Устройство молниезащиты и ее заземления. Конструкции молниеотводов Виды молниеотводов и их устройство

Рис. 1 - Молниеодвод стержневого типа

Конструкция молниеотвода:

  1. Молниеприемник стержневого типа (1).
  2. Несущая конструкция (2).
  3. Токоотвод (3).
  4. Заземляющее устройство (4).

Молниеприемник представляет собой главную "цель" для молнии. Поэтому данный элемент рассчитан на то, чтобы выдерживать воздействия мощных импульсных токов молнии, а также значительные механические нагрузки. На несущую конструкцию молниеотвода (громоотвода) устанавливается молниеприемник и крепится токоотвод. Все части громоотвода объединены в прочную и жесткую конструкцию, способную отлично противостоять ветровым нагрузкам, а также прямым ударам молнии. Благодаря несущей конструкции громоотвода, имеющей достаточную механическую прочность и повышенной устойчивостью, исключается падение молниеотвода на энергооборудование и аппаратуру электрических подстанций.

При помощи токоотвода осуществляется соединение молниеприемника и заземляющего устройств: именно токоотвод обеспечивает прохождение импульсных грозовых токов от молниеотвода до заземляющего устройства. Поэтому токоотвод изготавливается с большим запасом прочности, с учётом запредельных тепловых и электродинамических перегрузок, источником которых является ток молнии. Заземляющее устройство необходимо для отвода разряда в землю и уменьшения до приемлемого уровня разности потенциалов в элементах молниеотвода.

Качество молниезащиты энергообъектов в напрямую связано с состоянием заземляющего устройства, а также его конструктивного исполнения. В реальных условиях заземлители могут находиться в различных условиях: сухая почва или влажный грунт, пропитанный солями и кислотами, которые оказывают основное влияние на электропроводимость земли. В тоже время кислоты и соли способствуют усиленной электрохимической коррозии металлических частей заземлителя. Поэтому подбор эффективных материалов и выбор оптимальной конструкции заземляющего устройства должен проводиться с учётом реальных условий, в которых заземляющее устройство будет эксплуатироваться.

Для защиты энергообъектов применяются молниеотводов с опорными конструкциями из дерева, железобетона и металла. Стержневые громоотводы на деревянных опорах чаще всего используются для обустройства молниезащиты энергообъектов подстанций с рабочим напряжением порядка 20...35 кВ. Данный тип молниеотводов имеет высоту до 25 метров и состоит из деревянной опоры (поз. 1) и железобетонных приставок (поз. 2).

На Рис. 2 продемонстрированы классические конструкции громоотводов с деревянными опорными элементами. При высоте молниеотвода свыше 12 метров деревянные опоры имеют составную конструкцию. Для изготовления стоек применяется хвойные породы дерева: сосна, ель, пихта, лиственница с диметром ствола в верхней части более 120 мм. Для продления срока службы опоры обрабатываются специальными составами с антисептирующими свойствами. Особой долговечностью отличаются опоры из лиственницы: таёжная древесина зимней рубки практически не подвержена гниению и может использоваться без дополнительной обработки.

Рис. 2. Конструкции стандартных молниеотводов с деревянными опорами и приставками из железобетона (1 – стойки из дерева; 2 – приставки из железобетона; 3 – молниеприемники).

Для изготовления молниеприемников (поз. 3) применяется сортовой прокат любого профиля, который имеет поперечное сечение более 100 мм2. Рабочая часть молниеприёмника имеет высоту не более 2 500 мм (от места крепления к опоре и верха). Если для молниеприёмника используются металлические трубы – верхний торец трубы наглухо заваривается или закрывается пробкой из металла.

На Рис. 3. показана схема закрепления трубчатого молниеприёмника на деревянную стойку. Для исключения коррозии необходимо все металлические части громоотвода окрашивать защитными красками или применять оцинкованные материалы.

Рис. 3. Способы крепления элементов молниеприемника к деревянной опоре молниеотвода (1 –труба 3/4"; 2 – металлическая скоба; 3 – токоотвод из кругляка; 4 – держатель; 5 – шайба).

Стержневые молниеотводы, смонтированные на деревянные опоры, оснащаются молниеприёмниками различного профиля. Для безопасного пропускания импульсных токов рекомендуется изготавливать молниеприемники из стального проката, который имеет диаметр более 6 мм (круглые стальные прутки) или толщину более 4 мм (угловая или полосовая сталь с поперечным сечением свыше 48 мм2). Крепление тоководов к деревянным опорным стойкам осуществляется посредством специальных скоб. Отдельные части токоотвода соединяются с помощью сварки. Аналогичным способом выполняется соединение токоотвода с молниеприёмником и заземляющим устройством.

Установка молниеотводов на деревянных опорах с использованием деревянных приставок оказалась неэффективной. В песчаных и суглинистых грунтах деревянные части быстро приходили в негодность. Поэтому в настоящее время рекомендуются только железобетонные приставки: прочные и надёжные они отличаются большим сроком службы в сложных условиях. Стержневые громоотводы высотой до 12 метров монтируются на одну железобетонную приставку, а молниеотводы высотой свыше 12 метров устанавливаются при помощи двух приставок из высокопрочного железобетона.

Для создания молниезащиты энергообъектов электрических подстанций (6-35 кВ) применяются стандартные молниеотводы, размещённые на деревянных стойках с приставками из бетона не меньше М 200 и стальной арматуры (СтЗ, Ст5). В поперечном сечении приставки могут иметь форму прямоугольника, круга, трапеции, двутавра или быть многогранными. Соединение железобетонных приставок с деревянными стойками выполняется с использованием скоб с болтами или проволочных бандажей. Опоры заглубляются в землю на глубину 2 000 ...2 500 мм.

Заземляющие устройства для молниеприемников на деревянных стойках выполняются из высококачественных конструкционных сталей. Стандартами установлены следующие размеры минимального сечения (толщины) заземлителей:

Чаще всего для изготовления заземляющих устройств применяются следующие типы материалов:

  • Полосовая сталь толщин 4 мм, ширина 20-40 мм.
  • Уголковая сталь марки Ст5 и Ст6.
  • Стальные трубы диаметром от 50 ...до 80 мм.

Молниеотводы стержневого типа, установленные на ж/б опоры, обладают прочной железобетонной конструкцией и оснащаются металлическим молниеприемником. Ранее использовались стандартные молниеотводы высотой до 16 метров на стойках из сборных ж/б изделий (Рис. 4). Для изготовления 12-ти метровых стоек использовался металлический прокат в форме шестигранника. В верхней части опоры приваривались металлические плиты, предназначенные для размещения молниеприемников круглого сечения, изготовленных из стальных труб. Для защиты от коррозионных процессов молниеприемники покрывались специальной краской или оцинковывались.

Рис. 4. Конструкции стержневых молниеотводов на сборных ж/б опорах (14 ...22 метра)

При высоте опор более 18 метров используются стандартные 12-ти метровые стойки, присоединяемые к железобетонными приставкам (7,5 м). В точках контакта стоек железобетонных опор с приставками к металлической арматуре привариваются стальные плиты. При помощи этих плит производится скрепление стоек с железобетонными приставками. Через отверстия приставки и стойки (Рис. 4) пропускается сквозной болт, который служит монтажным приспособлением и обеспечивает безопасную установку стойки опоры на железобетонные приставки. В настоящее время для стержневых молниеотводов на железобетонных опорах используются унифицированные изделия из стандартного железобетона, которые специально предназначены для установки опор высоковольтных ЛЭП (Рис. 5).

Рис. 5. Конструкции молниеотводов стержневого типа на железобетонных опорах (а – опоры изготовлены из вибробетона; б - для изготовления опор использован центрифугированный высокопрочный бетон).

Молниеотвод без прожекторной площадки (а):

2 – железобетонный подпятник.
3 – оголовок металлический.


Молниеотвод оснащённый прожекторной площадкой (б):
1 – несущая конструкция железобетонной стойки.
2 – железобетонный подпятник.
3 – оголовок металлический.
4 – конструктивный крепёжный элемент.
5 – металлическая часть стойки.
6 – металлический молниеприемник.
7 – площадка с осветительной аппаратурой.
8 – части ограждения прожекторной площадки.
9 – металлическая лестница.
10 – элементы крепления лестницы.

Железобетонные стойки изготавливаются из высокопрочного бетона марки М-300 и выше с металлической арматурой из стали марки СтЗ и Ст5. Для снижения веса стойки опоры внутренняя часть выполнялась полой. Металлическая арматура, расположенная внутри железобетонных стоек и приставок, представляет собой цельную конструкцию и выполняет функции токоотвода. В нижней части стойки (2,5...3 метра от нижнего конца стойки) делается металлический вывод, присоединённый к металлической арматуре. Данный элемент предназначен для соединения металлической арматуры и заземлителя громоотвода. Заземляющие устройства железобетонных молниеотводов стрежневого типа аналогичны заземлителям молниеотводов на деревянных опорах.

Для комплексной и надежной защиты подстанций от прямых попаданий молнии используются стержневые молниеотводы с удлиненными стальными и железобетонными опорами (до 40 м). На электроподстанциях необходимо обеспечить равномерное и достаточное освещение ОРУ и прилегающей территории. Для этого на их территории монтируются осветительные прожектора, размещенные на высоте порядка 10...15 метров. На Рис. 6 показаны громоотводы стержневого типа на железобетонных опорах с прожекторной площадкой (а) и без неё (б).

Стержневые молниеотводы на железобетонных опорах имеют несущую конструкцию на основе полой железобетонной стойки конусообразной формы. В нижней части диаметр стойки равен 800 мм, в верхней части он составляет 500 мм. В качестве токоотвода используется стальная арматура. На верхнем торце стойки устанавливается оголовок (3) и металлическая стойка (5), скреплённые при помощи крепёжного элемента (4). Металлическая стойка изготавливается в форме решётчатой конструкции из стальных уголков (36*4 ...50*5 мм). Длина молниеприемника (6) составляет 5 710 мм; диаметр в верхней части 26 мм. На отметке 710 мм молниеприёмник приварен к стойке. Для повышения общей жесткости молниеприёмника на длине 2 000 мм от верней части опоры к наружной поверхности молниеприёмника по окружности приварены металлические полосы (50*6 мм).

Установка в грунт производится на отметке 3 300 мм: в нижней части опоры закрепляется подпятник (2), закрывающий полую часть. На уровне 200 мм от поверхности земли закрепляется металлический элемент, соединённый с арматурой железобетонной стойки. Данный конструктивный элемент служит в качестве звена, соединяющего молниеотвод и заземляющее устройство.На Рис. 6 (б) показан стержневой молниеотвод с железобетонной опорой и прожекторной площадкой (7).

Конструкция молниеприёмника, железобетонной и металлической стойки (5) аналогичны молниеотводу без прожекторной площадки. Но в отличие от последней, имеется площадка для установки осветительной аппаратуры (7), металлическое ограждение (8) и лестница для обслуживающего персонала (9). Прожекторная площадка изготовлена из стального кругляка толщиной 12 мм. Лестница состоит из уголковой стали (40*4 мм и 50*4 мм), для ступеней использован круглый стальной прокат диаметром 16 мм. Ограждение площадки сформировано из уголков размером 50*4 мм и круглой стали диаметром 20 мм. Железобетонные опоры размещены на глубине 3 500 мм.

Молниеотводы на металлических опорах нашли широкое распространение для защиты электрических подстанций. Основные конструкционные элементы выполняются из высокопрочного стального проката: уголка и полос. Для защиты коррозии наружные металлические поверхности покрываются двумя слоями защитного лака с алюминиевой пудрой (примерно 20%). Молниеотводы стержневого типа размещают отдельно (с собственной системой заземления) или на конструкциях открытых распределительных устройств с соединением с общей системой заземления.

Практический опыт эксплуатации стержневых молниеотводов, размещенных на крышах зданий и сооружений, показал неэффективность подобных решений. Данные конструкции приводят к ускоренному износу кровельных материалов и требуют дополнительных затрат при проведении сервисных и ремонтных работ. В этой связи в настоящее время не установк стержневых молниеприемников на крышах зданий не выполняется.

Рис. 7. Молниеотводы стержневого типа, размещённые на металлических опорах: а – молниеотвод тросовой конструкции; б – несущая конструкция стержневого молниеотвода.

На рис. 7 показаны несущие конструкции стандартных молниеотводов, собранные из отдельных 5-метровых секций. Размерный ряд молниеотводов включает несколько видов: от 10-метровой конструкции (2 секции) до 50-метровой конструкции, в состав которой входит металлический молниеприёмник. Как правило при установке стержневого молниеотвода на нем выполняют площадки для установки освещения. Сейчас применяются стержневые молниеотводы на металлических опорах двух видов: с прожекторной площадкой и без прожекторной площадки.

На Рис. 8 показаны типовые конструкции молниеотводов стержневого типа без прожекторной площадки (а) и с площадкой для размещения прожекторного оборудования (б). Для несущей конструкции молниеотвода без прожекторной площадки применяется высокопрочный стальной прокат с размером уголка от 50*4 до 80*6 мм. Тросостойка (поз. 2) собрана из угловой стали 36*4...50*5 мм. Пятиметровый молниеприемник (поз. 3) изготовлен из круглого стального стержня, диаметр которого составляет 24 мм. В своей нижней части молниеприемник имеет рёбра жесткости (стальные полосы 50*4 мм, приваренные под углом 120° по всей окружности).

Для несущей конструкции стрежневого молниеотвода, имеющего прожекторную площадку, использована угловая сталь, с размером сторон от 65 до 110 мм и толщиной металла 5...8 мм. Из угловой стали 36*4...50*5 мм изготовлена металлическая тросостойка (поз. 2). Пятиметровый молниеприемник (поз. 3) имеет одинаковую конструкцию для стержневых молниеотводов обоих типов (Рис. 8а и Рис.8б). Прожекторная площадка (поз. 4) изготовлена из стального кругляка диаметром 12 мм.

Для металлического ограждения прожекторной площадки (поз. 5) использованы стальные уголки 50*4 мм и круглый прокат диаметром 20 мм. Металлическая лестница (поз. 6) изготовлена из угловой стали (40*4 и 50*4). Её ступени выполнены из кругляка диаметром 16 мм. Одиночные стержневые молниеотводы на металлических опорах всегда монтируются на прочных ж/б фундаментах. В качестве токоотводов применяются несущие стальные конструкции.

Для полноценной защиты энергообъектов современных подстанций используются молниеотводы (громоотводы) с несущими элементами из стального проката (уголки и полосы). Чаще всего конструкция громоотвода состоит из цельнотянутой стальной трубы или более сложной системы из нескольких труб различного диаметра. При высоте молниеотвода свыше пяти метров его основание выполняется в виде решётчатой конструкции из стальных уголков.

Рис. 8. Молниезащита электрических подстанций. Стержневые молниеотводы с металлическими опорами.

Соединение стержневых молниеотводов к конструкциям ОРУ производится разъёмными (хомуты и прочие крепежные элементы) и неразъёмными способами (сварные соединения).

Металлические конструкции современных молниеотводов, используемых для создания комплексной молниезащиты электрических подстанций и других энергообъектов, эффективно выполняют функции токоотводов. Как правило, молниеприёмники громоотводов монтируют на крышах зданий и строений. Чаще всего применяются сетчатые молниеприёмники: металлические сетки эффективной площадью до 150 квадратных метров.

Для изготовления сетки используются стальные прутки толщиной от шести до семи миллиметров. Для обеспечения свободного стока дождя и снега с поверхности кровли молниеприёмники сетчатого типа укладывают между стяжкой крыши и слоями защитной гидроизоляции и теплоизоляции. На Рис. 9. показаны типовые схемы сетчатых молниеприёмников. Для изготовления тоководов применяется стальной прокат в виде прутьев (толщиной от 6 мм) и полос (минимальное сечение 48 мм2 и толщина более четырёх миллиметров).

Рис. 9. Конструкции молниеприемников сетчатого типа (указаны размеры для объектов II категории; размеры в скобках для объектов III категории)

Если система молниезащиты установлена на здании с металлической крышей, то сами листы будут служить в качестве молниеприёмников.
Для подключения токоотводов к листам металлической кровли применяются специальные прижимающие устройства (Рис. 10).

Рис. 10. Конструкция зажима для присоединения молниеотвода к кровле из металлических листов:

Н открытых электрических подстанциях молниеотводы стержневого типа устанавливаются непосредственно на ОРУ или рядом с силовым оборудованием. В первом случае для заземления молниеотводов они соединяются с заземляющим устройством ОРУ, а во втором случае молниеприемники имеют собственное заземление, не связанное с контуром заземления ОРУ.

Заземляющие устройства на электрических подстанциях предназначены для следующих целей:

  • Создание безопасных условий для обслуживающего персонала (защитное заземление).
  • Присоединение нейтрального провода генераторов и трансформаторов (защитное рабочее заземление).
  • Подключение технических средств грозозащиты (разрядников, молниеотводов, громоотводов).

С вышеперечисленными функциями успешно справляется общее заземляющее устройство, характеристики которого подбираются в соответствии с наиболее строгими требованиям. На энергообъектах подстанций защитное заземление является приоритетным по отношению к другим видам заземляющих устройств. Оно полностью удовлетворяет актуальным требованиям к системам грозозащиты и обеспечивает безопасные условия работы для технического персонала энергообъектов подстанций.

Обслуживающий технический персонал электрических подстанций может подвергнуться опасности в случае повреждения защитной изоляции, при этом возникает короткое замыкание, ток которого (Iкз), проходит через заземляющее устройство. На Рис. 11 в виде схемы показан масляный выключатель с металлическим баком, присоединённый к заземляющему устройству (сопротивление заземлителя равняется Ra).


1 – кривая распределения разности потенциалов; 2 – кривая распределения значений напряжения прикосновения.

При пробое изоляции масляного выключателя через элементы заземляющего устройства пойдёт ток Iз. В радиусе 20 м от заземляющего устройства каждая точка будет иметь разность потенциалов. Кривая 1 наглядно демонстрирует распределение разности потенциалов на поверхности земли. На корпусе бака выключателя и на заземляющем устройстве будет потенциал:

Если человек прикоснётся к корпусу бака то на его руках будет потенциал бака и заземлителя, а ноги человека подвергнутся воздействию потенциала UH, величину которого можно определить по кривой 1. Поэтому, на тело человека будет оказывать влияние разность потенциалов UB–UH (напряжение прикосновения Uпр), которое рассчитывается по формуле:

Кривая 2 (Рис. 11) наглядно демонстрирует изменение величины напряжения прикосновения: с приближением к опасному участку уменьшается напряжение прикосновения. Если человек не дотрагивается до поверхности бака, а просто подходит к нему ближе, то его левая и правая нога имеют собственный потенциал – разность значений этих потенциалов именуется шаговым напряжением. Большое напряжение шага и прикосновения представляют серьёзную опасность для здоровья и жизни технического персонала электрических подстанций.

Если сопротивление заземляющего устройства уменьшается, то это приводит к снижению до безопасного уровня напряжений шага и прикосновения, что в свою очередь уменьшает вероятность поражения человека электрическим током.
В целях обеспечения для персонала подстанций безопасных условий предусмотрено нормирование предельных значений стационарного заземления энергообъектов:

  • Для оборудования с рабочим напряжением свыше 1 000 В (заземлённая нейтраль, ток однофазного КЗ более 0,5 кА) сопротивление заземляющего устройства не должно превышать 0,5 Ом.
  • Для оборудования с рабочим напряжением < 1 000 В (заземленная нейтраль, мощность генераторов и трансформаторов более 100 кВА) сопротивление ЗУ должно быть менее 4 Ом.
  • Для оборудования с рабочим напряжением менее 1 000 В (заземлённая нейтраль, мощность генераторов и трансформаторов не более 100 кВ*А) сопротивление заземляющего устройства должно быть не более 10 Ом.
  • Для энергообъектов с рабочим напряжением до 1 000 В, имеющих заземленную нейтраль, расчёт величины сопротивления заземления производится по формуле:

Для энергообъектов с рабочим напряжением свыше 1 000 В (незаземленная нейтраль) значение сопротивления заземления рассчитывается по формуле:

где R – максимальное значение сопротивления заземления, Ом;
I – суммарный ток замыкания на землю, А.

На энергообъектах с изолированной нейтралью, в которых отсутствует компенсация ёмкостного тока КЗ, значение емкостного тока достигает нескольких сотен ампер и может продолжаться в течение долгого времени. Величина полного сопротивления ЗУ не должна превышать 10 Ом.

Сопротивление заземления на энергообъектах, имеющих компенсацию емкостных токов рассчитывается по вышеприведённым формулам, однако расчетное значение тока замыкания на землю на 25 % превосходит величину номинального тока. Для тех заземляющих устройств, которые не снабжены тококомпенсирующей аппаратурой, для расчетных целей принимается величина остаточного тока замыкания на землю (не менее 30 А).

Нормированная величина сопротивления заземляющих устройств вполне удовлетворяет действующим требованиям к системам рабочего и грозозащитного заземления. На электрических подстанциях для всех энергообъектов, которые питаются переменным или постоянным током с рабочим напряжением свыше 500 В, в обязательном порядке выполняется защитное заземление.

На промышленных энергообъектах с рабочим напряжением менее 500 В (кроме энергетического оборудования с переменным током не более 36 В) монтаж защитного заземления производится в следующих случаях:

  • В помещениях с повышенным уровнем опасности.
  • В особо опасных помещениях.
  • При размещении оборудования вне помещений.
  • На взрывоопасных энергообъектах с напряжением не более 36 В.

Конструкция заземляющих устройств для защиты электрических подстанций состоит из системы стальных электродов (L ≤ 5 м), находящихся в грунте в вертикальном положении. Верхние части заземлителей объединены металлическими полосами, образующими сетчатую систему. Число электродов и размер ячеек сетки определяется расчетным методом. Таким образом, значение стационарного заземления электрических подстанций зависит от:

  • Геометрических размеров заземляющих устройств.
  • Величины удельного сопротивления грунта.

Любой грунт, находящийся в сухом состоянии, обладает повышенным значением сопротивления растеканию тока. При высокой влажности грунта за счёт электрохимических реакций солей и кислот возникают электролиты, обуславливающие повышенную электропроводимость грунта, которая напрямую связана с влагоёмкостью почвы. Приближенные значения удельных сопротивлений типичных грунтов приведены в Таблице 1:

Таблица 1. Удельные сопротивления грунта.

При расчетах характеристик заземляющих устройств следует обращать внимание на взаимосвязь между удельным сопротивлением грунта и временем года. При измерениях удельного сопротивления грунта в зимнее время, необходимо применять сезонный коэффициент k. Для расчета заземления системы молниезащиты энергообъекта удельное сопротивление грунта также определяется с учетом сезонном коэффициента k, которые позволяет получить корректное значение удельного сопротивления.

Расчётное значение для сезонного коэффициента k приведено в Таблице 2 (зависит от влажности грунта):

Таблица 2. Значение сезонного коэффициента k в зависимости от влажности почвы

Стационарное сопротивление заземляющего электрода RD, находящегося в грунте в вертикальном положении (сопротивление растекания тока), определяется по следующей формуле:

где ρ – значение удельного сопротивления грунта, Ом-м.
L – длина заземляющего электрода, м.
d – внешний диаметр горизонтального электрода, м.

Стационарное сопротивление для горизонтального заземлителя на расчётной глубине рассчитывается по нижеприведённой формуле:

где L – длина горизонтального заземляющего электрода, м.
ρ – удельное сопротивление почвы, Ом-м.
d – диаметр горизонтального электрода, м.
t – глубина погружения заземляющего электрода в почву, м.

Согласно вышеприведённым формулам, у одиночного вертикального стержня (L=2,5...3.0 метра) в суглинистой почве (ρ =100 Ом*м) будет сопротивление около 30 Ом. Металлическая горизонтальная полоса (L=5,0 метра), находящаяся на глубине около 70 см, будет иметь стационарное сопротивление порядка 25 Ом. Расчетные значения показывают, что одиночные заземляющие устройства совершенно не удовлетворяют требованиям, которые предъявляются к сопротивлению заземляющих устройств, входящих в систему молниезащиты электрических подстанций.

Поэтому, для обустройства эффективной системы заземления промышленных энергообъектов применяются заземляющие устройства, состоящие из множества горизонтальных и вертикальных заземлителей. При создании системы заземления необходимо учитывать эффект взаимного экранирования – при небольшом расстоянии между соседними электродами возрастает сопротивление отдельно взятого заземлителя.

При движении тока по заземляющему электроду вокруг одиночного электрода возникают линии тока, обладающие правильной и равномерной структурой. В заземляющей системе, где имеется множество вертикальных или горизонтальных электродов, образуются неоднородности, связанные с взаимным влиянием линий тока соседних электродов (Рис. 12).

Рис. 12. Линии тока в заземлителе сложной формы при небольшом расстоянии между смежными электродами

Для корректного определения значения сопротивления электрода в заземляющем устройстве сложной формы (при наличии эффекта взаимного экранирования заземляющих электродов) применяется коэффициент использования заземлителя. Данный коэффициент меньше единицы и непосредственно связан с конструкцией электродов. В Таблице 3 представлены значения коэффициента использования Чтр для заземлителей трубчатой формы (электроды расположены в ряд; влияние связывающей полосы не учитывается).

Таблица 3. Определение коэффициента использования Чтр в зависимости от количества металлических труб и отношения расстояния между данными трубами к их длине.

В Таблице 4 представлены значения коэффициента использования ηn для заземляющих устройств трубчатой формы (электроды размещены в ряд и объединены между собой стальной полосой).


Таблица 4. Определение коэффициента использования трубчатых заземлителей.

Для создания эффективных заземлителей, предназначенных для защиты электрических подстанций, применяются искусственные и естественные заземляющие устройства, эксплуатирующиеся совместно с молниеотводами (громоотводами). Искусственные конструкции представляют собой металлическую сетку из стальных полос, расположенных в горизонтальной плоскости параллельно и перпендикулярно друг другу. При помощи полос все вертикальные заземляющие электроды соединяются в единый контур системы заземления энергообъекта.

Расчет сложного контура является трудоёмкой работой, требующей проведения большого объёма вычислительных операций. Для упрощения расчётов применяется более простая формула:

Значения коэффициента А, определяемые в зависимости от соотношения lf\/S, представлены таблице 5:

Таблица 5. Значения коэффициента А.

Эквивалентное удельное сопротивление почвы ρэ рассчитывается по кривым, приведенным на Рис. 13. Кривые зависимости, определяющие эквивалентное удельное сопротивление ρэ, соотнесённые к удельному сопротивлению 2-го слоя грунта ρг зависят от геометрических размеров и формы заземляющего контура, а также от глубины размещения электродов в грунте. Представленные кривые построены для различных соотношений между ρi и ρa.

Исходя из фактических размеров заземляющего устройства и метода размещение его в грунте, по кривым из Рис. 13 можно рассчитать эквивалентные удельные сопротивления ρэ. Эти кривые построены для различных типов заземляющих контуров, с учётом влияния неоднородности грунта на полное сопротивление заземлителя и действительное напряжение прикосновения. В качестве естественных заземляющих устройств для энергообъектов электрических подстанций можно привести:

  • Системы заземлений опор ЛЭП, подключенные с помощью троса к заземлению подстанции.
  • Металлические оболочки подземных кабелей.
  • Металлические трубопроводы различного назначения.

Рис. 13. Расчёт относительного эквивалентного удельного сопротивления с учётом неоднородности грунта в точке заземления молниеотвода (громоотвода).

Выполненные расчёты показали, что обустройство защитных заземлений, обладающих минимальным сопротивлением в 0,5 Ом, в отдельных случаях связано с известными сложностями (большие значения удельного сопротивления грунта, незначительная площадь электрических подстанций и пр.), однако в других случаях можно обеспечить безопасные напряжения на электрооборудовании с заземленной нейтралью при сопротивлении, большем, чем 0,5 Ом.

Данное обстоятельство позволяет сэкономить немалое количество дорогостоящего металла при монтаже систем заземления электрических подстанций. В настоящее время действуют нормы, устанавливающие предельно допустимое напряжение на заземляющем проводнике и величину напряжения прикосновения, связанные с длительностью воздействия тока КЗ, которая состоит из времени включения релейной защиты и времени срабатывания выключателя:

Таблица 6. Наибольшее допустимое напряжения прикосновения.

Предельно допустимое значение напряжения на заземлителе не должно быть более 10 000 В. При расчёте систем защитного заземления распределительного электрооборудования и трансформаторных подстанций, с рабочим напряжением более 1 000 В (глухозаземлённая нейтраль) можно руководствоваться актуальными нормами, регламентирующими максимальное допустимое напряжение на заземляющем проводнике и допустимое напряжение прикосновения, которые обеспечивают должный уровень безопасности технического персонала электрических подстанций.

Комплексное заземление энергообъектов электрических подстанций всегда удовлетворяет требованиям стандартов, имеющих отношение к рабочим заземлениям и к системам заземлений средств молниезащиты. Однако при объединение средств грозозащиты и защитных заземлений электрических подстанций следует помнить о следующих особенностях. Все защитные и рабочие заземляющие устройства рассчитаны для отвода токов промышленной частоты.

Сопротивление заземлителей является стационарной величиной, между тем через систему молниеотводов проходит импульсный ток молнии, который по своим вольт-амперным и частотным характеристикам в корне отличается от токов КЗ. При прохождении через заземляющий проводник импульсного тока молнии возникают экстремальные условия, которых не наблюдаются при прохождении тока 50 Гц. При отводе импульсных токов грозового разряда через заземляющее устройство рядом с поверхностью заземляющих электродов отмечается исключительно высокая напряженность электрического поля, которая легко пробивает слой грунта. Вокруг заземляющего проводника возникает токопроводящая зона искрения, приводящая к увеличению эффективного поперечного сечения электрода, за счёт которого снижается общее сопротивление заземлителя.

Однако максимальное снижения сопротивления за счет искрообразования отмечается только в тех случаях, когда заземляющие электроды обладают небольшими геометрическими размерами, а индуктивное сопротивление проводников не оказывает заметного влияния на процесс отвода тока молнии в грунт. Подобные заземлители относятся к сосредоточенным. Величина сопротивления сосредоточенных заземлителей при импульсных процессах намного меньше, чем при прохождении тока с промышленной частотой.

При значительной длине заземляющего устройства индуктивность проводника оказывает серьёзное влияние на процесс отвод импульсного тока молнии в грунт. Степень влияния индуктивности возрастает при уменьшении продолжительности импульса тока молнии, при снижении удельного сопротивления земли и при увеличении протяжённости заземляющих проводников.

При прохождении импульсного тока молнии через заземляющее устройство значительной протяженности последнее можно представить в виде проводника, состоящего из двух частей, разделённых индуктивным сопротивлением (Рис. 14). При моментальном увеличении силы тока грозового разряда (крутая характеристика фронтального импульса) индуктивность заземлителя будет замедлять движение тока в проводнике. Отдалённые части заземляющего устройства (отрезок Б-В) с запозданием включаются в процесс отвода токов импульсного перенапряжения в грунт и поэтому снижают общую эффективность заземлителя. Подобные заземляющие устройства называются протяжёнными.

Протяжённые заземлители характеризуются повышенным сопротивлением при прохождении импульсного тока грозового разряда, которое превышает величину сопротивления при прохождении по заземлителю токов с промышленной частотой. Поэтому штатные выносные заземляющие устройства электрических подстанций, которые устанавливаются в низменным местах (реки, озёра, болота) и обладают низким сопротивлением, совершенно не пригодны для отвода импульсных токов значительной мощности.

Для учёта изменений сопротивления заземляющих устройств в зависимости от линейных размеров заземлителей при прохождении через них импульсных грозовых токов применяется импульсный коэффициент Хи. Данный коэффициент представляет собой отношение импульсного сопротивления Zи к значению стационарного сопротивления R при прохождении по заземлителю токов промышленной частоты.

Рис. 14. Схема функционирования заземлителя протяженной конструкции при отводе грозового заряда в землю

Величину импульсного сопротивления Zи можно определить по формуле:

Коэффициент импульса заземлителя принимает различные значения (он может быть больше, меньше или равен единице) и зависит от того, какой процесс в проводнике при прохождении тока молнии проявляется в большей степени: искрообразование или индуктивное сопротивление. При значительном искрообразовании и слабой индуктивности заземляющего устройства (сосредоточенные заземлители) сопротивление проводника уменьшается, поэтому значение коэффициента импульса будет меньше единицы. При высокой индуктивности (протяженные заземляющие устройства) величина коэффициента импульса превышает единицу.

Если эффект искрообразования и величина текущей индуктивности гасят друг друга, тогда коэффициент импульса равняется единице. Значение импульсного коэффициента стационарных заземляющих устройств связано не только с их геометрией и линейными размерами, но и зависит от величины удельного сопротивления почвы ρ и мощности тока грозового разряда. На рис. 15 в виде кривых представлена зависимость импульсного коэффициента для вертикальных заземлителей от характеристики почвы ρ и параметров тока молнии.

Как видно из приведенных графиков, с возрастанием силы импульсного тока молнии, проходящего через заземляющий проводник и при увеличении удельного сопротивления почвы, отмечается снижение значений импульсного коэффициента. При значительных амплитудах грозовых токов возрастает их плотность, что обеспечивает условия для формирования и развития искровой зоны вокруг проводника, а также приводит к уменьшению его сопротивления.

Рис. 15. Определение импульсных коэффициентов для заземлителей вертикального типа.

При росте удельного сопротивления грунта происходит развитие искровой зоны, величина которой находится в прямой зависимости от пробивной напряженности грунта Епр. Минимальное значение Ещ встречается в грунтах, обладающих удельным сопротивлением ρ=500 Ом*м.

При продолжительности предразрядного времени порядка 3...5 мкс Ещ = 6...12 кВ/см. Следует помнить, что при прохождении импульсного тока грозового разряда через контур защитного заземления электрической подстанции, который имеет значительные линейные размеры, данный контур будет вести себя как протяжённое заземляющее устройство. В этом случае импульсное сопротивление может превысить значение стационарного сопротивления, вследствие преобладания индуктивности проводника над искровыми процессами.

Рис. 16 Значения импульсного и стационарного сопротивления заземляющего устройства электрической подстанции

На рис. 16 показано изменение значений импульсного и стационарного сопротивления заземляющего устройства электрической подстанции в зависимости от размеров заземляющего контура и удельного сопротивления почвы. Заземляющее устройство в виде металлической сетки общей площадью S = 6 400 м2 (сторона контура 80 м), включающее 16 вертикальных электродов (L = 8 метров), при удельном сопротивлении грунта вблизи электрической подстанции ρ = 400 Ом*м обладает стационарным сопротивлением R равным 2,2 Ом, а импульсное сопротивление в этом случае составляет Zи = 2,5 Ом (при мощности грозового импульса 100 кА и времени разряда τ=6 мкс).

Заземляющий контур с сеткой площадью S = 400 м2 (сторона контура 20 м), состоящий из 4 вертикальных электродов (L = 8 м) при величине удельного сопротивления грунта ρ = 400 Ом*м обладает сопротивлением R= 6,9 Ом и Zи=6,1 Ом. Если в первом примере (S = 6 400 м2) величина импульсного сопротивления превосходит стационарное, то во втором примере (S = 400 м2), значение стационарного заземления превышает значение импульсного заземления.

Исходя из Рис. 16 можно сделать вывод, при увеличении площади заземляющего контура, происходит заметное снижение обоих видов сопротивления: как импульсного, так и стационарного. В заземлителях сложной формы эффект взаимного экранирования проводников отмечается при протекании импульсных токов и токов промышленной частоты. Между тем коэффициент использования заземлителей сложной формы при прохождении через них импульсных грозовых токов имеет меньшее значение, чем при протекании токов промышленной частоты.

Таким образом, при монтаже стержневых молниеотводов на конструкциях ОРУ электрических подстанций, когда заземляющим устройством для молниеотвода (громоотвода) служит заземляющий контур энергообъекта, который имеет значительные геометрические размеры то подобное заземляющее устройство принято считать протяженным. При необходимости заземления отдельных молниеотводов стержневого типа производится обособленное заземление, которое не связано с общим заземляющим контуром подстанции.

В Таблице 7 приведены типовые конструкции заземляющих устройств, которые при минимальной металлоёмкости обеспечивают импульсное сопротивление 10 Ом при попадании грозового разряда с импульсом 100 кА в грунты, обладающие удельным сопротивлением ρ от 100 до 650 Ом*м.

Таблица 7. Конструктивные варианты заземляющих устройств.

Жителей городов мало волнует молниезащита и заземление, государство уже о них позаботилось, обязав проектировщиков и строителей предусмотреть соответствующие технические решения. Вопрос защиты от молний особо актуален для владельцев дач и загородных домов.

Делать молниезащиту или не делать – домовладелец решает сам. Однако сооружение заземления и надежного молниеотвода уменьшает опасность пожара в разы, позволяет защитить проводку, электроприборы и жизни обитателей дома.

Опасность разряда молнии

Облака представляют собой водяной пар или мелкие кристаллы льда. Они постоянно движутся, трутся о теплые струи воздуха и электризуются. Когда разность зарядов между ними достигает критического значения, происходит разряд. Это и есть молния.

Когда между облаком и землей проводимость наименьшая, то молния ударяет в землю, весь накопленный заряд стекает в нее. Затем и нужно заземление, чтобы забрать на себя энергию разряда.

Молния ударяет в самую высокую точку сооружения, проходя минимальное расстояние от облака до объекта. По сути, получается короткое замыкание, протекают гигантские токи, выделяется огромная энергия.

Если молниезащита отсутствует, то вся энергия молнии воспринимается зданием и растекается по токопроводящим конструкциям. Последствия такого удара – пожары, поражения людей, выход из строя электротехники.

Молниезащита забирает на себя энергию разряда и по токопроводу переправляет ее через заземлитель в землю, которая ее полностью поглощает. Поэтому молниеприемники (громоотводы) и прочие элементы молниезащиты выполняются из токопроводящих материалов с высокой проводимостью.

Типы защиты

По месту расположения молниезащита делится на внешнюю и внутреннюю. Внешняя защита по принципу действия подразделяется на пассивную и активную. Устройство молниезащиты пассивного типа включает три обязательных части:

  • молниеприемник;
  • токоотвод (токовод);
  • заземлитель.

В зависимости от строения крыши устанавливаются различные молниеотводы. В активной молниезащите на вершине стрежня или мачты находится ионизатор воздуха, который создает дополнительный заряд и привлекает, таким образом, молнию. Радиус действия такой защиты значительно больше пассивной, бывает достаточно одной мачты для защиты дома и участка.

Внутренняя защита от молний

Особенно нужна молниезащита внутри зданий с большим количеством компьютерного оборудованием. Внутренняя молниезащита представляет собой комплекс устройств защиты от импульсных перенапряжений (УЗИП).

При попадании разряда молнии на линии электрической сети в ней возникают огромные кратковременные перенапряжения. Чтобы погасить их параллельно с проводниками фаза и ноль, фаза и земля, ноль и земля устанавливаются УЗИП. Это очень быстродействующие приборы со временем срабатывания от 100 нс до 5 нс.

Схема установки и характеристики УЗИП зависят от того, имеется внешняя молниезащита или нет. Они различаются конструкцией, представляют собой воздушные или газовые разрядники, варисторы, но суть одна.

При возникновении кратковременного перенапряжения шунтируют защищаемую цепь и всю энергию разряда принимают на себя. Но есть приборы и с последовательным соединением. Принцип действия тот же, при возникновении перенапряжений все падение напряжения происходит на устройстве.

УЗИП делятся на три класса. Устройства первого класса устанавливаются в главном распределительном щите. УЗИП снижает напряжение до 4 кВ. Приборы второго класса устанавливают перед вводным автоматом квартирного или домового электрического щита и снижают напряжение до 2,5 кВ.

Устройства третьего класса устанавливают в непосредственной близости от защищаемых приборов (компьютеры, серверы и подобные им устройства). Они обеспечивают снижение до 1,5 кВ. Этого снижения напряжения достаточно для большинства оборудования, особенно если продолжительность перенапряжения краткая. рекомендуется поручить специалистам.

Естественные молниеотводы

Кроме этого имеется естественные молниеотводы. Наши предки вольно или невольно тоже имели хорошую молниезащиту. Традиция высаживать около дома березу спасла не одну жизнь и не один дом. Береза, несмотря на то что она не очень хорошо проводит электрический ток, является замечательным молниеотводом и одновременно обеспечивает заземление.

А все из-за мощной корневой системы, которая расползается почти на поверхности почвы. За счет этого энергия молнии при попадании в дерево растекается по большой площади и благополучно уходит в землю. Сосна и ель в качестве молниезащиты даже лучше, но не сравнятся с березой из-за хрупкости древесины.

Конструкция молниеотводов

В общем случае, молниезащита зданий и сооружений представляет собой комплекс из молниеприемника, токопровода и заземлителя. Молниеприемники применяются в виде стержня, сети и натянутого троса.

Стержневой молниеприемник

Конструкция стержневой системы проста. Штырь молниезащиты соединяется с помощью токоотвода с металлическими штырями в грунте, обеспечивающими заземление.

Стержни (штыри) изготавливают из оцинкованной или омедненной стали высотой от полуметра до 5-7 метров. Диаметр зависит от высоты стержня и климатического района расположения. Омедненный стержень имеет лучшую электрическую проводимость по сравнению с оцинкованной сталью.

В зависимости от конфигурации здания и его кровли на крыше устанавливаются несколько стержней. Они крепятся к коньку, фронтону, вентиляционным колодцам и прочим капитальным конструкциям.

Зона влияния молниезащиты представляет собой конус с вершиной на острие молниеотвода. Стержни располагают таким образом, чтобы зоны их действия перекрывали все здание. Для стержневых молниеприемников правило защитного конуса с 90 градусной вершиной справедливо для стержня высотой до 15 м. Чем выше молниеприемник, тем меньше угол вершины защитного конуса.

Сетевой молниеприемник

Молниеприемная сеть представляет собой оцинкованный или омедненный провод диаметром 8-10 мм, покрывающий в виде сети всю крышу здания. Обычно молниезащиту в виде сетки устанавливают на плоские кровли.

Сеть формируется за счет перпендикулярно расположенных относительно друг друга проводов с определенным шагом. При помощи держателей провода соединяются между собой и крепятся к кровле. Иногда, вместо провода используют стальную полосу.

Провод или полоса обязательно должны быть соединены с заземлением. Для соединения применяют сварку, но можно его делать специальными зажимами. Зажимы для соединения электродов заземления с проводниками часто идут в комплекте, если приобретать все детали в специализированном магазине.

Тросовый молниеприемник

Тросовые молниеприемники представляют собой стальной или алюминиевый трос, натянутый между двумя мачтами. Мачты соединены с токоотводов, а тот в свою очередь с заземлением. Представьте, что трос является коньком двускатной крыши.

Тогда область под этой виртуальной крышей будет находиться под защитой от ударов молний. Таким образом, натянув над крышей дома и прилегающей территорией несколько тросов можно обеспечить надежную молниезащиту.

Токопроводы представляют собой оцинкованные или омедненные стальные провода диаметром 10 мм, часто применяют и стальные полосы сечением 40х4 мм покрытые цинком или медью. Они соединяют молниеприемники с заземлителем.

В комплект молниезащиты входят и держатели молниеприемников и токопроводов. Они выполняются из стальных и пластиковых материалов, имеют многообразные конструкции.

Расположение заземлителей

Заземление молниеотводов, в самом простом случае, представляет собой три трехметровых металлических стержня вбитых в землю на расстоянии 5 метров друг от друга. Между собой заземляющие штыри соединяются стальной полосой расположенной на глубине 50-70 см под землей.

Соединение производится методом сварки, которые затем покрываются антикоррозионным покрытием. В местах расположения штырей на поверхность должны выходить стержни для того, чтобы можно было присоединить токопроводы.

Заземление должно располагаться на расстоянии не менее 1 метра от сооружения и более 5 метров от крыльца, дорожек и других мест постоянного хождения людей. Это необходимо для того, чтобы человек не попал под шаговое напряжение, образующееся при растекании заряда молнии от заземлителя по земле.

Если здание имеет массивный железобетонный фундамент, то заземление молниезащиты рекомендуется располагать подальше от него и монтировать внутреннюю молниезащиту в виде грозоразрядников для защиты аппаратуры. Это необходимо из-за заброса части заряда на фундамент и все элементы, имеющие с ним хороший контакт, в первую очередь корпуса оборудования, инженерные коммуникации.

Требования к сопротивлению

Контур заземления дома должен быть соединен с заземлением молниезащиты через стальные проводники, которые сваривают между собой. Сопротивление заземления должно быть как можно меньше. Нормативное значение составляет 10 Ом для грунтов с удельным сопротивлением до 500 Ом, но при больших его значениях допускается иное сопротивление, которое вычисляется по формуле:

Rз – сопротивление заземлителя, а ρ – удельное сопротивление грунта.

Для достижения нормативного значения иногда заменяется грунт. Выкапывается траншея, закладывается новый грунт с соответствующими характеристиками, и после этого монтируется заземление. Другой вариант заключается в добавлении химических реагентов.

После установки заземления молниезащиты необходимо регулярно замерять его сопротивление. Если оно выходит за пределы нормативного значения, то придется добавить штырь или заменить на новый.

При этом нужно уделять пристальное внимание соединениям между элементами устройства. Использование нержавеющих материалов значительно увеличит срок службы заземлителя.

В современных домах и производственных помещениях без качественной защиты от молнии практически не обойтись – и потому устройство молниеотвода не будет лишним знать каждому, кто так или иначе связан со строительным делом. Впрочем, данная информация не повредит и «обычному» человеку.

Основы работы молниеотвода, общее устройство молниеотвода

Молниеотвод - устройство, устанавливаемое на зданиях и сооружениях и служащее для защиты от удара молнии.

Даже не в столь далекие времена гроза и молния считались непредотвратимым стихийным явлением, от которого уберечься можно было лишь по чистой случайности. Со временем точка зрения на молнию, конечно же, изменилась. Ученые давно проникли в физическую суть молнии. Но еще раньше люди заметили, что молния ударяет не куда угодно, а выбирает для этого наиболее высокие места и предметы. Вполне логично было предположить, что можно искусственно предоставить ей такую возможность – бить в самую высокую точку, при этом обезопасив близлежащие строения и, конечно же, людей.
Проблемой защиты от молнии занимались многие ученые. Но лишь известный русский ученый Михаил Ломоносов добился на этом поприще действительно выдающихся успехов. В сотрудничестве с другими видными учеными мужами своего времени ему удалось сконструировать эффективный громоотвод, принцип действия которого работает и по сей день.
Как правило, классический громоотвод (он же молниеотвод) состоит всего из двух частей:

  • Приемник молний, который собой представляет металлический стержень, укрепленный как можно выше;
  • Провод, по которому ток от молнии поступает в заземлительный контур.

Так как планета Земля в любом случае будет больше любого расположенного на ней объекта, то все миллионы вольт, которые принимает на себя громоотвод, уходят именно в землю, не причиняя вреда животными и людям, не нанося ущерба постройкам.

Какие бывают молниеотводы: конструктивные разновидности

Молния действует предсказуемо, несмотря даже на полную непредсказуемость этого природного явления – она не выбирает цель, а бьет в самый высокий предмет.

В целом, громоотвод, как уже было отмечено, собой в конструктивном плане представляет довольно нехитрое устройство. Однако важно учитывать некоторые тонкости для того, чтобы он работал корректно и обеспечивал хорошую защиту.
Так железный приемник молний следует поднять над крышей самого высокого поблизости строения на несколько метров. Его укрепить можно и на самой постройке, и на отдельном шесте неподалеку.
Токоотвод собой представляет довольно толстую жилу, которая может быть изготовлена как из меди, так и из железа. Назначение его – передача тока от молниевого приемника к заземлительному контуру.
Контур заземления. Он обеспечивает передачу тока непосредственно в землю по тоководу.
Все без исключения громоотводы работают именно по такому принципу. Причем, токоотвод и контур заземления всегда остаются без значительных изменений. Говоря о разновидностях громоотвода, как правило, подразумевают различия в молниевом приемнике. Именно об этом и пойдет речь в остальной части данной статьи.

Итак, какого же типа бывают приемники молний?

Особенности конструкции стержневого молниеотвода

Самый простой и потому некогда (да и сейчас тоже) вид молниеприемника – стержневой. Такой установлен во многих частных секторах. Как правило, это обычная металлическая мачта, которая метра на два возвышается над крышей дома. Впрочем, как уже говорилось, можно смонтировать громоотвод и на отдельной мачте, неподалеку от дома.

Обратите внимание! Если установить приемник молний на металлическом шесте, то шест будет одновременно выступать и в виде токовода. К контуру заземления его можно будет прикрепить при помощи обычной сварки.

Учитывая то, что грозы нередко сопровождаются еще и довольно сильными ветрами, необходимо максимально прочно укрепить мачту. В противном случае увесистая конструкция может просто упасть – и нанести ущерб постройкам или даже здоровью человека.

Чем примечателен линейный громоотвод

Другая разновидность громоотвода – это линейный. Еще он носит название тросового. Конструктивно он устроен несколько сложнее, чем мачтовый, о котором говорилось выше. Собственно говоря, это трос из металла, растянутый между двумя мачтами.

Сам трос при этом соединяется с контуром заземления также при помощи токоотвода в виде медной или стальной толстой жилы. Жилу при этом важно действительно брать достаточно крупного сечения. В противном случае она может просто оплавиться из-за теплового действия электрического тока.
Считается, что такой вид молниеотвода способен уловить больше молний, благодаря чему обеспечивается большая безопасность даже во время самой интенсивной грозы.

Особенности сетчатого молниеприемника и громоотвода, основанного на его использовании

Как можно понять из одного только названия, такого вида приемник молний представляет собой специальную сетку, которая организуется из металлических жил. В свою очередь, такая сетка располагается сверху крыши и берет на себя все грозовые удары.
Ну а дальше все происходит по же привычной схеме: «пойманная» молния пропускает весь свой ток через толстый токовод прямо в контур заземления, где заряд благополучно гасится.
Благодаря тому, что сетка имеет довольно большую площадь, она способна уловить еще больше молний и не допустить попадания ни одной из них в металлические части строений.
Некоторые домовладельцы применяют даже одновременно несколько типов громоотводов. Впрочем, как правило, бывает вполне достаточно и одного. Главное – чтобы было все выполнено правильно во время сборки и монтажа конструкции.

Особенности монтажа молниеотвода и заземлительного контура

Контур заземления в случае с молниеотводами устроен примерно тем же самым образом, что и заземлительный контур для самого дома. Но нужно иметь в виду, что эти два контура между собой пересекаться ни в коем случае не должны. Это – отдельно функционирующие друг от друга элементы.
Если не внять этому правило, то можно после первого же удара грозы получить сильнейший разряд в розетки и в электрооборудование – и в итоге потерять не только дорогостоящую бытовую технику, а, быть может, и сам дом. Так что для заземления дома и для заземления громоотвода нужно предусмотреть два разных независимых контура.
Впрочем, процесс изготовления контура для молниевого отвода точно такой же, за некоторыми отличиями, которые необходимо принимать во внимание:

  • Заземляющие электроды не должны иметь величину менее трех метров;
  • При этом сами электроды должны иметь поперечное сечение не менее 2,5 см и быть выполнены в виде цельнометаллического прута;
  • Контур заземления должен иметь только треугольную форму – это очень важно!
  • Причем, между вершинами треугольника должно обеспечиваться расстояние от трех метров – собственно, это требование и обеспечивается через длину электродов;
  • Шина, при помощи которой электроды объединяются в контур, обязана быть в диаметре не менее 1,2 см. Если же в качестве шины применяется полоска из металла, то ее параметры должны быть следующими: 50 х 6 мм;
  • Сварные соединения должны быть выполнены максимально качественно – чтобы из-за нагревания они не могли разойтись

Приемник молнии – это железный элемент, поднимаемый на несколько метров выше крыши строения. Размещаться он может как непосредственно на самом строении, так и рядом с ним, неподалеку.

При этом важно обеспечить глубину залегания верхней части контура не менее 50 – 80 см.

Каким образом заземление соединяется с токоприемником

Поперечное сечение жилы, из которой состоит токовод, не должно быть мене 6 миллиметров в случае применения цельной жилы. Если берется прут, то его диаметр должен быть не менее одного сантиметра.
Соединение шины с и приемником облегчается, если вся система изготовлена из стали. Тогда все соединения можно произвести при помощи сварки. Важна длина сварного соединения: провар должен иметь в длину не меньше 60 см. Если же речь идет о жиле, то в этом случае придется действовать при помощи специальных клемм, представляющих собой пластины со специальными ложбинками для кабеля.
Крепление токоотводящей жилы к стене дома можно осуществить пластиковыми клипсами. Можно также само провод поместить в короб из токоизолята.

Удар молнии в молниеприемник отводится специальным контуром заземления.

Егор Дмитриевич Петров, электрик: в случае, если в постройке имеется дымоход, вокруг него рекомендуется намотать несколько витков отводящей жилы и затем соединить ее с молниеотводом. В отдельной защите могут нуждаться и такие элементы кровли, как трубы, водосточные желоба – в том случае если они изготовлены из металла. В идеале вообще все металлические части крыши должны быть обеспечены молниеотводами, однако на практике это либо просто не осуществимо, либо связано с преодолением большого количества трудностей.
Михаил Сурков, монтажник электрооборудования: не будет лишним позаботиться и о защите молниевых приемников от коррозии. Ведь им придется длительное время выдерживать не самые благоприятные природные условия. Для этого можно будет просто выкрасить стержень приемника или оцинковать его. Если же приемник изготовлен из меди, то дополнительной защиты от коррозии не требуется.

Выводы

Обустроить у себя на участке качественный громоотвод может каждый. Для этого потребуется не так много сил и времени. Но при этом крайне важно соблюсти все требования, которые были указаны выше. Ведь не стоит забывать, что величина разряда внутри молнии достигает миллионов вольт. Так что халатное отношение к обустройству молниеотвода может послужить причиной несчастного случая и нанесения вреда постройкам на участке.
1. СК Лайт Проф http://www.light-prof.ru/catalog — производство готовых молниеотводов, услуги по установке системы на месте.
2. Компания Ezetek http://ezrf.ru/goods/flash/ — молниеотводы и мачты по доступным расценкам, услуги по установке комплекта на объект.
3. АЛЕФ ЭМ http://www.groze.net/komplektuyushhie_dlya_molniezashhity.html — Молниезащита, заземляющие устройства, оказание услуг по доставке и монтажу приобретенных комплектов.
4. Хакель Рос http://www.zandz.ru/molniezashchita — отечественная компания, продающая комплекты для защиты от молнии и комплектующие к ним.
5. НПП ЭСТ http://www.uziprov.ru/shop/trosovyi-molnieotvod/ — тросовые молниеотводы и комплектующие к ним, компания изготавливает системы любой сложности и предлагает услуги по монтажу комплектов.

Если рассматривать статистику погибших людей от ударов молнии, то это количество больше, чем жертв в авиационных катастрофах. Молния каждый год уносит несколько тысяч жизней, а также наносит многомиллионный материальный ущерб. Каждый владелец дачи или собственного дома знает, что защитить свое имущество и родственников можно только самому. Поэтому молниеотводы лучше изготавливать самостоятельно.

Самодельные молниеотводы нормально работают, что подтверждается на практике. Такие устройства имеют и другое название – громоотводы. Гром никакого вреда не наносит, кроме громкого звука. А для защиты от молнии необходимо сооружать некоторую конструкцию.

Удар молнии обычно приходится в конструкцию с максимальной высотой, которая встречается на ее пути. Опасным местом во время грозы является жилой дом или другая постройка из-за наличия в них металлических элементов – крыша, телевизионная антенна и т.д. Жильцы городских квартир могут не беспокоиться, так как большинство многоэтажных домов уже имеют молниеотводы.

Если рядом с домом имеется вышка сотовой связи, то в устройстве молниеотвода нет необходимости. Во всех других случаях целесообразно все-таки обезопасить свой дом. Если вызывать для таких работ специалистов, то это обойдется вам недешево. Но если разобраться с устройством системы молниеотвода, то можно все сделать самостоятельно.

Виды и особенности устройства

На рисунке изображено устройство системы молниеотведения.

Существует несколько видов молниеотвода, но основные их части одни и те же:
  • Молниеприемник.
  • Токоотводящее устройство.
  • Заземление.
Виды молниеприемников

Верхняя часть этой защитной системы называется молниеприемником.

  • Стержневой приемник молнии заострен на конце. В него ударяет молния во время грозы. Оптимальным вариантом изготовления приемника молнии является медный штырь диаметром 15 мм. Он должен быть расположен достаточно высоко, однако слишком высокий приемник будет притягивать к себе электрические разряды молнии.Стержневые молниеотводы наиболее эстетичны, в отличие от тросового, но обеспечивают меньший защитный радиус на участке. От высоты металлического штыря зависит величина защищаемого пространства.

  • Тросовый приемник способен защитить большую площадь участка, в отличие от стержневого молниеприемника. Тросовые конструкции используются в устройствах линий электропередач. В них вместо металлических штырей применяют трос, который соединяется с другими элементами болтовым соединением.

  • Сетчатый приемник молнии изготавливается в виде металлической сетки на крыше дома.

Токоотводы

Следующей частью системы отведения молнии является токоотвод, состоящий из толстых , закрепленных специальными муфтами к приемнику молнии и заземляющему контуру. Для крепления его на стене применяются пластиковые крепежные элементы. Токоотвод необходимо изолировать от воздействия внешней среды. Для этого обычно используют пластиковый .

Заземление

Основные элементы заземления находятся в грунте. Заземлитель состоит из металлических стержней, сваренных между собой, либо скрепленных болтами.

Заземление системы отведения молнии является важной частью всей конструкции. Этот заземляющий контур аналогичен устройству заземления дома. Важным требованием при этом является то, что эти два разных контура заземления ни в коем случае не должны соединяться. Иначе во время грозы бытовые электрические устройства могут выйти из строя, либо возникнет возгорание деревянного дома от разряда молнии.

Требования к заземлению системы отведения молнии
  • Металлические штыри, вставленные в грунт, должны быть длиной не меньше трех метров.
  • Сечение металлических штырей – не менее 25 мм 2 .
  • Штыри соединяются между собой треугольником, что является отличием от обычного заземления дома.
  • Между вершинами треугольника должно быть расстояние не менее 3 метров.
  • В качестве соединительных шин допускается применять металлический пруток диаметром не меньше 12 мм или полосу сечением 50 х 6 мм.
  • Длина сварных швов не должна быть меньше 20 см.
  • Для заземления молниеотводов устанавливается минимальная глубина над поверхностью земли 50 см.
Место для заземления

К этому вопросу следует подходить с наибольшим вниманием и аккуратностью. Заземляющие электроды не должны устанавливаться в местах нахождения животных, или возле детских площадок. Также нельзя располагать эти элементы возле скамеек или дорожек.

Лучше заземление будет работать во влажном грунте. Чтобы поддерживать работу заземления, можно самостоятельно создавать для этого условия, периодически поливая место заземления водой. Если нет возможности полива этого места, а почва в вашей местности слишком сухая, то рекомендуется при установке в почву электродов заземления посыпать их смесью соли и древесного угля.

Как работают молниеотводы

Чтобы разобраться в принципе действия системы отведения молнии, следует представить большой конденсатор, который постоянно заряжается. Его обкладками будут облака и земля. При наступлении грозы обкладки этого большого конденсатора начинают электризоваться между собой, и накапливать заряд. При достижении разницы напряжения между обкладками, равному напряжению пробоя молнии, возникает сильный разряд молнии, достигающий нескольких миллиардов вольт.

Чтобы заряд не накапливался, необходимо замкнуть этот конденсатор на землю. Таким замыкающим проводником и являются молниеотводы. Поэтому при грозе происходит разряжение конденсатора и обкладки не могут накопить заряд, а напряжение в молниеотводе уменьшается до нуля. Другими словами, система отведения молнии создает условия, в которых не способен возникнуть электрический разряд молнии, так как накапливаемый заряд отводится в землю.

Особенности самостоятельной установки молниеотвода
  • Молниеотводы рекомендуется изготавливать из материалов, не подверженных коррозии. Для этого применяется оцинкованный уголок, луженая жесть, профиль из дюралюминия, или сетка из неизолированной медной проволоки. Соединяющие проводники должны иметь необходимое сечение. Молниеприемник нельзя покрывать лакокрасочными материалами или другой изоляцией.
  • Для удобного расположения молниеотвода можно использовать высокое дерево, находящееся вблизи дома. Чтобы не причинять вред дереву, приемник молнии можно закрепить на длинном деревянном шесте, который фиксируют на дереве с помощью , и располагают на максимальной высоте.
  • Если дерева нет, то можно использовать для крепления молниеприемника телевизионную антенну, которая закреплена на крыше дома.
  • Другим способом установки является печная труба, к которой можно закрепить металлический штырь и соединить его с заземлением.
Техническое обслуживание

Чтобы система молниеотвода работала без нареканий, необходимо обслуживать его конструкцию для поддержания в рабочем состоянии. Металлический штырь, играющий роль приемника молнии, необходимо чистить обычными чистящими средствами в виде наждачной бумаги или других аналогичных средств, чтобы предотвратить образование окиси и удалить загрязнения.

В засушливые времена необходимо периодически увлажнять почву в месте закладки контура заземления.

Молниеотвод представляет собой защитное устройство, в котором система проводников отводит электрический разряд в землю. Молниезащита - важнейший элемент обеспечения безопасности жильцов и имущества, находящихся в здании. При желании и наличии определенных знаний, вполне реально соорудить громоотвод своими руками.

Принцип действия и устройство

Система защиты от молнии состоит из трех компонентов:

  • молниеприемник;
  • токоотвод;
  • заземлитель.

Схема устройства представлена на рисунке ниже.

Функция приема разряда молнии возлагается на молниеприемник. По токоотводам электричество поступает в заземлительный контур, который передает разряд в грунт.

Молниеприемник

Существует три разновидности молниеприемников:

  • стержневой;
  • штыревой;
  • сетчатый.

Также в качестве приемника может выступать сама крыша.

Стержневой приемник представляет собой металлический штырь, установленный на станине (на кровле, рядом со зданием, на высоком дереве). С помощью токоотвода (проводника) штырь соединяется с заземлительным контуром. Для изготовления громоотводов применяют медь, алюминий или сталь. Причем первая- оптимальный вариант с точки зрения качества защиты, а самые дешевые приемники производятся из стали.

Сечение молниеприемника стержневого типа должно составлять не менее 35 кв. мм, если речь идет о меди, и 70 кв. мм - для стальных устройств. Длина штыря колеблется от 50 до 200 см.

Стержневые приемники обычно выглядят эстетично, однако площадь их покрытия не слишком большая. Для расчета покрываемой территории от наивысшей точки штыря прочерчивают мысленную линию к уровню земли под углом 45 градусов. Защищенным является все пространство, оказавшееся в треугольнике по периметру. Ввиду маленькой зоны действия, стержневые громоотводы используют для защиты небольших домов, банных построек, гаражей и т.п.

Обратите внимание! Молниезащиту можно как сделать своими руками, так и приобрести готовую.

Сеточные молниеприемники выполняются в виде металлических сеток и представляют собой арматурный каркас с ячейками размером от 3 до 12 м. Толщина арматуры - в среднем 6 мм. Сетку размещают на определенной высоте над материалом кровли, оставляя зазор не менее 15 см. Наиболее подходящие объекты для применения сеточных систем - большие кровли (многоквартирные дома, торговые центры, промышленные и складские здания и т.п.).

Тросовый приемник располагается на двух или четырех мачтах, связанных друг с другом проволокой из стали или алюминия. Трос протягивают по коньку крыши, используя деревянные бруски, которые выступают в качестве опор. Наименьший рекомендуемый диаметр троса - 5 мм.

По сравнению со стержневыми описываемые устройства покрывают гораздо большую площадь. С точки зрения эффективности тросовые системы лучше, чем стержневые или сеточные приемники справляются с задачей защиты от молнии. Особенно распространены такие системы на шиферных кровлях.

Иногда в качестве молниеприемника используют саму крышу. Это возможно, когда кровля изготовлена из профнастила, металлической черепицы и любых других материалов, в основе которых есть металл. Существуют требования, которые дисквалифицируют конструкционный материал кровли, если его толщина меньше 4 мм (иначе возможно его прожигание молнией). Также не допускаются какие-либо горючие материалы, способные легко воспламениться.

Токоотвод

Для изготовления проводников применяют шестимиллиметровую медную, стальную или алюминиевую проволоку. Соединения с другими элементами системы - молниеприемником и заземлительным контуром - выполняют посредством болтов или сварных швов. Токоотвод нуждается в качественном изолировании от окружающей среды (подойдут кабель-каналы). Еще одно требование - выбор для токоотвода самого краткого пути от молниеприемника к заземлительному устройству.

Заземлитель

Заземлительный контур располагают неподалеку от здания. При этом выбирают место, находящееся вне прогулочной территории и поближе к какому-либо ограждению. Электрический заряд, поступающий к заземлительному контуру через токоотвод, через металлические стержни отводится в грунт. Стержни вкапывают в землю на глубину примерно 80-100 см. Их размещают таким образом, чтобы они при соединении формировали треугольник.

Подготовительные мероприятия

Перед тем как сделать громоотвод необходимо провести подготовку. Причем по важности этот этап ничем не отличается от собственно процесса установки молниезащитной системы. Понадобится произвести расчеты согласно формуле, подобрать материалы и найти правильное место для установки молниезащиты.

Формула расчета

Молниезащита - достаточно сложная и ответственная в силу выполняемых задач система. При ее планировании необходимы точные расчеты и оценка потенциальных рисков. В то же время необходимости в чрезмерно сложных математических вычислениях нет. Нужно лишь определить зону действия системы, исходя из формул. Для стержневого молниеотвода существуют коэффициенты, применяемые для расчета нужной высоты устройства. Используется такая формула:

Она подходит для громоотводов высотой до полутора метров, что вполне достаточно для обеспечения защиты частного дома от ударов молнии.

Материал для громоотвода

Для создания защитной системы понадобятся конструкционные материалы. Придется сделать выбор из стали, меди или алюминия. При этом площадь необходимого поперечного сечения будет отличаться, что продиктовано разным сопротивлением каждого вида из перечисленных металлов. Чтобы объяснить сказанное более наглядно, внизу приведена таблица, в которой указаны минимальные требования к компонентам молниезащиты, исходя из вида металла:

Материал Молниеприемник Токоотвод Заземлитель
Площадь сечения, мм Диаметр, мм Площадь сечения, мм Диаметр, мм Площадь сечения, мм Диаметр, мм
Медь 35 7 16 5 50 8
Сталь 50 8 50 8 100 11,5
Алюминий 70 9,5 25 6 Не применяется

Исходя из данных, представленных в таблице, оптимальный выбор материала - медь. Однако наиболее дешевым вариантом громоотвода, изготовленного своими руками, является сталь.

Токоотвод отличается меньшим сечением в сравнении с другими компонентами защитной системы. Рекомендуется постепенно увеличивать его толщину от приемника к заземлительному контуру.

Совет! При создании молниезащиты желательно применять один и тот же вид металла для всех элементов конструкции.

Для изготовления молниезащиты необходимы такие материалы и инструменты:

  1. Молниеприемник. В случае со стержневой системой понадобится металлический заостренный штырь. Также подойдет ТВ-мачта или антенна для приема радиосигналов. В продаже имеются готовые приемники, например, GALMAR или SCHIRTEC.
  2. Металлическая проволока нужного сечения.
  3. Устройства для заземления (металлические штыри, трубы или лента).
  4. Пластиковые фиксаторы, скобы, болты.
  5. Инструменты для выполнения работы (сварочный аппарат, электродрель, молоток, лопата).

Место установки

Громоотвод следует располагать на наиболее высокой точке из имеющихся на участке. При этом нужно помнить про защитную конусообразную зону. Громоотвод должен находиться в таком месте, чтобы здание полностью было покрыто защитой. Получается, что, чем более отдален громоотвод от дома, тем выше он должен быть.

По финансовым соображениям предпочтительнее разместить молниеприемник на кровле здания. В этом случае не понадобится сооружение высокой опоры, которая к тому же вряд ли будет эстетически привлекательной.

Совет! Не рекомендуется установка громоотвода в центральной части крыши. Лучше поставить приемник с краю кровли и зафиксировать его к стене. При таком подходе уменьшается риск попадания молнии в какую-либо часть кровли.

Отдельный вопрос - правильное размещение заземлительного устройства. При ударе молнии высокомощный разряд проходит в землю и в этот момент рядом с заземлителем не должны находиться живые существа. Поэтому разработаны требования к минимальным расстояниям от заземления к стене дома - 1 м и до пешеходных дорожек - 5 м. Заземляющее устройство должно быть установлено в таком месте, где нет вероятности нахождения людей. К тому же, вокруг заземлителя следует установить ограждение и поставить рядом предупреждающий знак.

Обратите внимание! Эффективная работа заземления возможна только во влажном грунте. Это нужно учитывать при выборе места для заземлительного контура. Если постоянно мокрый участок отсутствует, следует задуматься об искусственном орошении.

Установка тросового молниеотвода

Прежде всего нужно протянуть проволоку по коньку кровли. Она будет выступать в качестве приемника для молнии. Если крыша изготовлена из пожароопасных материалов (древесина, пластиковая черепица и т.п.), проволоку следует расположить на высоте не менее 15 сантиметров от материала. При этом поддерживающую для нее функцию будут выполнять пластиковые фиксаторы. Концы проволоки закрепляют на металлических мачтах (их называют горизонтальными приемниками).

Токоотвод фиксируют к приемнику с помощью сварочного аппарата болтовыми соединениями или заклепками. На смежные участки наносят изоляцию. На кровле токоотвод закрепляют скобами, а на стенах - пластиковыми фиксаторами. Проводник лучше разместить в кабельном канале, чтобы избежать пагубного воздействия на него влажности.

Заземление создают так:

  1. Копают траншею глубиной от 80 см.
  2. Забивают в дно ямы металлические штыри.
  3. Соединяют их стальной трубой или лентой. Для этого используют сварочный аппарат.
  4. Отводят ленту к участку соединения с токоотводом.
  5. Состыковывают токоотвод с заземлителем.

Установка стержневого молниеотвода

Для монтажа стержневой системы понадобится высокая станина. Ее функции сможет выполнять, например, мачта ТВ-антенны. Приемник фиксируют к ней сварным или болтовым соединением.

Установка токоотвода и заземлителя осуществляется так же, как описано выше, когда речь шла о тросовой молниезащите. После завершения установки следует протестировать сопротивление системы. Максимально допустимый показатель - 10 Ом.

Дерево в качестве громоотвода

Для создания молниеотвода своими руками подойдет обычное дерево. При этом его высота должна превышать уровень крыши здания примерно в 2,5 раза. Расстояние до дома не должно быть меньше 3 м.

Один конец пятимиллиметровой проволоки приваривают к заземляющему устройству и закапывают соединение в землю. Оставшийся конец будет приемником. Его подводят к верхушке дерева.

Уход за конструкцией

Металлические устройства чувствительны к отрицательным воздействиям окружающей среды. Чтобы избежать развития коррозийных процессов и сохранить рабочие свойства металлов, необходимо регулярно проводить осмотры системы защиты от молнии.

С наступление весны - перед началом грозового сезона - необходимо провести визуальное исследование всех компонентов системы. В процессе эксплуатации металл бывает настолько поврежден, что не обойтись без замены деталей.

Особое внимание следует уделять контактам. Некачественный контакт приводит к размыканию системы и возгоранию. Если нужно, их прочищают от окиси.

Подземную часть молниезащиты также нужно проверять. Однако ввиду трудоемкости процесса, разрешается делать это не каждый год, а один раз в трехлетний период.

Молниезащита – настолько важный элемент обеспечения безопасности жильцов и здания, что браться за ее создания стоит только при полной уверенности в своих знаниях и опыте. Если этого чувства недостаточно, лучше поручить выполнение работы профессионалам.

gastroguru © 2017