаивают, измеряют объем, а затем определяют плотность окраски хлоро-формного экстракта на ФЭК при длине полны 520 нм в кювете с толщиной поглощающего слоя 1 см. Раствором сравнения слу-жит хлороформ. Закон Бера соблюдается в пределах 0,0001 - 0,005 мг/мл.

в) комплексонометрическим, являющимся общим для многих двухвалентных и некоторых трехвалентных катионов.

Принцип комплексонометрического титрования сводится к сле-дующему: к исследуемому раствору, содержащему определенный катион, прибавляют при строго определенном значении рН не-большое количество соответствующего индикатора - образуется хорошо растворимое в воде окрашенное комплексное соединение индикатора с катионом. При титровании трилоном Б (комплек-тен III)-динатриевой солью этилендиаминтетрауксусной кис-лоты- комплекс катиона с индикатором разрушается, так как трилон Б образует более прочный комплекс с определяемым ка-тионом. В эквивалентной точке выделяется свободный индика-тор, окрашивая раствор в цвет, присущий индикатору при дан-ном значении рН среды.

Большинство катионов определяется в щелочной среде, для чего в титруемый раствор вводят аммиачный буфер (смесь ам-миака и хлорида аммония).

В основе определения Рb 2+ (или другого двухвалентного ка-тиона) лежат следующие реакции:


А. Н. Крылова для определения Рb 2+ рекомендует обратное титрование трилона Б (применяется для определения катионов, вступающих в реакцию с раствором NH 4 OH). Сущность методи-ки заключается в следующем: исследуемый раствор разбавля-ют водой до 100-150 мл и смешивают с избытком 0,01 н. рас-твора трилона Б. 10 мл аммиачно-хлоридного буфера 2 и 0,1 - 0,2 г сухого зриохрома черного Т (смесь с NaCl 1:200). Избы-ток трилона Б oттитровывают 0,01 н. раствором ZnCl 2 до пере-хода сине-голубого окрашивания в красно-фиолетовое. Опреде-ляется 96% со средней относительной ошибкой 6,2% при 1 мг Рb 2 + в 100 г органа; 97% со средней относительной ошибкой 27% при 10 мг. Граница определения 0,5 мг Рb 2 + в 100 г органа.

Токсикологическое значение. Токсикологическое значение свин-ца определяется ядовитыми свойствами металлического свинца, его солей и некоторых производных, широким и разнообразным применением их в промышленности и быту.

Особенно опасными в отношении отравлений свинцом являются добыча свинцовых руд, выплавка свинца, про-изводство аккумуляторов, свинцовых красок [свинцовые белила 2РbСO 3 .Рb{ОН) 2 и сурик Рb 3 O 4 ], применение которых в СССР ограничивается только окраской судов и мостов, лужение, пай-ка, применение свинцовой глазури PbSi0 3 и т. д. При недоста-точной охране труда возможны промышленные отравления.

Источниками бытовых отравлений являлось в ряде случаев недоброкачественно луженая, эмалированная, фарфорово-фаян-совая и глиняная посуда, покрытая глазурью.

Описаны случаи отравления свинцом через питьевую воду (свинцовые трубы), нюхательный табак, завернутый в свинцо-вую бумагу, после огнестрельного ранения и т. п. Известны так-же случаи отравлений свинцовыми солями и тетраэтилсвинцом.

Свинец является протоплазматическим ядом, вызывающим из-менения главным образом в нервной ткани, крови и сосудах. Ядовитость соединений свинца в значительной степени связана с растворимостью их и в желудочном соке, и в других жидкостях организма. Хроническое отравление свинцом дает характерную клиническую картину. Смертельная доза различных соединений свинца неодинакова. Дети особенно чувствительны к нему. Сви-нец не относится к числу биологических элементов, но обычно присутствует в воде и пище, откуда поступает в организм. Че-ловек, не занятый работой со свинцом, поглощает в сутки, как указывает Н. В. Лазарев, 0,05-2 г свинца (в среднем 0,3 мг). Соединения свинца способны кумулироваться в костной ткани, печени, почках. Около 10% его всасывается организмом, осталь-ное количество выделяется с калом. Свинец откладывается в пе-чени и в трубчатых, несколько меньше - в плоских костях. В остальных органах откладывается в незначительном количе-стве. Отсюда возможность обнаружения свинца во внутренних органах трупов людей, умерших от других причин, и необходи-мость количественного определения его при положительных ре-зультатах качественного анализа.

Естественное содержание свинца (по данным А. О. Войнара, в миллиграммах на 100 г органа) в печени 0,130; в почке 0,027; в трубчатых костях 1,88; в желудке и кишечнике 0,022 и 0,023 соответственно.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

Определение свинца в растительности городской зоны

Введение

свинец титриметрический металл реактив

Свинец является отравляющим веществом, накопление которого влияет на целый ряд систем организма и которое особенно вредно для детей младшего возраста.

По оценкам, воздействие свинца в детском возрасте является одним из факторов, вызывающих ежегодно порядка 600 000 новых случаев развития у детей нарушений умственной деятельности.

По оценкам, воздействие свинца вызывает 143 000 смертей в год, причем самое тяжелое бремя отмечается в развивающихся регионах.

В организме свинец попадает в мозг, печень, почки и кости. Со временем свинец накапливается в зубах и костях. Воздействие на людей, как правило, определяется при помощи определения содержания свинца в крови.

Не существует какого-либо известного уровня воздействия свинца, который считается безопасным.

Основными источниками загрязнения свинцом являются автомобильный транспорт, использующий свинец - содержащий бензин, металлургические предприятия, источники дыма, такие как тепловые электростанции и прочее.

Растения поглощают свинец из почв и воздуха.

Они выполняют полезную для человека роль, выступая адсорбентами свинца, находящегося в почве и в воздухе. Пыль, содержащая свинец, накапливается на растениях, не распространяясь.

Согласно данным содержания подвижных форм тяжелых металлов в растениях можно судить о загрязненности ими определенного пространства.

В данной курсовой работе исследуется содержание свинца в растительности городской зоны.

1. Ли тературный обзор

Литературный обзор выполнен на основе книги «Аналитическая химия элементов. Свинец».

1. 1 Об щие сведения о свинце

Свинемц (лат. Plumbum; обозначается символом Pb) - элемент 14-й группы (поустаревшей классификации - главной подгруппы IV группы), шестого периодической системы химических элементов Д.И. Менделеева, с атомным номером 82 и, таким образом, содержит магическое число протонов. Простое вещество свинец (CAS-номер: 7439-92-1) - ковкий, сравнительно легкоплавкий металл серебристо-белого цвета с синеватым отливом. Известен с глубокой древности.

Атом свинца имеет электронную структуру 1s 2 2s 2 p 6 3s 2 p 6 d 10 4s 2 p 6 d 10 f 14 5s 2 p 6 d 10 6s 2 p 2 . Атомная масса принимается равной 207,2, однако возможны ее колебания на 0,03 - 0,04 у.ч.

Свинец является составной частью более 200 минералов, но только три из них (галенит, англезит, церуссит) находятся в природе в виде промышленных залежей свинцовых руд. Самым важным из них является галенит PbS (86,5% Pb).

Под действием веществ, растворенных в природных водах, и при выветривании он переходит в англезит PbSO 4 (63,3% Pb), который в результате двойного обмена с карбонатами кальция и магния образует церуссит PbCO 3 (77,5% Pb).

По объему промышленного производства свинец занимает четвертое место в группе цветных металлов, уступая только алюминию, меди и цинку.

Для получения свинца наибольшее значение имеют полиметаллические сульфидные и смешанны руды, так как чисто свинцовые руды встречаются редко.

Он применяется в целях радиационной защиты, в качестве конструкционного материала в химической промышленности, для изготовления защитных покрытий электрических кабелей и электродов аккумуляторов. Большие количества свинца идут на изготовление разнообразных сплавов: с висмутом (теплоноситель в ядерной технологии), с оловом и небольшими добавками золота и меди (припои для изготовления печатных схем), с сурьмой, оловом и другими металлами (припои и сплавы типографского и антифрикционногоназначения). Способность к образованию интерметаллических соединений используют для получения теллурида свинца, из которого готовят детекторы ИК-лучей и преобразователи тепловой энергии излучения в электрическую. Большая доля свинца идет на синтез металлоорганических соединений.

Многие свинец - содержащие органические соединения являются продуктами «малой» химии, но имеют большое практическое значение. К их числу относятся стеарат и фталат свинца (термо- и светостабилизаторы пластмасс), основной фумарат свинца (термостабилизатор для электрических изоляторов и вулканизирующий агент для хлорсульфополиэтилена), диамилдитиокарбамат свинца (многофункциональная добавка к смазочным маслам), этилендиаминтетраацетат свинца (рентгеноконтрастный препарат), тетраацетат свинца (окислитель в органической химии). Из числа практически важных неорганических соединений можно назвать оксид свинца (идущий на производство стекол с высоким показателем преломления, эмалей, аккумуляторных батарей и высокотемпературных смазок); хлорид свинца (изготовление источников тока); основной карбонат, сульфат и хромат свинца, сурик (компоненты красок); титанат - цирконат. свинца (производство пьезоэлектрической керамики). Нитрат свинца применяют в качестве титранта.

Исключительное разнообразие и важность упомянутых областей применения свинца стимулировали разработку многочисленных методов количественного анализа различных объектов. 1.2. Содержание свинца в природных объектах

Земная кора содержит 1,6*10 -3 % по массе РЬ. Космическая распространенность этого элемента, согласно данным различных авторов, варьирует от 0,47 до 2,9 атомов на 106 атомов кремния. Для Солнечной системы соответствующая величина составляет 1,3 атома на 10 6 атомов кремния.

В высокой концентрации свинец содержится во многих минералах и рудах, в микро- и ультрамикроколичествах - практически во всех объектах окружающего мира.

Прочие объекты содержат свинца (% массе); дождевая вода - (6-29) *10 -27 , воды открытых источников - 2 * 10 -8 , морские воды - 1,3 воды открытого океана на поверхности - 1,4*10 -9 , на глубине 0,5 и 2 км - соответственно 1,2*10 -9 и 2* 10 -10 , граниты, черный сланец, базальты - (1 - 30)*10 -4 , осадочные глинистые минералы - 2*10 -3 , вулканические породы Тихоокеанского пояса - 0,9*10 -4 , фосфориты - от 5*10 -4 до 3*10 -2 .

Бурый уголь - от 10 -4 до 1,75*10 -2 , нефть - 0,4 4 *10 -4 , метеориты - от 1,4*10 -4 до 5,15*10 -2 .

Растения: среднее содержание - 1*10 -4 , в районах свинцовых оруднений - 10 -3 , продукты питания 16*10 -6 , грибы-дождевики, собранные вблизи автострады - 5,3*10 -4 , зола: лишайников - 10 -1 , хвойных деревьев - 5*10 -3 , лиственных деревьев и кустарников - до3*10 -3 . Общее содержание свинца (в тоннах): в атмосфере - 1,8*10 4 , в почвах - 4,8*10 9 , в осадочных отложениях -48*10 12 , в водах океанов - 2,7*10 7 , в водах рек и озер - 6,1*10 -4 , в подпочвенных водах - 8,2*10 4 , в организмах воды и суши: живущих - 8,4*10 4 , отмерших - 4,6*10 6 .

1.2 Ис точники загрязнения свинцом

Источники поступления свинца в различные сферы обитания человека и животных подразделяются на природные (извержения вулканов, пожары, разложение умерших организмов, морская и ветровая пыль) и антропогенные (деятельность свинец производящих и перерабатывающих предприятий, сжигание ископаемого топлива и отходов его переработки).

По масштабам выброса в атмосферу свинец занимает первое место среди микроэлементов.

Значительная часть свинца, содержащегося в каменном угле, при сжигании вместе с дымовыми газами поступает в атмосферу. Деятельность только одной ТЭЦ, потребляющей в сутки 5000 т угля, ежегодно направляет в воздух 21т свинца и соизмеримые количества других вредных элементов. Немалый вклад в загрязнение атмосферы свинцом вносят производства металлов, цемента и т.д.

Атмосфера загрязняется не только стабильными, но и радиоактивными изотопами свинца. Их источником являются радиоактивные инертные газы, из которых наиболее долгоживущий - радон достигает даже стратосферы. Образующийся свинец частично возвращается на землю с атмосферными осадками и аэрозолями, загрязняя поверхность почвы и водоемы.

1.3 То ксичность свинца и его соединений

Свинец является ядом, действующим на все живое. Он и его соединения опасны не только болезнетворным действием, но также кумулятивностью терапевтического эффекта, высоким коэффициентом накопления в организме, малой скоростью и неполнотой выделения с продуктами жизнедеятельности. Факты о опасности свинца:

1. Уже при концентрации 10 -4 % в почве свинец угнетает активность ферментов, причем особенно вредны в этом отношении хорошо растворимые соединения.

2. Присутствие в воде 2*10 -5 % свинца вредно для рыб.

3. Даже низкие концентрации свинца в воде уменьшают количество каротиноида и хлорофилла у водорослей.

4. Зарегистрировано множество случаев профессиональных заболеваний у работающих со свинцом.

5. По результатам 10-летней статистики установлена корреляция между числом смертельных исходов от заболевания раком легких и повышенным содержанием свинца и других металлов в воздухе районов промышленных предприятий, потребляющих уголь и нефтепродукты.

Степень токсичности зависит от концентрации, физико-химического состояния и природы соединений свинца. Особенно опасен свинец в состоянии молекулярно-ионной дисперсности; он проникает из легких в кровеносную систему и оттуда транспортируется по всему организму. Хотя качественно свинец и его неорганические соединения действуют сходно, токсичность растет симбатно их растворимости в биологических жидкостях организма. Это не умаляет опасность труднорастворимых соединений, изменяющихся в кишечнике с последующим повышением их всасываемости.

Свинец подавляет многие ферментативные процессы в организме. При свинцовой интоксикации наступают серьезные изменения в нервной системе, нарушаются терморегуляция, кровообращение и трофические процессы, изменяются иммунобиологические свойства организма и его генетический аппарат.

1. 4 Ос адительные и титриметрические методы

1. Гравиметрический метод- используется образование весовых форм свинца с органическими и неорганическими реагентами. Среди неорганических предпочтение отдается сульфату и хромату свинца. Методы, основанные на их осаждении, сравнимы по селективности и величине фактора пересчета, но определение РЬ в виде хромата требует меньшего расхода времени. Оба осадка рекомендуется получать методами «гомогенного» осаждения

Органические реагенты дают весовые формы, пригодные для определения меньших количеств РЬ, с более благоприятными факторами пересчета, чем у хромата или сульфата свинца.

Преимущества метода: кристалличность осадка и высокая точность результатов при отсутствии мешающих примесей. Относительная погрешность определения 0,0554-0,2015 г. Рb < 0,3%. С применением микроаппаратуры выполнены определения 0,125-4,528 мг РЬ с относительной погрешностью < 0,8%. Однако присутствие свободной HN0 3 недопустимо, а содержание солей щелочных металлов и аммония должно быть возможно малым.

2. Осадительное титрование с визуальными индикаторами. Используется титрование органическими и неорганическими реагентами. При отсутствии примесных ионов, осаждаемых хроматом, наиболее удобны прямые титриметрические методы с индикацией конечной точки титрования (КТТ) по изменению окраски метилового красного или адсорбционных индикаторов. Лучшим вариантом титриметрического определения Рb хроматным методом считается осаждение РbСг0 4 из уксуснокислого раствора с последующим растворением осадка в 2 М НС1 или 2 М НС10 4 , добавлением избытка иодида калия и титрованием выделившегося йода Na 2 S 2 0 3 .

3. Титрование растворами ЭДТА. Ввиду универсальности ЭДТА как аналитического реагента на большинство катионов встает вопрос о повышении селективности определения Рb. Для этого прибегают к предварительному разделению смесей, введению маскирующих реагентов и регулированию реакции среды до значений рН > 3. Обычно же титруют в слабокислой или в щелочной среде.

Конечную точку титрования чаще всего индицируют с помощью металлохромных индикаторов из группы азо- и трифенилметановых красителей, производных двухатомных фенолов и некоторых других веществ, окрашенные комплексы Рb которых менее устойчивы, чем этилендиаминтетраацетат свинца. В слабокислых средах титруют по 4 - (2-пиридилазо) - резорцину, тиазолил-азо-и-крезолу, 2 - (5-бром-2-пиридилазо) - 5-диэтиламинофенолу, 1 - (2-пиридилазо) - 2-нафтолу, 2 - (2-тиазолилазо) - резорцину, азопроизводным 1-нафтол4-сульфоновой кислоты, ксиленоловому оранжевому, пирокатехиновомуфиолетовому, метилксиленоловому синему, пирогаллоловому и бромпирогаллоловому красному, метилтимоловому синему, гематоксилину, родизонату натрия, ализарину S и дитизону.

В щелочных средах применяют эриохром черный Т, сульфарсазен, 4 - (4,5 - димегил-2-тиазолилазо) - 2-метилрезорцин, смесь кислотного ализаринового черного SN и эриохром красного В, пирокатехинфталеин, солохром прочный 2 RS, метилтимоловый синий и мурексид (титрование суммарных количеств Pb и Cu).

4. Титрование другими комлексообразующими веществами. Используется образование хелатов с ДЦТА, ТТГА, серосодержащие комплексообразующие вещества.

1.5 Фо тометрические методы анализа п о светопоглощению и рассеиванию

1. Определение в виде сульфида. Истоки этого метода и его первой критической оценки приходятся на начало нашего 20 века. Окраска и устойчивость золя PbS зависят от размера частиц дисперсной фазы, на который влияют природа и концентрация растворенных электролитов, реакция среды и способ приготовления. Поэтому необходимо строго соблюдать эти условия.

Метод малоспецифичен, особенно в щелочной среде, но сходимость результатов в щелочных растворах лучше. В кислых растворах чувствительность определения меньше, но ее можно несколько увеличить добавлением электролитов, например NH 4 C1, в анализируемую пробу. Улучшить селективность определения в щелочной среде можно введением маскирующих комплексообразователей.

2. Определение в виде комплексных хлоридов. Уже было указано, что хлоркомплексы РЬ поглощают свет в УФ-области, причем молярный коэффициент погашения зависит от концентрации ионов Cl - В 6 М растворе НС1 максимумы поглощения Bi, Рb и Тl достаточно удалены друг от друга, что дает возможность их одновременного определения по светопоглощению соответственно при 323, 271 и 245 нм. Оптимальный интервал концентраций для определения Pb равен от 4-10*10-4%.

3. Определение примесей Рb в концентрированной серной кислоте основано на использовании характеристического поглощения при 195 нм по отношению к стандартному раствору, который готовят растворением свинца в H2S04 (ос. ч).

Определение с применением органических реагентов.

4. В анализе различных природных и промышленных объектов фотометрическое определение РЬ с применением дитизона благодаря его высокой чувствительности и селективности занимает ведущее место. В различных вариантах существующих методов фотометрическое определение РЬ выполняют при длине волны максимума поглощения дитизона или дитизоната свинца. Описаны другие варианты дитизонового метода: фотометрическое титрование без разделения фаз и безэкстракционный способ для определения свинца в полимерах, в котором в качестве реагента применяют раствор дитизона в ацетоне, перед использованием разбавляемый водой до концентрации органического компонента 70%.

5. Определение свинца по реакции с диэтилдитиокарбаматом натрия. Свинец хорошо экстрагируется CCl4 в виде бесцветного диэтилдитиокарбамата при различных значениях рН. Полученный экстракт используют в косвенном методе определения Рb, основанном на образовании эквивалентного количества желто-коричневого диэтилдитиокарбамата меди в результате обмена с CuS04.

6. Определение по реакции с 4 - (2-пиридилазо) - резорцином (ПАР). Высокая устойчивость красного комплекса Рb с ПАР и растворимость реагента в воде составляют достоинства метода. Для определения Рb в некоторых объектах, например в стали, латуни и бронзе, метод, основанный на образовании комплекса с этим азо-соединением, предпочтительнее дитизонового. Однако он менее селективен и потому в присутствии мешающих катионов требует предварительного разделения методом БХ или экстракции дибензилдитиокарбамата свинца четыреххлористым углеродом.

7. Определение по реакции с 2 - (5-хпорпиридип-2-азо) - 5-диэтиламинофенолом и 2 - (5-бромпиридил-2-азо) - 5-диэтиламинофенолом. Оба реагента образуют с Рb комплексы состава 1:1 с почти тождественными спектрофотометрическими характеристиками.

8. Определение по реакции с сульфарсазеном. В методе использовано образование красновато-коричневого водорастворимого комплекса состава 1: 1 с максимумом поглощения при 505-510 нм и молярным коэффициентом погашения 7,6*103 при этой длине волны и pH 9-10.

9. Определение по реакции с арсеназо 3. Этот реагент в интервале pH 4-8 образует со свинцом синий комплекс состава 1:1с двумя максимумами поглощения - при 605 и 665 нм.

10. Определение по реакции с дифенилкарбазоном. По чувствительности реакции, при экстракции хелата в присутствии KCN и по селективности он приближается к дитизону.

11. Косвенный метод определения Рb с применением дифенилкарбазида. Метод основан на осаждении хромата свинца, его растворении в 5%-ной НС1 и фотометрическом определении двухромовой кислоты по реакции с дифенилкарбазидом при использовании фильтра с максимумом пропускания при 536 нм. Метод длителен и не очень точен.

12. Определение по реакции с ксиленоловым оранжевым. Ксиленоловый оранжевый (КО) образует со свинцом комплекс состава 1:1, оптическая плотность которого достигает предела при рН 4,5-5,5.

13. Определение по реакции с бромпирогалполовым красным (БПК) в присутствии сенсибилизаторов. В качестве сенсибилизаторов, повышающих интенсивность окраски, но не влияющих на положение максимума поглощения при 630 нм, при рН 6,5 применяют хлориды дифе-нилгуанидиния, бензилтиурония и тетрафенилфосфония, а при рН 5,0 - бромиды цетилтриметиламмония и цетилпиридиния.

14. Определение по реакции с глицинтимоловым синим. Комплекс с глицинтимоловым синим (ГТС) состава 1: 2 имеет максимум поглощения при 574 нм и соответствующий ему молярный коэффициент погашения 21300 ± 600.

15. Определение с метилтимоловым синим выполняют в условиях, как для образования комплекса с ГТС. По чувствительности обе реакции приближаются друг к другу. Светопоглощение измеряют при рН 5,8-6,0 и длине волны 600 нм, которая отвечает положению максимума поглощения. Молярный коэффициент погашения равен 19 500. Помехи со стороны многих металлов устраняют маскированием.

16. Определение по реакции с ЭДТА. ЭДТА применяют в качестве титранта в безиндикаторном и в индикаторном фотометрическом титровании (ФТ). Как и в визуальной титриметрии, надежное ФТ растворами ЭДТА возможно при рН > 3 и концентрации титранта не менее 10-5 М.

Люминисцентный анализ

1. Определение РЬ с применением органических реагентов

Предложен метод, в котором измеряется интенсивность излучения хемилюминесценции в присутствии Рb за счет каталитического окисления люминола пероксидом водорода. Метод использован для определения от 0,02 до 2 мкг Рb в 1 мл воды с точностью 10%. Анализ длится 20 мин и не требует предварительной подготовки проб. Кроме Рb, реакцию окисления люминола катализируют следы меди. Значительно сложнее в аппаратурном оформлении метод, основанный на использовании эффекта тушения флуоресценции производных флуорес-132 ценна при образовании хелатов со свинцом. Более селективным в присутствии многих геохимических спутников Рb, хотя и менее чувствительным, является довольно простой метод, основанный на увеличении интенсивности флуоресценции люмогена водно-голубого в смеси диоксан-вода (1: 1) в присутствии Рb.

2. Методы низкотемпературной люминесценции в замороженных растворах. Замораживание раствора проще всего решено в методе определения свинца в НС1, основанном на фотоэлектрической регистрации зеленой флуоресценции хлоридных комплексов при -70°С.

3. Анализ по всплеску люминесценции при размораживании проб. Методы этой группы основаны на смещении спектров люминесценции при размораживании анализируемой пробы и измерении наблюдаемого при этом повышения интенсивности излучения. Длина волны максимума спектра люминесценции при -196 и - 70° С соответственно равна 385 и 490 нм.

4. Предложен метод, основанный на измерении аналитического сигнала при 365 нм в квазилинейчатом спектре люминесценции кристаллофосфора СаО-Рb, охлажденного до температуры жидкого азота. Это наиболее чувствительный из всех люминесцентных методов: если наносить активатор на поверхность таблеток (150 мг СаО, диаметр 10 мм, давление при прессовании 7-8 МН/м2), то предел определения на спектрографе ИСП-51 равен 0,00002 мкг. Метод характеризуется хорошей избирательностью: 100-кратный избыток Со, Cr(III), Fe (III), Mn(II), Ni, Sb (III) и T1 (I) не мешает определению Pb. Одновременно с Рb можно определять и Bi.

5. Определение свинца по люминесценции хлоридного комлекса, сорбированного на бумаге. В этом методе люминесцентный анализ комбинируют с отделением РЬ от мешающих элементов с помощью кольцевой бани. Определение ведется при обычной температуре.

1.6 Эл ектрохимические методы

1. Потенциометрические методы. Используется прямое и косвенное определение свинца - титрованием с кислотно - основными, комплексонометрическими и осадительными реагентами.

2.В электрогравиметрических методах используется осаждение свинца на электродах, с последующим взвешиванием или растворением.

3. Кулонометрия и кулонометрическое титрование. В качестве титрантов используются электрогенерируемые сульфогидрильные реагенты.

4. Вольт-амперометрия. Классическая полярография, сочетающая экспрессность с довольно высокой чувствительностью, считается одним из наиболее удобных методов определения РЬ в интервале концентраций 10-s-10 М. В подавляющем большинстве работ свинец определяют по току восстановления РЬ2+ до РЬ° на ртутном капельном электроде (РКЭ), обычно протекающему обратимо и в диффузионном режиме. Как правило, катодные волны хорошо выражены, а полярографические максимумы особенно легко подавляются желатином и Тритоном Х-100.

5. Амперометрическое титрование

При амперометрическом титровании (AT) точку эквивалентности определяют по зависимости величины тока электрохимического превращения РЬ и (или) титранта при определенном значении потенциала электрода от объема титранта. Амперометрическое титрование точнее обычного полярографического метода, не требует обязательного термостатирования ячейки и в меньшей мере зависит от характеристик капилляра и индифферентного электролита. Следует отметить и большие возможности метода AT, поскольку анализ возможен по электрохимической реакции с участием как самого Рb, так и титранта. Хотя общий расход времени на выполнение AT больше, он вполне компенсируется тем, что отпадает надобность в калибровке. Используется титрование растворами дихромата калия, хлораниловой кислоты, 3,5 - диметилдимеркапто - тиопирона, 1,5-6 ис (бензилиден) - тио - карбогидразона, тиосалициламида.

1.7 Фи зические методы определения свинца

Свинец определяют методами атомной эмиссионной спектроскопии, атомно-флуоресцентной спектрометрии, атомно-абсорбционной спектрометрии, рентгеновскими методами, радиометрическими методами, радиохимическими и многими другими.

2 . Экспериментальная часть

2.1 Ме тод определения

В работе используется определение свинца в виде дитизонатного комплекса.

Рисунок 1 - структура дитизона:

Максимум поглощения дитизонатных комплексов свинца-520 нм. Используется фотометрирование против раствора дитизона в CCl 4 .

Производится двойное озоление исследуемой пробы - сухим и «мокрым» методом.

Двойная экстракция и реакция со вспомогательными реагентами служит для отделения мешающих примесей и ионов, и повышения стабильности комплекса.

Метод обладает высокой точностью.

2. 2 Пр иборы и реактивы

Спектрофотометр с кюветами.

Сушильный шкаф.

Муфельная печь.

Электрическая плита.

Электронные весы

Капельная воронка 100 мл.

Химическая посуда.

Навеска сухого растительного материала 3 шт. по 10 гр.

0,01% раствор дитизона в CCl 4 .

0,02 н раствор HCl.

0,1% раствор гидроксиламина.

10% раствор желтой кровяной соли.

10% раствор лимоннокислого аммония.

10% раствор HCl.

Раствор аммиака.

Раствор соды.

Индикаторы-тимоловый синий и феноловый красный.

Стандартные растворы свинца, с его содержанием от 1,2,3,4,5,6 мкг/мл.

2. 3 Пр иготовление растворов

1. 0,1% раствор гидроксиламина.

W=m в-ва /m р-ра =0,1%. Масса раствора - 100 гр. Тогда навеска - 0,1 гр. Растворил в 99,9 мл бидистиллированной воды.

2.10% раствор желтой кровяной соли. W=m в-ва /m р-ра =10%. Масса раствора - 100 гр. Тогда навеска - 10 гр. Растворена в 90 мл бидистиллированной воды.

3.10% раствор лимоннокислого аммония. W=m в-ва /m р-ра =10%. Масса раствора - 100 гр. Навеска - 10 гр. Растворена в 90 мл бидистиллированной воды.

4.10% раствор HCl. Приготовлен из концентрированной HCl:

Необходимо 100 мл раствора с W=10%. d конц HCl =1,19 г./мл. Следовательно, необходимо взять 26 гр концентрированной HCl, V= 26/ 1,19=21,84 мл. 21,84 мл концентрированной HCl развел до 100 мл бидистиллированной водой в мерной колбе на 100 мл до метки.

5. 0,01% раствор дитизона в CCl 4 . W=m в-ва /m р-ра =10%. Масса раствора - 100 гр. Тогда навеска - 0,01 гр. Растворена в 99,9 мл CCl 4 .

6. Раствор соды. Приготовлен из сухой Na 2 CO 3 .

7. 0,02 н раствор HCl. W=m в-ва /m р-ра =? Пересчет на массовую долю. 1 л 0,02 н раствора HCl содержит 0,02*36,5= 0,73 гр раствора HCl. d конц HCl =1,19 г./мл. Следовательно, необходимо взять 1,92 гр концентрированной HCl, объем = 1,61 мл. 1,61 мл концентрированной HCl развел до 100 мл бидистиллированной водой в мерной колбе на 100 мл до метки.

9. Раствор индикатора тимолового синего был приготовлен из сухого вещества растворением в этиловом спирте.

2. 4 Ме шающие влияния

В щелочной среде, содержащей цианид, дитизоном экстрагируются вместе со свинцом таллий, висмут и олово (II). Таллий не мешает колориметрическому определению. Олово и висмут удаляют экстрагированием в кислой среде.

Определению не мешают серебро, ртуть, медь, мышьяк, сурьма, алюминий, хром, никель, кобальт и цинк в концентрациях, не превышающих двенадцатикратную концентрацию свинца. Мешающее влияние некоторых из этих элементов, если они присутствуют в пятидесятикратной концентрации, устраняют двойной экстракцией.

Определению мешает марганец, который при экстрагировании в щелочной среде каталитически ускоряет окисление дитизона кислородом воздуха. Это мешающее влияние устраняется добавлением солянокислого гидроксиламина к экстрагируемой пробе.

Сильные окислители мешают определению, так как окисляют дитизон. Их восстановление гидроксиламином включено в ход определения.

2. 5 Те хника эксперимента

Растительный материал высушивался в сушильном шкафу в измельченном состоянии. Сушка велась при температуре 100 0 C. После высушивания до абсолютно сухого состояния растительный материал тщательно измельчался.

Было взято три навески сухого материала по 10 гр. Они были помещены в тигль и помещены в муфельную печь, где озолялись 4 часа при температуре 450 0 C.

После зола растений окапывалась азотной кислотой при нагревании и высушивалась (отсюда и далее - операции повторяются для всех образцов).

Затем зола снова обрабатывалась азотной кислотой, высушивалась на электрической плите и ставилась в муфельную печь на 15 минут при температуре 300 0 C.

После осветленная зола окапывалась соляной кислотой, высушивалась, и снова окапывалась. Затем образцы были растворены в 10 мл 10% соляной кислоты.

Далее растворы были помещены в капельные воронки на 100 мл. Было прибавлено 10 мл 10% раствора лимоннокислого аммония, затем раствор нейтрализовывался аммиаком до перехода окраски тимолового синего в синюю.

После этого производилась экстракция. Было прилито 5 мл 0,01% раствора дитизона в CCl 4 . Раствор в капельной воронке интенсивно встряхивался в течении 5 минут. Дитизоновый слой после его отделения от основного раствора был слит отдельно. Операция экстракции повторялась до тех пор, пока исходная окраска каждой новой порции дитизона не перестала переходить в красную.

Водная фаза была помещена в капельную воронку. Была произведена ее нейтрализация раствором соды до перехода окраски фенолового красного в ораньжевую. Затем было добавлено 2 мл 10% раствора желтой кровяной соли, 2 мл 10% раствора лимоннокислого аммония, 2 мл 1% раствора гидроксиламина.

Затем растворы нейтрализовывались раствором соды до перехода окраски индикатора (фенолового красного) в малиновую.

Далее прибавлялось 10 мл 0,01% раствора дитизона в CCl 4 , образец интенсивно встряхивался в течении 30 секунд, затем дитизоновый слой сливался в кювету и спектофотометрировался против раствора дитизона в CCl 4 при 520 нм.

Были получены следующие значения оптических плотностей:

Градуировочный график строился при таких - же условиях, использовались стандартные растворы свинца концентраций от 1 до 6 мкг/мл. Они были приготовлены из раствора свинца концентрации 1 мкг/мл.

2.6 Ре зультаты эксперим ента и статистическая обработка

Данные для построения градуировочного графика

Градуировочный график

Согласно градуировочному графику, концентрация свинца в одном килограмме сухой растительной массы равна

1) 0,71 мг/кг

2) 0,71 мг/кг

3) 0,70 мг/кг

Что следует из условий определения - концентрация свинца в стандартах измеряются в мкг/мл, для анализа было измерено содержание свинца в 10 мл, пересчитано для одного килограмма сухого растительного материала.

Среднее значение массы: X ср = 0,707 гр.

Дисперсия =0,000035

Среднее квадратическое отклонение: = 0,005787

Вы воды

1. По литературному обзору.

С помощью литературного обзора изучены общие сведения о элементе, его методах определения, выбран наиболее подходящий из них согласно его точности и соответствия используемым в повседневной практике.

2. По результатам эксперимента.

Эксперимент показал, что с помощью метода можно определять малые содержания свинца, результаты отличаются высокой точностью и сходимостью.

3. По соответствию с ПДК.

Список использованных литературных источников

1. Полянский Н.Г. Свинец.-М.: Наука, 1986. - 357 с. (Аналитическая химия элементов).

2. Васильев В.П. Аналитическая химия. В 2 ч.Ч. 2. Физико - химические методы анализа: Учеб. Для химико-технол. Спец. Вузов.-М.: Высш. шк., 1989. - 384 с.

3. Основы аналитической химии. В 2 кн. Кн. 2. Методы химического анализа: Учеб. Для вузов/Ю.А. Золотов, Е.Н. Дорохова, В.И. Фадеева и др. Под ред. Ю.А. Золотова. - 2-е изд., перераб. И доп. - М.: Высш. шк., 2002. - 494 с.

Размещено на Allbest.ru

Подобные документы

    Физико-химические оценки механизмов поглощения свинца. Почва как полифункциональный сорбент. Методы обнаружения и количественного определения соединений свинца в природных объектах. Пути поступления тяжелых металлов в почву. Реакции с компонентами почвы.

    курсовая работа , добавлен 30.03.2015

    Контроль качества пищевых продуктов как основная задача аналитической химии. Особенности применения атомно-абсорбционного метода определения свинца в кофе. Химические свойства свинца, его физиологическая роль. Пробоподготовка, методики определения свинца.

    курсовая работа , добавлен 25.11.2014

    Изучение химических и физических свойств оксидов свинца, их применение, способы синтеза. Нахождение самого рационального способа получения оксида свинца, являющегося одним из наиболее востребованных соединений, используемых в повседневной жизни.

    реферат , добавлен 30.05.2016

    Области применения свинца. Его вред как экотоксиканта, который способен в различных формах загрязнять все три области биосферы. Источники свинцового загрязнения. Свойство свинца задерживать губительных для человека излучений. Свинцовые аккумуляторы.

    презентация , добавлен 03.03.2016

    Основные свойства свинца и бензойной кислоты. Бензоаты - соли и эфиры бензойной кислоты. Первичные сведения о растворимости бензоата свинца в стационарных условиях. Характеристика кинетики растворения. Температурный ход растворимости бензоата свинца.

    курсовая работа , добавлен 18.02.2011

    Методы отбора проб, область действия стандарта. Общие требования к подготовке реактивов и посуды к колориметрическим методам определения цинка, свинца и серебра. Суть плюмбонового метода определения свинца, дитизоновый метод определения цинка и серебра.

    методичка , добавлен 12.10.2009

    Атомно-флуоресцентный анализ. Рентгеновская флуоресценция. Электрохимические методы анализа. Инверсионная вольтамперометрия. Полярографический метод. Определение содержание свинца и цинка в одной пробе. Определение содержания цинка дитизоновым методом.

    курсовая работа , добавлен 05.11.2016

    Сущность метода измерений при определении содержания свинца, требования к средствам измерения и оборудованию, реактивам, подготовка лабораторной посуды. Методика расчета неопределенностей измерений, источники неопределенности и анализ корреляции.

    курсовая работа , добавлен 28.12.2011

    Химический элемент IV группы. Химические свойства. Диоксид свинца - сильный окислитель. Органические производные свинца - бесцветные очень ядовитые жидкости. Компонент типографских и антифрикционных сплавов, полупроводниковых материалов.

    реферат , добавлен 24.03.2007

    Титриметрические методы, основанные на реакциях образования растворимых комплексных соединений или комплексометрия. Методы с получением растворимых хелатов - хелатометрия. Определение ионов-комплексообразователей и ионов или молекул, служащих лигандами.

Урок – практикум

(проектная деятельность учащихся 9 класса на обобщающем уроке химии при изучении элементов - металлов)

«Изучение содержания ионов свинца в почве и растительных пробах села Слободчики и его воздействие на организм человека».

Подготовила и провела

учитель биологии, химии

Сивоха Наталья Геннадьевна


Цель урока:

Показать влияние тяжёлых металлов на здоровье человека на примере свинца и изучить экологическую обстановку села Слободчики путём определения ионов свинца в почве и растительных пробах.

Задачи урока:

Обобщить полученные знания о тяжёлых металлах. Более подробно познакомить учащихся со свинцом, его биологической ролью и токсическим воздействием на организм человека;

Расширить знания учащихся о взаимосвязи применения металла свинца и путей поступления его в организм человека;

Показать тесную взаимосвязь биологии, химии и экологии, как предметов дополняющих друг друга;

Воспитание бережного отношения к своему здоровью;

Привитие интереса к изучаемому предмету.


Оборудование: компьютер, мультимедийный проектор, презентации мини-проектов выполненных обучающимися, штатив с пробирками, стеклянная палочка, воронка с фильтром, химические стаканы на 50 мл, фильтровальная бумага, измерительный цилиндр, весы с гирями, фильтровальная бумага, ножницы, спиртовка или лабораторная плитка.

Реактивы: этиловый спирт, вода, 5% раствор сульфида натрия, иодид калия, пробы почвы, пробы растительности приготовленные учителем.


  • Почему группу элементов называют «тяжёлые металлы»? (все эти металлы имеют большую массу)
  • Какие элементы относятся к тяжёлым металлам? (железо, свинец, кобальт, марганец, никель, ртуть, цинк, кадмий, олово, медь, марганец)
  • Какое воздействие на организм человека оказывают тяжёлые металлы?

В Древнем Риме, знатные люди пользовались водопроводом, изготовленным из свинцовых труб. Расплавленным свинцом заливали места стыков каменных блоков и труб водопровода (недаром в английском языке слово plumber означает «водопроводчик»). Кроме этого, рабы пользовались дешевой деревянной посудой и пили воду прямо из колодцев, а рабовладельцы – из дорогих свинцовых сосудов. Продолжительность жизни богатых римлян была намного меньше, чем рабов. Учёные высказали предположение, что причиной ранней смерти было свинцовое отравление от воды, используемой для приготовления пищи. Однако эта история имеет продолжение. В штате Виргиния (США) исследовали захоронения тех лет. Оказалось, что на самом деле скелеты рабовладельцев содержат значительно больше свинца, чем кости рабов. Свинец был известен за 6-7 тыс. лет до н. э. народам Месопотамии, Египта и других стран древнего мира. Он служил для изготовления статуй, предметов домашнего обихода, табличек для письма. Алхимики называли свинец сатурном и обозначали его знаком этой планеты. Соединения свинца - "свинцовая зола" PbO, свинцовые белила 2PbCO3 Pb (OH)2 применялись в Древней Греции и Риме как составные части лекарств и красок. Когда было изобретено огнестрельное оружие, свинец начали применять как материал для пуль. Ядовитость свинца отметили ещё в 1 в. н. э. греческий врач Диоскорид и Плиний Старший.


Объём современного производства свинца составляет более 2,5 млн. тонн в год. В результате производственной деятельности в природные воды ежегодно попадает более 500-600 тыс. тонн свинца, а через атмосферу на поверхность Земли оседает около 400 тыс. тонн. До 90% от общего количества выброса свинца принадлежит к продуктам сгорания бензина с примесью свинцовых соединений. Основная его часть попадает в воздух с выхлопными газами автотранспорта, меньшая – при сжигании каменного угля. Из около почвенного слоя воздуха происходит оседание свинца в почву и поступление его в воду. Содержание свинца в дождевой и снеговой воде колеблется от 1,6 мкг/л в районах удалённых от промышленных центров, до 250-350 мкг/л в крупных городах. Через корневую систему он транспортируется в наземную часть растений. В 23 м от дороги с напряжённостью движения до 69 тыс. автомобилей в день растения фасоли накапливали до 93 мг свинца на 1 кг сухого веса, а в 53 м – 83 мг. Кукуруза, растущая в 23 м от дороги, накапливала в 2 раза больше свинца, чем 53 м. Где сеть дорог очень густая, в ботве кормовой свеклы обнаружено 70 мг свинца на 1 кг сухого вещества, а в собранном сене – 90 мг. С растительной пищей свинец попадает в организм животных. Содержание свинца в различных продуктах (в мкг); свиное мясо – 15, хлеб и овощи – 20, фрукты – 15. С растительной и животной пищей свинец попадает в организм человека, оседая до 80% в скелете, а также во внутренних органах. Человек, представляющий одно из последних звеньев пищевой цепи, испытывает на себе наибольшую опасность нейротоксического воздействия тяжёлых металлов.


Определение ионов свинца в растительных пробах.

Цель работы: определить наличие ионов в растительных пробах.

Приборы: два химических стакана по 50 мл, измерительный цилиндр, весы с гирями, стеклянная палочка, воронка, фильтровальная бумага, ножницы, спиртовка или лабораторная плитка.

Реактивы: этиловый спирт, вода, 5% раствор сульфида натрия

Методика исследования.

1. Взвесить по 100 гр. растений, желательно одного вида, для более точногорезультата (подорожник), на разной удалённости друг от друга.

2. Тщательно измельчить, к каждой пробе добавить по 50 мл. смеси этилового спирта и воды, перемешать, чтобы соединения свинца перешли в раствор.

3. Отфильтровать и упарить до 10 мл. Полученный раствор добавлять по каплям в свежеприготовленный 5%-ный раствор сульфида натрия.

4. При наличии в экстракте ионов свинца, появится чёрный осадок.


Определение ионов свинца в почве.

Цель работы: определить наличие ионов свинца в почве.

Приборы: два химических стакана по 50 мл, измерительный цилиндр, весы с ги­рями, стеклянная палочка, воронка, фильтровальная бумага.

Реактивы: иодид калия, вода.

Методика исследования:

1.Взвесить 2 г почвы, высыпать ее в химический стакан. Затем, залив 4 мл воды, хорошо размешать стеклянной палочкой.

2.Полученную смесь профильтровать.

3. К фильтрату добавить 1 мл 5% иодида калия. При взаимодействии иона свинца с иодидом калия образуется желтый осадок.

РЬ +2 + 2 I - = Р bI 2 (желтый осадок)

4.Опустить край полоски фильтровальной бумаги размером 1 см в полученный раствор. Когда вещество поднимется до середины бумаги, её вынуть и положить сушить. На высохшей фильтровальной бумаге ясно обозначится след осадка. Со временем (через 3-5 дней) жёлтая окраска иодида свинца проявится ярче.

Реферат


Курсовая работа содержит: ___ страниц, 4 таблицы, 2 рисунка, 8 литературных источника. Объектом исследования в курсовой работе являются пищевые продукты сложного химического состава.

Цель работы - определить содержание свинца в пищевых продуктах и сравнить с ПДК.

Метод исследования - атомно-абсорбционный.

Приведены способы пробоподготовки. Проанализированы и обобщены данные по содержанию соединений свинца в пищевых объектах (объектов).

Область применения - аналитическая и токсикологическая химия, лаборатории по стандартизации и качеству пищевых продуктов, выпускаемых легкой промышленностью, фармацевтическая химия.

Ключевые слова: СВИНЕЦ, АТОМНО-АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ, АБСОРБЦИЯ, СТАНДАРТНЫЙ РАСТВОР, ГРАДУИРОВОЧНЫЙ ГРАФИК, СОДЕРЖАНИЕ, ПДК



Введение

1. Литературный обзор

1.3 Пробоподготовка

2. Экспериментальная часть

Выводы

Введение


Применение материалов, содержащих свинец и его соединения, привело к загрязнению многих объектов окружающей среды. Определение свинца в продуктах металлургического производства, биологических материалах, почвах и т.д. представляет трудности, поскольку ему, как правило, сопутствуют другие двухвалентные металлы. Для решения такой аналитической задачи распространение получил атомно-абсорбционный метод определения благодаря доступности аппаратуры, высокой чувствительности и достаточной точности.

Пищевые продукты могут содержать не только полезные вещества, но и довольно вредные и опасные для организма человека. Поэтому основной задачей аналитической химии является контроль качества пищевых продуктов.

А именно в данной курсовой работе используется атомно-абсорбционный метод определения свинца в кофе.


1. Литературный обзор


1.1 Химические свойства свинца


В периодической таблице Д.И. Менделеева свинец располагается в IV группе, главной подгруппе и имеет атомный вес 207, 19. Свинец в своих соединениях может находиться в степени окисления +4, однако наиболее характерная для него +2.

В природе свинец встречается в виде различных соединений, наиболее важное из которых свинцовый блеск PbS. Распространенность свинца в земной коре составляет 0,0016 вес. %.

Свинец представляет собой голубовато-белый тяжелый металл плотностью 11,344 г/см3. Он очень мягок, легко режется ножом. Температура плавления свинца 327,3 оС. На воздухе свинец быстро покрывается тонким слоем окисла, защищающим его от дальнейшего окисления. В ряду напряжения свинец стоит непосредственно перед водородом; его нормальный потенциал равен - 0,126 В.

Вода сама по себе не взаимодействует со свинцом, но в присутствии воздуха свинец постепенно разрушается водой с образованием гидроокиси свинца:


Pb + O2 + H2O = 2Pb (OH) 2


Однако при соприкосновении с жесткой водой свинец покрывается защитной пленкой нерастворимых солей (главным образом сульфата и основного карбоната свинца), препятствующей дальнейшему действию воды и образованию гидроокиси.

Разбавленная соляная и серная кислоты не действуют на свинец вследствие малой растворимости соответствующих свинцовых солей. Легко растворяется свинец в азотной кислоте. Органические кислоты, особенно уксусная, также растворяют свинец в присутствии кислорода воздуха.

Свинец растворяется также в щелочах, образуя плюмбиты.


1.2 Физиологическая роль свинца


Обмен свинца в организме человека и животных изучен крайне мало. Биологическая роль его также полностью не ясна. Известно, что в организм свинец поступает с пищей (0,22 мг), водой (0,1 мг) и пылью (0,08мг). Обычно содержание свинца в организме мужчины составляет около 30мкг %, а у женщин около 25,5 мкг %.

С физиологической точки зрения свинец и почти все его соединения токсичны для человека и животных. Свинец даже в очень малых дозах накапливается в человеческом организме, и его токсическое действие постепенно усиливается. При отравлении свинцом на деснах появляются серые пятна, нарушаются функции нервной системы, ощущается боль во внутренних органах. Острое отравление приводит к тяжелым поражениям пищевода. У людей, работающих со свинцом, его сплавами или соединениями (например, у типографских работников), отравление свинцом является профессиональным заболеванием. Опасная доза для взрослого человека лежит в пределах 30-60 г РЬ (СН3СОО) 2 * 3Н2О .


1.3 Пробоподготовка


Отбор и подготовка лабораторной пробы производят в соответствии с НТД на данный вид продукции. Из объединенной лабораторной пробы отбирают две параллельные навески.

Продукты с высоким содержанием сахара (кондитерские изделия, джемы, компоты) обрабатывают серной кислотой (1: 9) из расчета 5 см3 кислоты на 1 г сухого вещества и выдерживают 2 дня.

Продукты с содержанием жира 20-60% (сыр, масличные семена) обрабатывают азотной кислотой (1:

) из расчета 1.5 см3 кислоты на 10 г сухого вещества и выдерживают 15 мин.

Пробы высушивают в сушильном шкафу при 150 оС (если отсутствуют агрессивные кислотные пары) на электроплитке со слабым нагревом. Для ускорения сушки проб можно применять одновременное облучение проб ИК - лампой.

Высушенные пробы осторожно обугливают на электроплитке или газовой горелке до прекращения выделения дыма, не допуская воспламенения и выбросов.

Помещают тигли в холодную электропечь и, повышая ее температуру на 50 оС каждые полчаса, доводят температуру печи до 450 оС. При этой температуре продолжают минерализацию до получения серой золы.

Охлажденную до комнатной температуры золу смачивают по каплям азотной кислотой (1:

) из расчета 0.5-1 см3 кислоты на навеску, выпаривают на водяпой бане и досушивают на электроплитке со слабым нагревом. Помещают золу в электропечь, доводят ее температуру до 300 оС и выдерживают 0.5 ч. Этот цикл (обработка кислотой, сушка, озоление) может быть повторен несколько раз.

Минерализацию считают законченной, когда зола станет белого или слегка окрашенного цвета без обугленных частиц .

Мокрая минерализация . Способ основан на полном разложении органических веществ пробы при нагревании в смеси концентрированных азотной кислоты, серной кислоты и перекиси водорода и предназначен для всех видов продуктов корме сливочного масла и животных жиров.

Навеску жидких и пюреобразных продуктов вносят в плоскодонную колбу, смачивая стенки стакана 10-15 см3 бидистиллированной воды. Можно брать навеску непосредственно в плоскодонную колбу.

Навеску твердых и пастообразных продуктов берут на обеззоленный фильтр, заворачивают в него и стеклянной палочкой помещают на дно плоскодонной колбы.

Пробы напитков отбирают пипеткой, переносят в колбу Кьельдаля и выпаривают на электроплитке до 10-15 см3.

Навеску сухих продуктов (желатин, яичный порошок) помещают в колбу и добавляют 15 см3 бидистиллированной воды, перемешивают. Желатин оставляют на 1 ч для набухания.

Минерализация проб. Минерализация проб сырья и пищевых продуктовкроме растительных масел, маргарина, пищевых жиров:

В колбу вносят азотную кислоту на расчет 10 см3 на каждые 5 г продукта и выдерживают не менее 15 мин, затем вносят 2-3 чистых стеклянных шарика, закрывают грушевидной пробкой и нагревают на электроплитке вначале слабо, затем сильнее, упаривая содержимое колбы до объема 5 см3.

Колбу охлаждают, вносят 10 см3 азотной кислоты, упаривают до 5 см3. Этот цикл повторяют 2-4 раза до прекращения бурых паров.

В колбу вносят 10 см3 азотной кислоты, 2 см3 серной кислоты и 2 см3 перекиси водорода на каждые 5 г продукта (минерализацию молочных продуктов проводят без добавления серной кислоты).

Для удаления остатков кислот в охлажденную колбу добавляют 10 см3 бидистиллированной воды, нагревают до появления белых паров и после этого кипятят еще 10 мин. Охлаждают. Добавление воды и нагревание повторяют еще 2 раза.

Если при этом образуется осадок, в колбу вносят 10 см3 бидистиллированной воды, 2 см3 серной кислоты, 5 см3 соляной кислоты и кипятят до растворения осадка, дополняя испаряющуюся воду. После растворения осадка раствор упаривают на водяной бане до влажных солей.

Минерализация растительных масел, маргарина, пищевых жиров:

свинец пищевой продукт химия

Колбу с навеской нагревают на электроплитке 7-8 часов до образования вязкой массы, охлаждают, добавляют 25 см3 азотной кислоты и вновь осторожно нагревают, избегая бурного вспенивания. После прекращения вспенивания в охлажденную колбу добавляют 25см3 азотной кислоты и 12 см3 перекиси водорода и нагревают до получения бесцветной жидкости. Если жидкость темнеет, к ней периодически добавляют по 5 см3 азотной кислоты, продолжая нагревание до завершения минерализации. Минерализацию считают законченной, если раствор после охлаждения остается бесцветным.

Кислотная экстракция . Способ основан на экстракции токсичных элементов с разбавленной (1:

) по объему соляной кислотой или разбавленной (1: 2) по объему азотной кислотой и предназначен для растительного и сливочного масел, маргарина, пищевых жиров и сыров.

Экстракция проводится в термостойкой с навеской продукта. В колбу цилиндром вносят 40 см3 раствора соляной кислоты в бидистиллированной воде (1:

) по объему и столько же азотной кислоты (1: 2). В колбу добавляют несколько стеклянных шариков, вставляют в нее холодильник, помещают на электроплитку, и кипятят в течении 1.5 часа с момента закипания. Затем содержимое колбы медленно охлаждают до комнатной температуры, не вынимая холодильника.

Колбу с экстракционной смесью сливочного масла, жиров или маргарина с кислотой помещают в холодную водяную баню для затвердения жира. Затвердевший жир прокалывают стеклянной палочкой, жидкость фильтруют через фильтр, смоченный используемой для экстракции кислотой, в кварцевую или фарфоровую чашу. Оставшийся в колбе жир расплавляют на водяной бане, добавляют 10 см3 кислоты, встряхивают, охлаждают, после охлаждения жир прокаливают и жидкость сливают через тот же фильтр в ту же чашу, затем промывают 5-7 см3 бидистиллированной воды.

Экстракционную смесь растительного масла с кислотой переносят в делительную воронку. Колбу ополаскивают 10 см3 кислоты, которую сливают в ту же воронку. После разделения фаз нижний водный слой сливают через смоченный кислотой фильтр в кварцевую или фарфоровую чашу, фильтр промывают 5-7 см3 бидистиллированной воды.

Экстракционную смесь сыра с кислотой фильтруют через смоченный кислотой фильтр в кварцевую или фарфоровую чашу. Колбу ополаскивают 10 см3 кислоты, которую фильтруют через тот же фильтр, затем фильтр промывают 5-7 см3 бидистиллированной воды.

Профильтрованный экстракт осторожно выпаривают и обугливают на электроплитке, а затем озоляют в электропечи.


1.4 Методики определения свинца


1.4.1 Концентрирование следовых количеств иона свинца с помощью нанометровых частиц диоксида титана (анатаза) с целью последующего их определения методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой с электротермическим испарением пробы

Атомно-эмиссионная спектрометрия с индуктивно связанной плазмой (ИСП-АЭС) - широко применяемый и весьма перспективный метод элементного анализа. Однако он имеет некоторые недостатки, среди которых сравнительно низкая чувствительность определения, низкая эффективность распыления, спектральные помехи и другие матричные эффекты. Поэтому ИСП-АЭС не всегда удовлетворяет требованиям современной науки и технологии. Сочетание ИСП-АЭС с электротермическим испарением пробы (ЭТИ-ИСП-АЭС) существенно расширяет возможности метода. Путем оптимизации температуры пиролиза и испарения можно последовательно испарять определяемые элементы, отделяя их от матрицы пробы. Этот метод имеет такие преимущества, как высокая эффективность ввода пробы, возможность анализа малых количеств образцов, низкие абсолютные пределы обнаружения и возможность прямого анализа твердых проб.

Инструменты и условия анализа. Использовали генератор ИСП мощностью 2 кВт с частотой 27 ± 3 МГц; горелку ИСП; графитовую печь WF-1А; дифракционный спектрометр РО5-2 с дифракционной решеткой 1300 штрихов/мм с линейной дисперсией 0.8 нм/мм; рН-метр Mettle Toledo 320-S; осадительную центрифугу модели 800.

Стандартные растворы и реагенты. Исходные стандартные растворы с концентрацией 1 мг/мл готовят растворением соответствующих оксидов (спектроскопической чистоты) в разбавленной НС1 с последующим разбавлением водой до заданного объема. Суспензию политетрафторэтилена прибавляли к каждому стандартному раствору до концентрации 6% м/о.

Использовали Тритон Х-100 реагентной чистоты (США). Остальные использованные реагенты были спектроскопической чистоты; вода дважды дистиллированная. Наночастицы диоксида титана диаметром менее 30 нм.

Методика анализа. Необходимый объем раствора, содержащего ионы металла, помещают в градуированную пробирку емк.10 мл и доводят значение рН до 8.0 с помощью 0.1 М НС1 и водного раствора NН3. Затем в пробирку вносят 20 мг наночастиц диоксида титана. Пробирку встряхивают в течение 10 мин. (предварительные эксперименты показали, что этого достаточно для достижения равновесия адсорбции). Пробирку оставляют на 30 мин., затем удаляют жидкую фазу с помощью центрифуги. После промывания осадка водой к нему добавляют 0.1 мл 60% -ной суспензии политетрафторэтилена, 0.5 мл 0.1% -ного раствора агара, 0.1 мл. Тритона Х-100 и разбавляют водой до 2.0 мл. Затем смесь диспергируют с помощью ультразвукового вибратора в течение 20 мин для достижения однородности суспензии перед ее вводом в испаритель. В графитовую печь вносят 20 мкл суспензии после прогрева и стабилизации ИСП. После высушивания, пиролиза и испарения пары образца переносятся в ИСП током газа-носителя (аргона); сигналы атомной эмиссии регистрируются. Перед каждым вводом пробы графитовую печь прогревают до 2700°С для ее очистки.

Применение метода. Разработанный метод применяют для определения Pb2+ в образцах природной озерной воды и речной воды. Образцы воды фильтровали через 0.45 мкм мембранный фильтр немедленно после пробоотбора и затем анализировали.


1.4.2 Определение свинца комбинирующем в реальном времени концентрирование с последующей обращено-фазовой ВЭЖХ

Приборы и реагенты . Схема системы ВЭЖХ с концентрированием в режиме реального времени ("on-line") приведена на рис.1.1 Система состоит из насоса Waters 2690 Alliance (на схеме 2), насоса Waters 515 (1), детектора с фотодиодной матрицей Waters 996 (7), шестиходового переключающего крана (4), устройства ввода большого объема (вмещает до 5.0 мл пробы) (3) и колонок (5,6). Концентрирующая колонка была Waters Xterra™ RP18 (5 мкм,20 х 3.9 мм), аналитическая колонка Waters Xterra™ RP18 (5 мкм, 150 х 3.9 мм). рН определяли рН-метром Beckman Ф-200, оптическую плотность измеряли спектрофотометром Shimadzu UV-2401.


Рис 1.1 Схема системы концентрирования в режиме реального времени с использованием переключающего крана


Все растворы готовили на ультрачистой воде, полученной с помощью системы Milli-Q50 Sp Reagent Water System (Millipore Corporation). Стандартный раствор свинца (П) с концентрацией 1.0 мг/мл, рабочие растворы с концентрацией ионов 0.2 мкг/мл готовят разбавлением стандартных. Используют тетрагидрофуран (ТГФ) для ВЭЖХ (Fisher Corporation), пирролидин-уксуснокислый буферный раствор концентрации 0.05 моль/л. Стеклянную посуду перед использованием вымачивали в течение длительного времени в 5% -ном растворе азотной кислоты и промывают чистой водой.

Методика эксперимента . Необходимый объем стандартного раствора или пробы вносят в мерную колбу емкостью 25 см3, додают 6 мл раствора Т4ХФП с концентрацией 1 х10-4 моль/л в ТГФ и 4 мл раствора пирролидин-уксуснокислого буферного раствора концентрацией 1 х10-4 моль/л и рН 10, разбавляют до метки водой и тщательно перемешивают. Смесь нагревают на кипящей водяной бане в течение 10 мин. После с охлаждения разбавляют до метки ТГФ для последующего анализа. Раствор (5.0 мл) вводят в дозатор, направляют в концентрирующую колонку с помощью подвижной фазы А со скоростью 2 см3/мин. По окончании концентрирования путем исключения шестиходового крана хелаты металлов с Т4ХФП, адсорбированные в верхней части концентрирующей колонки, элюируются потоком подвижных фаз А и Б со скоростью 1 мл/мин в обратном направлении и направляются в аналитическую колонку. Трехмерную хроматограмму регистрировали в диапазоне длин волн максимума поглощения 465 нм с помощью детектора с фотодиодной матрицей.


1.4.3 Инверсионно-вольтамперометрическое определение свинца с использованием стеклоуглеродной электродной системы

Приборы и реагенты. Для исследований использовали электродную систему, представляющую собой сборку из трех одинаковых стеклоутлеродных (СУ) электродов (индикаторный, вспомогательный, сравнения), запрессованных в общий корпус из тетрафторэтилена. Длина каждого электрода, выступающего из корпуса, равна 5 мм. Поверхность одного из них, выбранного в качестве индикаторного электрохимически обрабатывали асимметричным током при плотностях в интервале 0.1-5 кА/м2, рекомендуемых для металлов. Оптимальное время обновления поверхности найдено экспериментально и составляло 10-20 с. Индикаторный электрод служил анодом, а электрод из нержавеющей стали - катодом. Использовали 0.1 М водные растворы кислот, солей, щелочей, а также 0.1 М растворы щелочей или солей в смеси органических растворителей с водой в соотношении 1: 19 по объему. За состоянием обработанной поверхности наблюдали визуально с помощью микроскопа "Neophot 21 с увеличением порядка 3000.

Методика анализа. После обработки электродную сборку использовали для определения 3*10-6 М свинца (II) методом инверсионной вольтамперометрии на фоне 1*10-3 М HNO3. После электролиза при - 1.5 В в течение 3 мин при перемешивании магнитной мешалкой регистрировали вольтамперограмму на полярографе ПА-2. Потенциал анодного пика свинца оставался постоянным и составлял - 0.7 В. Скорость линейной развертки потенциала 20 мВ/с, амплитуда развертки 1.5 В, чувствительность по току 2 * 10-7 А/мм.

Водные растворы LiNO3, NaNO3, KNO3 в качестве обрабатывающего электролита позволяют получить стабильные высоты уже при втором измерении при удовлетворительной воспроизводимости (2.0, 2.9 и 5.4 % соответственно). Наибольшая чувствительность показаний достигается при использовании электролита, имеющего катион меньших размеров.


1.4.4 Атомно-абсорбционное определение свинца методом дозирования суспензий карбонизованных образцов с применением Pd-содержащего активированного угля в качестве модификатора

Аналитические измерения проводили на атомно-абсорбционном спектрометре SpectrAA-800 с электротермическим атомизатором GTA-100 и автодозатором PSD-97 ("Varian", Австралия). Использовали графитовые трубки с пиропокрыти-ем и интегрированной платформой ("Varian", Германия), лампы с полым катодом на свинец ("Hitachi", Япония) и кадмий (C"Varian", Австралия). Измерения интегральной абсорбционности с коррекцией неселективного поглощения света (дейтериевая система) проводили при спектральной ширине щели 0.5 нм и длине волны 283.3 нм. В качестве защитного газа служил аргон "сорт высший". Температурная программа работы атомизатора приведена в табл.1.1


Табл. 1.1 Температурная программа работы электротермического атомизатора GTA-100

СтадияТемпература,°СВысушивание 190Высушивание 2120Пиролиз1300Охлаждение50Атомизация23ОООчистка2500

В качестве модификаторов для атомно-абсорбционного определения РЬ в графитовой печи исследовали палладийсодержащие композиции на основе активированного угля и карбонизованной скорлупы ореха-фундука. Содержание металла в них составляло 0.5-4%. Для оценки изменений, происходящих с компонентами синтезированных модификаторов в восстановительных условиях, реализуемых в процессе выполнения анализа, материалы обрабатывали водородом при комнатной температуре.

Раствор с известной концентрацией РЬ готовили разбавлением ГСО № 7778-2000 и № 7773-2000 3% HNO3. Диапазон концентраций рабочих стандартных растворов элемента для построения градуировочных зависимостей составил 5.0-100 нг/мл. Для приготовления растворов использовали деионизованную воду.

При построении кривых пиролиза и атомизации использовали как стандартный раствор элемента, так и карбонизованный "Стандартный образец состава зерна пшеницы молотой ЗПМ-01". В первом случае в пластиковом стаканчике автодозатора смешивали 1.5 мл стандартного раствора элемента (50 нг/мл Pd в 5% HNO3) и 10-12 мг палладийсодержащего активированного угля; суспензию гомогенизировали и дозировали в графитовую печь. Во втором - такое же количество модификатора добавляли к подготовленной суспензии карбонизованной пробы (5-10 мг образца в 1-2 мл 5% HNO3).

1.4.5 Фотометрическое определение и концентрирование свинца

В работе использован ацетат свинца ч. д. а. Соединения (рис.1, являющиеся двухосновными кислотами) получены азосочетанием раствора хлорида 2-гидрокси-4 (5) - нитрофенилдиазония и соответствующего гидразона. Растворы формазанов в этаноле готовили по точной навеске.


Оптическую плотность растворов измеряли на спектрофотометре UV-5270 фирмы Веckman в кварцевых кюветах (l = 1 см). Концентрацию ионов водорода измеряли на иономере И-120М.

Реагенты взаимодействуют с ионами свинца, образуя окрашенные соединения. Батохромный эффект при комплексообразовании составляет 175 - 270 нм. На комплексообразование влияет характер растворителя и строение реагентов (рис.1).

Оптимальными условиями для определения свинца являются водно-этанольная среда (1:

) и рН 5.5-6.0, создаваемая аммиачно-ацетатным буферным раствором. Предел обнаружения свинца равен 0.16 мкг/мл. Продолжительность анализа 5 мин.

Наиболее интересно использование формазана в качестве реагента для концентрирования и последующего фотометрического определения свинца. Суть концентрирования и последующего определения свинца (II) с помощью формазана заключается в том, что из водно-этанольного раствора в присутствии ионов Ni, Zn, Hg, Co, Cd, Cr, Fe, хлороформным раствором формазана экстрагируют комплекс свинца.

Для сравнения использовали методику определения свинца сульфарсазеном (ГОСТ, МУ вып 15, № 2013-79). Полученные результаты анализа модельных растворов двумя методиками приведены в табл.1.2 Сравнение дисперсий по F-критерию показало, что Fэксп < Fтеор (Р = 0.95; f1 =f2 = 5); значит, дисперсии однородны.


Табл. 1.2 результаты определения свинца в модельных растворах (n=6; P=0.95)

Введено, мкг/млНайденоНайденоFэкспF теорсульфарсазеном, мкг/млSrформазаном, мкг/млSr4.14 2.10 3.994.04 ±0.28 2.06±0.29 3.92 ±0.17 0.29 3.92 ±0.172.8 5.5 1.74.14 ±0.07 2.10 ±0.08 3.99 ± 0.072.1 *10-2 2.5*10-2 2.1*10-23.97 3.57 3.374.53

2. Экспериментальная часть


Средства измерений, реактивы и материалы:

При выполнении по данной методике используют следующие средства измерений, устройства, реактивы и материалы:

·Атомно-абсорбционный спектрометр

·Лампа спектральная с полым катодом

·Компрессор для подачи сжатого воздуха

·Редуктор - по ГОСТ 2405

·Стаканы лабораторные, емкостью 25-50 см3 - по ГОСТ 25336

·Колбы мерные второго класса точности емкостью 25-100 см3

·Воронки лабораторные по ГОСТ 25336

·Вода дистиллированная

·Кислота азотная концентрированная, х. ч., ГОСТ 4461-77

·Стандартный раствор свинца (с = 10-1 г/л)

Условья определения:

§Длина волны при определении свинца ? =283,3 нм

§Ширина щели монохроматора 0,1нм

§Сила тока лампы 10 мА

Метод измерения:

Атомно-абсорбционная спектроскопия основана на поглощении излучения оптического диапазона невозбужденными свободными атомами свинца, образующимися при введении анализируемой пробы в пламя при длине волны ? =283,3 нм .

Требования безопасности:

При выполнении всех операций необходимо строго соблюдать правила техники безопасности при работе в химической лаборатории, соответствующие ГОСТ 126-77 "Основные правила безопасности в химической лаборатории", включая правила безопасной работы с электротехническими устройствами с напряжением до 1000 вольт.

Приготовление градуировочных растворов свинца:

Растворы готовят, используя стандартный раствор свинца с концентрацией


с= 10-1 г/л.


Для построения градуировочного графика используют растворы следующих концентраций:


*10-4, 3*10-4, 5*10-4, 7*10-4, 10*10-4 г/л


Стандартный раствор объемом 10 см3 вносят в колбу вместимостью 100 мл, доводять до метки дистиллированной водой. В 5 мерных колб вместимостью 100мл вносять соответственно 1, 3, 5, 7, 10 мл промежуточного раствора (раствор концентрации 10-2 г/л). Доводять до метки дистиллированной водой. Строят гардуировачный график в координатах А, у. е от с, г/л


Табл.2.1 Результаты измерений

концентрация, г/лСигнал, у. е. 0,000130,0003150,0005280,0007390,001057


Пробоподготовка:

Беру навеску кофе массой 1.9975 г.

Вношу ее в стакан емкостью 100 мл.

Растворяю навеску в 20 мл концентрированной азотоной кислоты.

Выпариваю содержимое стакана на водяной бане до половины исходного объема, периодами помешивая.

Раствор в стакане после выпаривания мутный, следовательно с помощью лабораторной воронки и бумажного фильтра отфильтровываю содержимое стакана в стакан емкостью 25 мл.

Отфильтрованный раствор вношу в колбу емкостью 25 мл и довожу до метки дистилированой водой.

Тщательно перемешиваю содержимое колбы.

Вношу часть раствора с колбы в пипетку, что и служит пробой для определения содержания свинца.

Для определения неизвестной концентрации, раствор вводят в атомизатор и после 10-15 секунд регистрируют показания прибора. Усредненные показания прибора откладывают на оси ординат градуировочного графика, и на оси абсцисс находят соответственное значение концентрации, сх г/л

Для расчета концентрации в образце использую расчетную формулу:


С =0.025*Сх*10-4*1000/ Mнав (кг)


Табл 2.2 Результаты измерений

ПробаСигнал, у. е. СреднееСх, г/л 123 кофе15141514,666672.9*10-4сырок00000ябл. сок00000виногр. сок00000крем3222.333337.8*10-5вода00000шампунь00000

Исходя из табличных данных, рассчитываю концентрацию свинца в образцах:

ОбразецПДК, мг/кгкофе10крем

С (Pb в пробе кофе) = 3.6 мг/кг

С (Pb в пробе крем) = 0.98 мг/кг


Выводы


В работе изложены методики определения свинца различными физико-химическими методами.

Приведены методы пробоподготовки для ряда пищевых объектов.

На основе литературных данных выбран наиболее удобный и оптимальный метод определения свинца в различных пищевых продуктах и природных объектах.

Использованный метод отличается высокой чувствительностью и точностью наряду с отсутствием отклика на присутствие других элементов, что позволяет получать истинные значения содержания искомого элемента с высокой степенью достоверности.

Выбранный метод позволяет также проводить исследования без особых трудностей в пробоподготовке и не нуждается в маскировании других элементов. Кроме этого, метод позволяет определять и содержание других элементов в исследуемой пробе.

По экспериментальной части можно сделать вывод, что содержание свинца в кофе "Черная карта" не превышает предельно допустимой концентрации, следовательно продукт пригоден для поступления в продажу.

Список использованной литературы


1. Глинка Н.И. Общая химия. - М.: Наука, 1978. - 403 с.

Золотов Ю.А. Основы аналитической химии. - М.: Высш. шк.; 2002. - 494 с.

Реми Г. Курс общей химии. - М: Изд. иностр. лит., 1963. - 587 с.

ГОСТ № 30178 - 96

Йипинг Ханг. // Журн. аналит. хим., 2003, Т.58, № 11, с.1172

Лианг Ванг. // Журн. аналит. хим., 2003, Т.58, № 11, с.1177

Невоструев В.А. // Журн. аналит. хим., 2000, Т.55, № 1, с.79

Бурилин М.Ю. // Журн. аналит. хим., 2004, Т.61, № 1, с.43

Маслакова Т.И. // Журн. аналит. хим., 1997, Т.52, № 9, с.931

В судебно-химическом и химико-токсикологическом анализе при исследо­вании биологического материала (органов трупов, биологических жидкостей, растений, пищевых продуктов и др.) на наличие «металлических» ядов приме­няется метод минерализации. Эти яды в виде солей, оксидов и других соедине­ний в большинстве случаев, поступают в организм перорально, всасываются в кровь и вызывают отравления. «Металлические» яды будут находиться в орга­низме в виде соединений с белками, пептидами, аминокислотами и некоторыми другими веществами, выполняющими важную роль в жизненных процессах. Связи металлов с большинством указанных веществ являются прочными (ковалентными). Поэтому для исследования биологического материала на наличие «металлических» ядов необходимо разрушить органические вещества, с которыми связаны металлы, и перевести их в ионное состояние. Выбор метода минерализации органических веществ зависит от свойств исследуемых элементов, количества биологического матери­ала, поступившего на анализ.

Минерализация – это окисление (сжигание) органического вещества (объекта) для высвобождения металлов из их комплексов с белками и другими соединениями. Наиболее широко распространённые методы минерализации можно разделить на 2 большие группы:

    Общие методы (методы «мокрой» минерализации) применяются при общем исследовании на группу «металлических ядов», пригодны для изолирования всех катионов металлов. Кроме ртути. Для минерализации используют смеси кислот-окислителей: серной и азотной, серной, азотной и хлорной.

    Частные методы (методы «сухого озоления») – метод простого сжигания, метод сплавления со смесью нитратов и карбонатов щелочных металлов. К числу частных методов относится и метод частичной минерализации (деструкции), служащий для изолирования соединений неорганической ртути из биологических материалов.

1.1. Разрушение биологического материала азотной и серной кислотами

Вколбу Кьельдаля вместимостью 500-800 мл вносят 100 г измельчен­ного биологического материала, прибавляют 75 мл смеси, состоящей из равных объемов концентрированных азотной и серной кислот и воды очищенной. Кол­бу с содержимым в вертикальном положении закрепляют в штативе так, чтобы дно ее находилось над асбестовой сеткой на расстоянии 1-2 см. Над колбой Кьельдаля в штативе закрепляют делительную воронку, в которой содержит­ся кислота азотная концентрированная, разбавленная равным объемом воды. Далее начинают осторожно нагревать колбу. В течение 30-40 мин происхо­дит деструкция, разрушение форменных элементов биологического материала. По окончании деструкции получается полупрозрачная жидкость, окрашенная в желтый или бурый цвет.

Затем колбу Кьельдаля с содержимым опускают на асбестовую сетку и уси­ливают нагрев - начинается стадия глубокого жидкофазного окисления. Для разрушения органических веществ, находящихся в колбе, из капельной воронки по капле прибавляют концентрированную азотную кислоту, разбавленную рав­ным объемом воды. Минерализация считается законченной тогда, когда про­зрачная жидкость (минерализат) при нагревании без добавления азотной кисло­ты в течение 30 мин перестает темнеть, а над жидкостью будут выделяться белые пары ангидрида серной кислоты.

Полученный минерализат подвергают денитрации: охлаждают, прибавля­ют 10-15 мл воды очищенной и нагревают до 110-130°С, а затем осторожно по каплям, избегая избытка, прибавляют раствор формальдегида. При этом от­мечают обильное выделение бурых, иногда оранжевых, паров. После окончания выделения этих паров жидкость еще нагревают в течение 5-10 мин, а затем 1-2 капли охлажденной жидкости (минерализата) наносят на предметное стек­ло или на фарфоровую пластину и прибавляют каплю раствора дифениламина в концентрированной серной кислоте. Эф­фект реакции - характерное синее окра­шивание.

Отрицательная реакция минерализата с дифениламином на азотную, азотистую кислоты, а также на окислы азота указывает на окончание процесса денитрации. При положительной реакции минерализата с дифениламином денитра­цию проводят повторно.

Метод минерализации биологическо­го материала концентрированными азот­ной и серной кислотами имеет ряд дос­тоинств. Минерализация этим методом происходит быстрее, получается относи­тельно небольшой объем минерализата, чем с использованием других методов. Однако минерализация смесью сер­ной и азотной кислотой непригодна для изолирования ртути из биологического материала, так как значительное количе­ство ее улетучивается при нагревании биологического материала на стадии глу­бокого жидкофазного окисления.

gastroguru © 2017