Умягчение воды. Промышленная водоподготовка. Умягчение воды: что это и для чего нужно Методы умягчения воды химия

Умягчение воды сводится к уменьшению концентрации в ней кальциевых и магниевых солей. Умягчение воды необходимо производить для питания котельных установок, причем жесткость воды для котлов среднего и низкого давления должна быть не более 0,3 мг-экв/л.

Умягчать воду требуется также для таких производств, как текстильное, бумажное, химическое, где вода должна иметь жесткость не более 0,7 -1,0 мг-экв/л.

Умягчение воды для хозяйственно-питьевых целей также целесообразно, особенно в случае, если она превышает 7мг-экв/л.

Умягчение воды может проводиться различными методами, их можно разделить на следующие группы:

Термический метод умягчения воды

При нагревании воды до кипения происходит превращение гидрокарбонатов кальция и магния в карбонаты по следующим схемам:

Са (HCO 3) 2 = CaCO 3 ↓+ СО 2 + Н 2 О;

Mg(HCO 3) 2 = МgСО 3 + СО 2 + Н 2 О.

Эти обратимые процессы можно почти целиком сместить вправо за счет кипячения воды, так как при высоких температурах растворимость двуокиси углерода понижается.

Однако полностью устранить карбонатную жесткость нельзя, так как углекислый кальций хотя и незначительно (около 9,95 мг/л при 15 °С), но растворим в воде. Растворимость MgCO 3 достаточно высока (110 мг/л), поэтому при длительном кипячении он гидролизуется с образованием малорастворимой (8 мг/л) гидроокиси магния:

MgCO 3 + H 2 O ═ Mg (OH) 2 ↓ + CO 2 .

Этот метод может применяться для умягчения воды, содержащей преимущественно карбонатную жесткость и идущей для питания котлов низкого и среднего давления.

Недостатки: снижается только временная (карбонатная) жесткость; требуются большие энергозатраты - в промышленности этот способ водоподготовки используют лишь при наличии дешевых источников тепла (на ТЭЦ, например).

Реагентное умягчение воды

Из реагентных методов наиболее распространен содово-известковый способ умягчения. Сущность его сводится к получению вместо растворенных в воде солей Са и Mg нерастворимых солей СаСО 3 и Mg(OH) 2 , выпадающих в осадок.

Оба реагента — соду Na 2 CO 3 и известь Са(ОН) 2 — вводят в умягчаемую воду одновременно или поочередно.

Соли карбонатной, временной жесткости удаляют известью, не карбонатной, постоянной жесткости — содой.

Химические реакции при удалении карбонатной жесткости протекают следующим образом:

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 + 2Н 2 О

Гидрат окиси магния Mg(OH)2 коагулирует и выпадает в осадок. Для устранения некарбонатной жесткости в умягчаемую воду вводят Na2CO3.

Химические реакции при удалении некарбонатной жесткости следующие:

Na 2 CO 3 + CaSO 4 = CaCO 3 + Na 2 SO 4 ;

Na 2 CO 3 + СаСl 2 = СаСО 3 + 2NaCl.

В результате реакции получается углекислый кальций, который выпадает в осадок. Реагенты, применяемые при обработке воды, вводят в воду в следующих местах:

а) хлор (при предварительном хлорировании) — во всасывающие трубопроводы насосной станции первого подъема или в водоводы, подающие воду на станцию очистки;

б) коагулянт — в трубопровод перед смесителем или в смеситель;

в) известь для подщелачивания при коагулировании — одновременно с коагулянтом;

г) активированный уголь для удаления запахов и привкусов в воде до 5 мг/л — перед фильтрами. При больших дозах уголь следует вводить на насосной станции первого подъема или одновременно с коагулянтом в смеситель водоочистной станции, но не ранее чем через 10 мин после введения хлора;

д) хлор и аммиак для обеззараживания воды вводят до очистных сооружений и в фильтрованную воду. При наличии в воде фенолов аммиак следует вводить как при предварительном, так и при окончательном хлорировании.

К специальным видам очистки и обработки воды относятся опреснение, обессоливание, обезжелезивание, удаление из воды растворенных газов и стабилизация.

Данный способ обычно используется только в некоторых отраслях промышленности для предварительной очистки технической воды. В обычном бытовом использовании технология неприменима.

Умягчение воды бариевыми солями.

Этот метод схож с известково-содовым, но имеет то преимущество, что образующиеся при реакции продукты нерастворимы в воде. Содержание солей, обусловливающих жесткость воды, при этом методе понижается, и умягчение идет гораздо полнее. Кроме того, нерастворимость ВаСО 3 не требует строгих дозировок, процесс может протекать автоматически.

Реакции, протекающие при умягчении бариевыми соединениями, можно представить схемами:

1) CaSO 4 + Ba (ОН) 2 ® Са (ОН) 2 + ВаSО 4 ↓;

2) MgSO 4 + Ba (OH) 2 ® Mg (ОН) 2 ↓ + BaS0 4 ↓;

3) Са (НСО 3) 2 + Ba (OH) 2 ® CaCO 3 ↓ + ВаСО 3 ↓ + 2Н 2 О;

4) Mg (НС0 3) 2 + 2Ва (OH) 2 ® 2BaCO 3 ↓ + Mg (OH) 2 ↓ + 2Н 2 О;

5) ВаСО 3 + CaSO 4 ® BaSO 4 ↓ + CaCO 3 ↓;

6) Ca (OH) 2 + Ca (HCO 3) 2 ® 2CaCO 3 ↓ + 2H 2 O.

При умягчении бариевыми солями реакции приводят не к замене одной соли другой, а к полному удалению их из воды; в этом заключается преимущество умягчения бариевыми солями. К недостаткам этого метода относятся высокая стоимость бариевых солей и медленное течение реакции с карбонатом бария ВаСО 3 .

Реагентная водоподготовка применяется только на больших станциях водоподготовки, поскольку связан с рядом специфических проблем: утилизация твердого осадка, специально оборудованные хранилища для реагентов, необходимость точной дозировки химикатов и их правильной подачи в исходную воду.

Ионообменное умягчение воды

Вещества, способные к сорбционному обмену ионов с раствором электролита, называются ионитами .

Иониты – это твердые зернистые вещества, набухающие в воде, но не растворимые в ней. По составу основного скелета, который связывает воедино ионогенные группы, ионообменные сорбенты делятся на:

  • минеральные
  • органические.

Применяемые при очистке воды иониты бывают естественного и искусственного происхождения. Примером первых могут быть глаукониты, гумусовые угли, а примером вторых – сульфированные угли, синтетические ионообменные смолы.

Ионообменные смолы – это сетчатые, трехмерные полимеры, не растворяющиеся в воде, но ограниченно набухающие в ней и содержащие ионогенные группы, т. е. группы, способные к обмену ионов. Число и длина мостиков, соединяющих линейные цепи полимера, определяют «густоту» сетки, которая оказывает сильное влияние на свойства ионитов.

Иониты подразделяются на катиониты и аниониты. Вещества, обменивающие катионы, называются катионитами, а обменивающие анионы – анионитами.

Катиониты диссоциируют на небольшие, подвижные и способные к ионному обмену катионы (например, Н +) и высокомолекулярный анион (R m -1), а аниониты дают мелкие, легко перемещающиеся анионы (например, ОН –) и высокомолекулярный катион (R n +).

Условно их диссоциацию можно представить в следующем виде:

Н m R = mH + + R m – ; R(OH) n = R n + + nOH – ,

где m и n– число подвижных ионов в катионите и анионите.

Из катионообменных смол наибольшее распространение получили смолы, образованные поликонденсацией фенолов и формальдегида, а также полимеры – продукты сополимеризации стирола с диеновыми углеводородами.

Из смоляных анионитов чаще применяются аминоформальдегидные аниониты и полистирольные аниониты, продукты присоединения от основных групп к сополимерам полистирола.

Все иониты могут иметь одинаковые или различные ионогенные группы. Катиониты со смешанными функциональными группами встречаются в следующем сочетании:

  1. сульфокислые и оксифенольные;
  2. сульфокислые и карбоксильные;
  3. остатки фосфорной кислоты и оксифенольные;
  4. мышьяковокислые и оксифенольные;
  5. карбоксильные и оксифенольные.

По степени диссоциации иониты подразделяют на:

  1. сильнокислотные
  2. слабокислотные;
  3. сильноосновные
  4. слабоосновные.

Сильнокислотные катиониты вступают в реакцию с солями, растворенными в воде в нейтральных и кислых средах.

Слабокислотные катиониты , содержащие карбоксильные или оксифенольные группы, обменивают свой протон в нейтральных растворах лишь на катиониты солей слабых кислот, причем полнота обмена возрастает с повышением рН среды.

Сильные аниониты вступают в реакцию с растворами солей в нейтральной и даже слабощелочной среде.

Слабоосновные аниониты вступают в реакцию обмена лишь в кислых средах, причем полнота обмена гидроксильной группы анионита на анион растворенного электролита возрастает с повышением кислотности среды. На силу ионогенных групп оказывают большое влияние непосредственно связанные с ними другие функциональные группы.

Следовательно, большинство катионитов представляют собой по­лимерные полифункциональные кислоты, в состав которых входят группы – СООН, –SO 3 H, –ОН, –SH, SiOOH и др.

Аниониты являются высокомолекулярными соединениями, содержащими огромное количество основных групп, таких как –NH 2 , –NH 3 OH, –NHR, –NR 2 и т. д. В состав одного и того же ионита могут входить ионогенные группы с различной степенью кислотности и щелочности.

Для целей фильтрования смолу стараются получить в виде сферических частиц путем суспензионной полимеризации или перемешивания расплавленной еще «несшитой» смолы в среде инертного растворителя с последующим охлаждением. Иониты (в таком неплотном виде) создают благоприятные условия для движения фильтруемой жидкости.

В основе процесса обмена лежит химическая реакция, протекающая на внешней и внутренней поверхности ионитов. Обмен ионами протекает в строго эквивалентных количествах.

Обменные реакции в растворе происходят практически мгновенно, но процессы ионообмена с ионитами, протекающие в гетерогенной среде, обладают вполне измеримой скоростью. Фактически наблюдаемая скорость определяется скоростью диффузии, наиболее медленной стадией ионообмена. При этом скорость ионообмена падает с увеличением размеров зерна ионита.

Обмен ионов в растворах протекает избирательно. С уменьшением абсолютной концентрации раствора многовалентные ионы адсорбируются лучше, чем одновалентные, а при высоких концентрациях адсорбируется одновалентный ион. Например, при умягчении воды избирательно поглощаются ионы Са 2+ и Mg 2+ , а ионы Na+ при этом практически не адсорбируются. При обработке концентрированным раствором NaCl ионы двухвалентных металлов вытесняются из катионита ионами натрия. Этим пользуются при регенерации катионитового фильтра.

Основной технологической характеристикой ионитов является их обменная емкость , которая определяется количеством ионов, извлеченных из воды 1 г воздушно-сухого ионита.

В практике очистки воды часто используют Н- и Na-катиониты. В зависимости от катиона этот процесс называют Н-катионирование и Na-катионирование.

При Н-катионировании повышается кислотность воды, а при Na-катионировании происходит увеличение щелочности фильтрата, если в исходной воде содержится карбонатная жесткость.

Следует заметить, что скорость обмена ионами при катионировании зависит от многих факторов, например от валентности ионов, их заряда, величины гидратации, эффективного радиуса иона. По скорости вхождения ионов в катионит их располагают в следующий убывающий ряд: Fe 3 +>Al 3 +>Ca 2 +>Mg 2 +>Ba 2 +>NH 4 + >K + >Na+. Эту закономерность можно изменить, увеличивая концентрацию ионов в процессе регенерации катионитовых фильтров при обработке их концентрированным раствором хлористого натрия.

Катионитовый фильтр представляет собой стальной цилиндрический резервуар диаметром от 1 до 3 м, в котором на дренажном устройстве помещается слой катионита. Высота фильтрующего слоя составляет 2…4 м. Скорость фильтрования – от 4 до 25 м/ч. Фильтры рассчитаны на рабочее давление до 6 атм.

Работа катионитового фильтра происходит по следующим этапам:

  • фильтрование через подготовленный фильтр до насыщения обменной емкости катионита;
  • рыхление катионита восходящим потоком;
  • регенерация фильтра раствором NaCl (при Na-катионировании);
  • промывка загрузки от излишних количеств регенерирующего ве­щества.

Регенерация загрузки продолжается от полутора до двух часов.

Na-катионирование обеспечивает умягчение воды до 0,05 мг-экв/л. В практике применяют двухступенчатое Na-катионирование. На фильтрах первой ступени производится грубое умягчение воды, снижающее жесткость примерно на 75 %. Остающуюся жесткость удаляют повторным фильтрованием через фильтры второй ступени. Основная масса ионов кальция и магния задерживается фильтрами первой ступени, фильтры второй ступени несут незначительную нагрузку по жесткости и рабочий цикл их длится до 150¼200 ч. Остаточная жесткость воды после двухступенчатого Na-катионирования равна 0,01¼0,02 мг-экв/л. Подобный прием умяг­чения воды приводит к экономии соли на регенерации фильтров первой ступени. Для этой цели используются промывные воды от фильтров второй ступени. Кроме того, двухступенчатое Na-катионирование упрощает эксплуатацию установки тем, что удлиняет фильтроцикл и не требует постоянного ухода за фильтратом.

При катионировании происходят следующие процессы:

2NaR + Са (НСОз) 2 ═ СаR 2 + 2NaHCO 3 ;

2NaR + Mg (HCO 3) 2 ═ MgR 2 + 2NaHCO 3 ;

2NaR + CaSO 4 ═ CaR 2 + Na 2 SO 4 ;

2NaR + MgCl 2 ═ MR 2 + 2NaCl.

При фильтровании воды, содержащей некарбонатную жесткость, получают соли сильных кислот и сильных оснований. Эти соли не подвержены гидролизу даже при высоких температурах. Но при удалении карбонатной жесткости образуется гидрокарбонат натрия, который гидролизуется при высоких температурах с образованием сильной щелочи:

NaHCO 3 + H 2 O ═ NaOH + Н 2 СО 3 .

Для снижения щелочности воды ее фильтруют последовательно через Na-, а затем Н-катиониты или разбивают поток на две части, одну из них пропускают через Na-катионит, а вторую – через Н-катионит, а затем фильтраты смешивают.

Недостатки ионообменного метода водоподготовки:

  • относительно большой расход реагентов, (особенно у параллельноточных натрий-катионитных фильтров);
  • увеличение эксплуатационных расходов пропорционально солесодержанию исходной воды и при необходимости уменьшить предел обессоливания обработанной воды;
  • в зависимости от качества исходной воды требуется предподготовка – иногда весьма сложная;
  • необходима обработка сточных вод и сложности с их сбросом.

Безреагентная водоподготовка

Ультразвуковые установки

— неплохо справляются с накипью, но для достижения эффективности требуется работа установки на большой мощности. Это означает высокий уровень звукового воздействия, что влечет за собой возможность повреждения защищаемого оборудования (в местах сварки швов и завальцовки), а также повышенную опасность для персонала.

Умягчение воды в аппаратах с постоянными магнитами.

В сравнении с другими распространенными методами (ионообменными, баромембранными) магнитную водоподготовку отличают простота, дешевизна, безопасность, экологичность, низкие эксплутационные расходы.

Согласно СНиП 11-35-76 “Котельные установки” , магнитную обработку воды для теплооборудования и водогрейных котлов целесообразно проводить, если содержание ионов железа Fe 2+ и Fe 3+ в воде не превышает 0,3 мг/л, кислорода — 3 мг/л, постоянная жесткость (CaSO 4 , CaCl 2 , MgSO 4 , MgCl 2) — 50 мг/л, карбонатная жёсткость (Са(НСО 3) 2 , Mg(НСО 3) 2) не выше 9 мг-экв/л, а температура нагрева воды не должна превышать 95 0 С.

Для питания паровых котлов – стальных, допускающих внутрикотловую обработку воды, и чугунных секционных – использование магнитной технологии обработки воды возможно, если карбонатная жёсткость воды не превышает 10 мг-экв/л, содержание Fe 2+ и Fe 3+ в воде — 0,3 мг/л, при поступлении воды из водопровода или поверхностного источника.

Ряд производств устанавливает более жесткие регламентации к технологической воде, вплоть до глубокого умягчения (0,035-0,05 мг-экв/л): для водотрубных котлов (15-25 ати) — 0,15 мг-экв/л; жаротрубных котлов (5-15 ати) — 0,35 мг-экв/л; котлов высокого давления (50-100 ати) — 0,035 мг-экв/л.

Недостатки – необходимо один раз в 5–7 дней механически очищать полюсы магнита от отложений ферромагнитных частиц; свои свойства омагниченная вода сохраняет меньше суток (это явление потери магнитных свойств называется релаксацией, или эффектом «привыкания воды» ).

Поэтому в системах, где вода находится в течение многих часов и дней (оборотные системы водоснабжения, циркуляционные контуры котлов и систем отопления и др.), необходимо предусматривать рециркуляционные системы, куда направлять не менее 10% находящейся в системе воды, и постоянно эту часть воды подмагничивать.

Электромагнитное умягчение воды

Основой устройства является электронный микропроцессорный блок, который генерирует выходной апериодический сигнал звуковой частоты (1–10 кГц). Сигнал подается на излучатели, навитые на трубопроводе с обрабатываемой жидкостью в определенном порядке, и создает пульсирующее динамическое электромагнитное поле.

Механизм воздействия на обрабатываемую воду имеет физический (безреагентный) характер. Кальций, гидрокарбонатные соли в водном растворе существуют в форме положительно и отрицательно заряженных ионов. Из этого вытекает возможность эффективного воздействия на них с помощью электромагнитного поля. Если на трубопровод с протекающей жидкостью навивается катушка и в ней наводится определенное динамическое электромагнитное поле, то происходит высвобождение ионов бикарбоната кальция, электростатически связанных с молекулами воды. Высвобожденные таким способом положительные и отрицательные ионы соединяются в результате взаимного притяжения, и в воде образуются арагонитовые кристаллы (высокодисперсная взвесь), не образующие накипи.

Так как побочным продуктом при образовании арагонитовых кристаллов является углекислый газ, то вода, обработанная таким способом, имеет свойства дождевой воды, т.е. способна растворять в трубопроводе существующие твердые карбонатные отложения.

Под действием электромагнитного поля возникает в воде и определенное количество перекиси водорода, которая при контакте со стальной поверхностью внутри трубопровода образует на ней химически стабильную пленку Fe 3 0 4 , которая предохраняет поверхность от коррозии. Перекись водорода оказывает также существенное антисептическое и антибактериальное действие — уничтожает около 99% водных бактерий. Образовавшиеся молекулы перекиси водорода, однако, имеют очень короткий жизненный цикл и быстро конвертируются в форму кислорода и водорода, поэтому обработанная таким способом питьевая вода не оказывает никаких вредных побочных эффектов на здоровье человека.

На сегодняшний день - это самый экологически чистый и экономически оправданый метод умягчения жесткой воды.

Безреагентное умягчение воды. Умягчитель воды Рапресол

Безреагентная водоподготовка с применением умягчителей воды Рапресол эффективно заменяет затратный метод химической водоподготовки, принося предприятию значительную экономию.

Снижаются расходы на эксплуатацию (реагенты, регенерация, утилизация, содержание персонала, и т.п.), что обеспечивает наибольший экономический эффект и быструю окупаемость прибора при очень высокой функциональной эффективности. Систему отличает простота монтажа и минимальные эксплуатационные расходы.

Технология электромагнитного умягчения воды — одна из рекомендованных энергосберегающих технологий (РД 34.20.145-92) и позволяет не только увеличить срок работы теплообменного оборудования между его вынужденными остановками для проведения очистки, но и достигнуть реальной экономии средств и энергоносителей.

Технико-экономические обоснования (ТЭО) и расчет сроков окупаемости приборов Рапресол:

  • для организаций,
  • для предприятий,

Комбинированные методы водоподготовки

Установка умягчителя воды Рапресол перед установкой ионообменного умягчения позволяет существенное увеличить межрегенерационный срок эксплуатации фильтров и пропускную способность фильтров

  • прибор Рапресол перед ионообменной очисткой связывает ионы кальция в нерастворимое состояние;
  • качественно активируются (увеличивается емкость поглощения ионитов) и ускоряются в несколько раз ионообменные реакции;
  • концентрация растворенных ионов кальция в воде перед ионным обменом существенно снижается;
  • вследствие снижения концентрации бикарбонатов кальция за один фильтроцикл можно получить гораздо больше очищенной воды.

Достигнутый экономический эффект:

  • уменьшаются затраты воды на отмывку смолы в процессе регенерации, минимизируется влияние «проскоков» необработанной воды.
  • в 2-3 раза увеличиваются межремонтные сроки котлов и теплообменников (образующаяся от остаточной жесткости накипь будет рыхлой и легко удаляется обычными продувками через 500-1000 часов работы).
  • полностью исключаются реагентные промывки оборудования и загрязнение окружающей среды;
  • обеспечивается надежная противонакипная и противокоррозионная очистка и защита как теплоагрегата, так и всех трубопроводов;
  • укрепляются внутренняя поверхность оборудования и сетей;
  • повышается теплоотдача котла и теплопроводность трубных разводок;
  • экономится топливо;

Кроме того, в десятки раз снижаются расходы:

  • соли и других реагентов на регенерацию;
  • воды на взрыхление, регенерацию и отмывку фильтров;
  • электроэнергии, потребляемой насосами для перекачки реагентов.
  • снижается сброс промывных солесодержащих вод;

Кому-то словосочетание «жесткая вода» покажется литературным оксюмороном, но есть много людей, знакомых с этим качеством воды не понаслышке. Как определить степень жесткости и зачем умягчать воду - расскажем в данной статье.

Жесткая вода - причина образования отложений солей, камней в почках, сердечно-сосудистых заболеваний. 80% болезней человек выпивает с водой. 90% аварий водонагревателей и другой работающей с водой техники вызваны высокой жесткостью.

В чем суть процесса умягчения воды?

Жесткость воды - это совокупность ее физических и химических свойств, связанных с содержанием растворенных солей щелочноземельных металлов. В первую очередь к солям жесткости относятся кальций и магний. В природной среде они регулируют различные химические процессы. На жесткость воды главным образом влияет ее месторождение. Реки и озера пополняются из подземных источников, протекающих в известняковых пластах, и обогащают проходящую через них воду солями жесткости. В поверхностных водах содержится существенно меньше кальция и магния, чем в глубинных. Своего максимума жесткость воды в природных источниках достигает зимой, а минимума - весной, благодаря тающему снегу.

Существует три вида жесткости воды:

  • Общая. Это суммарная концентрация ионов магния и кальция.
  • Карбонатная. Ее второе название - временная, так как показатели зависят от содержания в воде карбонатов и гидрокарбонатов кальция и магния, которые практически полностью устраняются при кипячении.
  • Некарбонатная, наоборот, является постоянной величиной, потому что она обусловлена наличием магниевых и кальциевых солей, на которые изменение температуры никак не влияет.

В системе СИ жесткость воды измеряется в молях на кубический метр - моль/м³, но на практике также используются миллиграмм-эквиваленты на литр - мг-экв/л. По нормам СанПиНа жесткость питьевой воды должна быть не больше 7 мг-экв/л. Требуемая жесткость воды для производства пива - до 4 мг-экв/л, безалкогольных напитков - 0, 7 мг-экв/л.

Чрезмерно жесткая вода - одна из причин образования камней в почках, так как гидрокарбонаты кальция и магния затрудняют работу желудка и кишечника. Так называемые отложения солей в суставах тоже могут быть результатом употребления жесткой воды. Содержащиеся в ней соли жесткости активно взаимодействуют с мылом, шампунями, бальзамами и другими подобными средствами, образуя осадок и снижая их эффективность. Из-за разрушения естественной жировой защиты поры на коже человека забиваются новообразованиями, затрудняя ее дыхание. Это может привести к сухости, акне, перхоти, а также ломкости и выпадению волос. На приготовление пищи жесткая вода тоже влияет не лучшим образом, разрушая содержащиеся в ингредиентах полезные вещества.

Жесткая вода ощутимо сокращает срок службы бытовой техники: посудомоечных машин, бойлеров, чайников и т.д. Из-за кристаллизации соли образуется накипь, которая впоследствии приводит к коррозии и поломке. Как и в случае с шампунями, при стирке в жесткой воде часть «сил» порошка направляется на нейтрализацию ее эффекта, но здесь, помимо банального перерасхода моющих средств, увеличиваются шансы получить белье с пятнами или разводами. Они тоже возникают из-за накипи, образованной на «внутренностях» стиральной машинки.

В городской черте сильно жесткую воду сейчас почти не встретить, а вот в частных секторах и сельской местности ситуация иная. Обычно их жители пользуются водой из колодца или артезианской скважины, в которые поступают насыщенные кальцием и магнием грунтовые воды. Вдобавок вместе с солями жесткости туда могут попасть и другие вредные вещества. Для этого достаточно сильного дождя и находящейся в округе мусорной свалки.

Как нетрудно понять, умягчение воды - это снижение в ней концентрации солей жесткости. Самый простой вариант данного процесса - термический (он же - простое кипячение). Как уже сказано выше, при данном процессе гидрокарбонат кальция распадается на нерастворимый карбонат кальция, который выпадает в осадок, и углекислый газ. Концентрация сульфата кальция тоже несколько уменьшается. Данный способ считается самым простым, однако его производительность оставляет желать лучшего. Есть еще химический метод, когда в воду добавляются реактивы, превращающие растворимые соединения в нерастворимые. Главный минус в том, что пить такую жидкость все равно нельзя. Остальные способы требуют специального оборудования.

Оборудование для умягчения воды

Помимо налета на нагревательных элементах бытовой техники и разводов на постиранном белье, признаком жесткой воды являются плохо пенящиеся мыла и порошки, твердое даже после длительной варки мясо, отсутствие привычного аромата у чая и кофе, а также горьковатый вкус самой воды. Помимо этого жесткость воды можно определить по специальным тест-полоскам или измеряющему электропроводность жидкости прибору TDS-метру. Однако прежде чем приобретать фильтр для умягчения воды, рекомендуется отправить ее на исследование в лабораторию, чтобы специалисты поставили наиболее точный «диагноз». Например, проточный фильтр для умягчения воды будет актуален лишь для жидкости без критичного содержания железа, а в тяжелых случаях лучше использовать магистральный.

В каких установках происходит умягчение воды? Специалисты выделяют следующие категории фильтров:

  • Мембранные. Отсеивают до 98% примесей, делая воду фактически дистиллированной. Однако чтобы качество их работы не снижалось, необходимо поддерживать в водопроводе давление не меньше 3–4 атмосфер. Такое устройство стоит достаточно дорого, но и срок службы у него большой.
  • Полифосфатные. Представляют собой колбу с кристаллами полифосфатной соли. Проходящая через них вода насыщается полифосфатом натрия. Обычно крепятся перед бытовым оборудованием. Полифосфатные фильтры стоят недорого, но раз в полгода их необходимо менять. Пить умягченную с их помощью воду не рекомендуется.
  • Магнитные. Благодаря им на воду воздействует постоянное магнитное поле, которое меняет структуру солей жесткости. Молекулы перестают соединяться при нагревании и не образуют осадок, а также разрушают уже имеющуюся накипь. Концентрация солей при этом остается прежней, так что такие устройства в основном подходят для труб и насосного оборудования. В зависимости от разновидности магнитные фильтры могут работать от 5 до 25 лет, при этом не нуждаясь в обслуживании.
  • Электромагнитные. Работают на основе излучения электромагнитных волн необходимой частоты. Требуют подключения к сети, но много энергии не расходуют. Совместимы с любыми другими системами умягчения воды. Избыток солей при этом удаляется через отстойник в канализацию. Так же как и магнитные, дополнительно разрушают накипь, но стоят на порядок дороже.
  • Ионообменные фильтры для умягчения воды. Их явный плюс - высокая производительность и долговечность фильтрующего элемента. Представляют собой фильтр колонного или кабинетного типа, внутри которого находится ионообменная смола. Как и в случае с магнитными фильтрами, очищать с их помощью можно только холодную воду. Процесс фильтрации заключается в замене ионов кальция и магния на ионы натрия, которые не вредят человеческому организму и бытовой технике.

Несмотря на то, что после ионообменного метода умягчения воду можно пить, он считается реагентным, остальные относятся к категории безреагентных.

Обезжелезить - не значит умягчить

Понятие «жесткая вода» - не синоним «железной воде». Пресная вода также содержит железо, которое попадает в колодцы и скважины из разрушающихся каменных пород, а в трубы - из стареющих и имеющих коррозию чугунных и стальных водопроводов. Определить на глаз перенасыщенную железом воду нетрудно - она имеет характерный металлический запах и желтовато-мутный оттенок. При таких показателях белые вещи после стирки тоже становятся желтоватыми, а на сантехнике появляются коричневые пятна.

В нашей стране допустимое количество железа в воде не должно превышать 0,3 мг-экв/л. Норма общего потребления железа для взрослого человека - 25 миллиграмм в сутки.

«Передозировка» может привести к мочекаменной болезни, кишечным расстройствам, болезням желчного пузыря и проблемам с зубами, а также к дерматитам и развитию аллергии. Поэтому нет никакого смысла приобретать устройства умягчения воды, пренебрегая при этом оборудованием для обезжелезивания. Оно тоже бывает разным, как химическим, когда железо разрушают реагенты, так и механическим, когда железо распадается с помощью аэрации, коагуляции и описанного выше ионообменного метода. Более того, существуют установки «два в одном», работающие одновременно и на умягчение воды, и на ее обезжелезивание. Они в равной степени экономят место в доме, бюджет владельца и его время.


Технологии стремительно развиваются, и, может быть, когда-нибудь вся вода на Земле будет исключительно чистой. Но пока этого не произошло, наличие системы фильтрации воды - насущная необходимость, ведь от нее напрямую зависит человеческое здоровье. При этом тратить большие деньги на неэффективное оборудование совсем не хочется, поэтому к выбору фильтра для обезжелезивания и умягчения воды следует подойти тщательно.

Одной из труднорешаемых проблем на сегодня является плохая вода. Массовое ее использование подразумевает обязательное использование воды хорошего качества, но в реалиях, на кухнях и в ванных применятся вода совсем иного качества. Централизованная система очистки воды поставляет на предприятия и для частного использования, воду с высоким порогом жесткости.

Что делать с известковостью?

Итак, есть исходные данные. В дом, в квартиру поступает вода низкого качества. Тут же потребитель может возразить, что некачественной воды быть не может. Ее допустили согласно ГОСТам и СанПинам к использованию, и значит какая-то там жесткость, является чуть ли не мифом. Да при работе с такой водой образовывается вредный налет. Но его вполне можно устранить своими силами, путем обычных чисток. На предприятиях не эффективные оборачиваются в большие статьи расходов и там эта логика не работает.

При этом жесткость, как превышение определенной нормы по содержанию кальция и магния в воде, точнее их солей, может быть разной. И вред от такой воды тоже будет разниться. Разделение по видам известковости представлено в таблице.

Все, что свыше показателя семерки может приносить вред и не малый. Способы умягчения воды на такие случаи как раз и разрабатывались.

К основным негативным последствиям жесткости относятся:

  • Резкий рост расходов топлива и моющих средств и самой воды;
  • Образование блокирующей тепло, накипи;
  • Поломки оборудования;
  • Негативное влияние на качество стирки

Можно ли спутать работу жесткости с другими примесями? На начальных стадиях, пока накипи еще нет или она очень тонкая, можно. Пока плотный осадок не образуется, известковость можно принять за изобилие хлорки в воде.

На крупных промышленных предприятиях, где производят питьевую воду или работают с водой постоянно, жесткость проявляет себя сразу. Есть правила, которые нельзя нарушать. Т.к. слой накипи в котле не должен превышать каких-то полмиллиметра. Откуда такие ограничения? Все это напрямую связано с особенностями известковости, как материала.

Когда она оседает на поверхность, то передача тепла в воду практически прекращается. Известь работает как эффективный блокиратор. И чем она плотнее, тем хуже передача тепла. Когда накипь достигает состояния гипса, передача тепла прекращается практически полностью. Правда, нагревательный элемент в этом случае перегорит раньше. Аспект в том, что энергия из металла никуда не уходит, она продолжает его накалять до тех времен, пока он не видоизменится. То есть либо не взорвется, либо не расплавится. В отраслях, с таких последствий и начинали долгий путь поисков подходящих способов умягчения воды.

Избежать всего этого букета можно, как известно, путем постоянных чисток и промывок, или же путем разработки и монтажа очистной системы. Первый вариант решения проблемы до сих пор применяют, но только там, где пока нет возможности установить прогрессивное умягчающее оборудование, или хотя бы просто умягчающее оборудование.

Чистки поверхностей обладают большой популярностью у населения. Точнее, даже у тех слоев, кто ими собственно не занимается, но считает, что они явно дешевле двух умягчающих приборов в квартиру. Но любая чистка оставит после себя следы. И щетка, и кислота отчищают вместе с накипью и поверхности. Из-за этого оборудование будет служить меньше, а чистки в дальнейшем только участятся.

Причем на предприятии, такие чистки выглядят как профилактические и капитальные. Последние проводятся не чаще двух раз за все время работы оборудования. Такая капитальная чистка подразумевает полную разборку оборудования. Особо загрязненные поверхности замачивают в кислотных растворах, там разрыхляются старые остатки и только потом производят механическую очистку. Причем этап замачивания может длиться несколько часов. Такие разборки означают простои и влекут за собой упущенную выгоду. С применением умягчающих установок, капитальные чистки уходят в прошлое. Даже при сильно жесткой воде, достаточно прополоскать систему обратным протоком воды, чтобы вынести легкие взвеси, в которые превращаются соли жесткости.

Способы умягчения жесткой воды – инструкция по применению

Чтобы не тратить огромные средства на очистки, не закупать постоянно растворы для умягчения воды или устранения накипи, были созданы различные эффективные и не эффективные способы умягчения жесткой воды. Их задача по-разному, но избавить воду от излишков солей жесткости. Если их устранить, то накипные отложения в воде образовываться не будут.

Сделать все это можно с помощью двух направлений. Можно воду умягчать, путем добавления в нее каких-то специальных, умягчающих средств, можно воду облучать. По этому принципу и все умягчающие установки сегодня делятся. Хочешь получить мягкую воду, создай какое-то новое вещество, которое не осядет на поверхности и легко отфильтруется, или же воздействуй на воду, какой-то естественной силой.

Реагентные умягчители в общем делятся на два вида. Это дезинфекторы, сильно схожие с дезинфекторами для обеззараживания, и катионные умягчители. Первые работают по простейшему принципу – добавляем в воду умягчитель, она становится мягче.

Вторые работают на обменном процессе. Заполняют обменный картридж катионной смолой. Следует рассмотреть , при чем весьма эффективный. В ней большое количество натрия. При контакте с солями жесткости, натрий и соли меняются местами. Потребителю поступает уже умягченная вода. Но вот картридж достаточно быстро придет в негодность. Натрий весь вымоется, и его нужно будет менять. В промышленных производственных процессах картриджи восстанавливают с помощью промывки сильно соляным раствором. При личном потреблении и производстве питьевой воды картридж меняют.

Когда его восстанавливают, образуются очень вредные отходы, которые мало того, что нужно почистить, нужно еще и разрешение получить, на то, чтобы их слить в атмосферу. Да и сами картриджи со временем придется менять. Такое умягчение при первичных малых вложениях, в дальнейшем оказывается недешевым. Но гарантирует хорошее качество непосредственно умягчения. Да и для повышения качества умягчения, можно воду прогнать через установку еще раз.

Дезинфектор подразумевает простое впрыскивание в воду специальных веществ, умягчающих воду. Такой прибор врезается в трубу. Есть у него блок управления, где задается частота, время и оббьем подачи умягчающих средств. Здесь же постоянно измеряют электропроводимость воды, с целью понять жесткая вода или нет. Контроль идет постоянно. Так влияние человеческого фактора снижается и значительно.

Вторая группа эффективных способов умягчения жесткой воды относится к безреагентным . Яркие представители от магнита до электрических импульсов. Больше всего сегодня применяют электромагниты. Маленькие, безпроблемные гарантируют не только мягкую воду в системе. С их помощью можно избавиться от старых накипных следов в любом месте системы, совершенно не разбирая установки. Причем работать прибор будет экономно, всего каких-то пять киловатт в месяц электроэнергии. Сменных картриджей нет, следить за состоянием и обновлением не нужно. Правда качество питьевой воды такой прибор не дает, но для обслуживания всей воды в квартире или в котельной, например, просто незаменим.

Ограничения в его работе некоторые все же есть. Он не работает с водой без движения и не дает питьевого качества. Его эффект не держится долгое время.

Еще одна группа эффективных способов умягчения жесткой воды относится к тонкой очистке. Такие приборы устраняют из воды почти все примеси органического характера. К ним относится ультрафильтрация, обратный осмос, нанофильтрация. Основной удар в таких системах принимает на себя мембрана. Она самая дорогая в приборе и самая восприимчивая. Без подготовки воду через нее пропускать нельзя. Отсюда и дороговизна . Правда, такие устройства часто слишком много убирают из воды, что так же ограничивает, но не сильно их применение.

Знать степень жесткости используемой воды обязательно. От показателя жесткости питьевой воды зависит множество аспектов нашей жизни: сколько использовать стирального порошка, нужны ли меры по умягчению жесткой воды, сколько проживут аквариумные рыбки в воде, нужно ли введение полифосфатов в обратном осмосе и т.д.

Существует множество способов определения жесткости:

  • по количеству образованной пены моющего средства;
  • по району;
  • по количеству накипи на нагревательных элементах;
  • по вкусовым свойствам воды;
  • с помощью реагентов и специальных приборов

Что такое жесткость?

В воде присутствуют основные катионы: кальций, магний, марганец, железо, стронций. Последние три катиона мало влияют на жесткость воды. Существуют еще трехвалентный катион алюминия и железа, которые при определенном рН образуют известняковый налет.

Жесткость может быть разного вида:

  • общая жесткость – общее содержание ионов магния и кальция;
  • карбонатная жесткость – содержание гидрокарбонатов и карбонатов при рН большем 8,3. Их легко удалить через кипячение: во время нагревания распадаются на угольную кислоту и осадка;
  • некарбонатная жесткость – соли кальция и магния сильных кислот; нельзя удалить с помощью кипячения.

Существует несколько единиц жесткости воды: моль/м 3 , мг-экв/л, dH, d⁰, f⁰, ppm CaCO 3 .

Почему вода имеет жесткость? Ионы щелочноземельных металлов есть во всех минерализованных водах. Они берутся из залежей доломитов, гипса и известняка. Источники воды могут иметь жесткость в различных диапазонах. Существует несколько систем жесткости. За границей к ней подходят более «жестко». К примеру у нас вода считается мягкой при жесткости 0-4 мг-экв/л, а в США – 0-1,5 мг-экв/л; очень жесткая вода в России – свыше 12 мг-эк/л, а в США – свыше 6 мг-экв/л.

Жесткость маломинерализованных вод на 80% обусловлена ионами кальция. С ростом минерализации доля ионов кальция резко снижается, а ионов магния – увеличивается.

Чаще всего поверхностные воды обладают меньшей жесткостью, чем подземные. Так же жесткость зависит от сезона: во время таяния снегов она снижается.

Жесткость питьевой воды изменяет ее вкус. Порог чувствительности для иона кальция – от 2 до 6 мг-экв/л, зависит от анионов. Вода становиться горьковатой и плохо влияет на процесс пищеварения. ВОЗ не дает каких-либо рекомендаций по жесткости воды, так как нет точных доказательств ее влияния на организм человека.

Ограничение жесткости необходимо для нагревательных приборов. Например, в котлах – до 0,1 мг-экв/л. Мягкая вода имеет низкую щелочность и вызывает коррозию водопроводных коммуникаций. Коммунальные службы используют специальную обработку, что бы найти компромисс между налетом и коррозией.

Существует три группы способов умягчения воды:

  • физический;
  • химический;
  • экстрасенсорный.

Реагентные способы умягчения воды

Ионный обмен

Химические способы основаны на ионном обмене. Фильтрующей массой является ионообменная смола. Она представляет собой длинные молекулы, которые собрали в шарики желтого цвета. Из шариков выступают маленькие отростки с ионами натрия.

Во время фильтрации вода пропитывает всю смолу, а ее соли становятся на место натрия. Сам натрий уноситься водой. Из-за разницы зарядов ионов вымывается в 2 раза больше солей, чем оседает. С течением времени соли все заменяются и смола перестает работать. Период работы у каждой смолы свой.

Ионообменная смола может быть в картриджах или насыпаться в длинный болон — колонна. Картриджи имеют небольшой размер и используются только для снижения жесткости питьевой воды. Идеально подходит для умягчения воды в домашних условиях. Ионообменная колонна используется для умягчение воды в квартире или небольшом производстве. Кроме большой стоимости колонна должна периодически загружаться восстановленной фильтрующей массой.

Если в смоле картриджа не осталось ионов натрия, то его просто заменяют на новый, а старый – выбрасывают. При использовании ионообменной колоны смолу восстанавливают в специальном баке с рассолом. Для этого растворяют таблетированию соль. Солевой раствор регенерирует способность смолы к обмену ионами.

Обратной стороной является дополнительная способность воды удалять железо. Оно забивает смолу и приводит ее в полную непригодность. Следует вовремя делать анализ воды!

Использование других химических реагентов

Существует ряд менее популярных, но эффективных способов умягчения воды:

  • кальцинированная сода или известь;
  • полифосфаты;
  • антискаланты – соединения против образования накипи.
Умягчение известью и содой

Умягчение воды содой

Метод умягчения воды с использованием извести называется известкованием. Используют гашенную известь. Содержание карбонатов снижается.

Смесь соды и извести наиболее эффективно. Для наглядности умягчения воды в домашних условиях можно добавить кальцинированную соду в воду для стирки. На ведро берут 1-2 чайные ложки. Хорошо размешивают и ожидают выпадения осадка. Подобным методом пользовались женщины в Древней Греции, используя печную золу.

Вода после извести и соды не пригодна для пищевых целей!

Умягчение полифосфатами

Полифосфаты способны связывать соли жесткости. Они представляют собой крупные белые кристаллы. Вода проходит через фильтр и растворяет полифосфаты, связывая соли.

Недостатком является опасность полифосфатов для живых организмов, в том числе и человека. Они являются удобрением: после попадания в водоем наблюдается активный рост водорослей.

Полифосфаты так же непригодны для умягчения питьевой воды!

Физический метод умягчения воды

Физические способы борются с последствиями высокой жесткости – накипью. Это безреагентная очистка воды. При ее использовании не происходит снижение концентрации соли, а просто предотвращается вред для труб и нагревательных элементов. Вода становиться мягкой или для большего понимания – умягченной.

Выделяют следующие физические способы:

  • использование магнитного поля;
  • с помощью электрического поля;
  • ультразвуковая обработка;
  • термический способ;
  • использование малоточечных токовых импульсов.
Магнитное поле

Безреагентное умягчение воды с помощью магнитного поля имеет множество нюансов. Эффективность достигается только при соблюдении определенных правил:

  • определенная скорость потока воды;
  • подобранная напряженность поля;
  • определенный ионный и молекулярный состав воды;
  • температура входящей и выходящей воды;
  • время обработки;
  • атмосферное давление;
  • давление воды и т.д.

Изменение какого-либо параметра требует полной перенастройки всей системы. Реакция должна быть незамедлительной. Несмотря на сложность контроля параметров, магнитное умягчение воды используют в котельных.

Но для умягчения воды в домашних условиях с помощью магнитного поля почти невозможно. При появлении желания приобрести магнитик на трубопровод, подумайте, как вы подберете и будите обеспечивать необходимые параметры.

Использование ультразвука

Ультразвук приводит к кавитации – образованию газовых пузырьков. Повышается вероятность встречи ионов магния и кальция. Появляются центры кристаллизации не на поверхности труб, а в толще воды.

При умягчении горячей воды ультразвуком кристаллы не достигают размера, необходимого для осаждения – накипь не образуется на теплообменных поверхностях.

Дополнительно возникают высокочастотные колебания, которые препятствуют образования налета: отталкивают кристаллы от поверхности.

Изгибные колебания пагубны для образованного слоя накипи. Она начинает откалываться кусочками, которые могут засорить каналы. Перед использованием ультразвука необходимо очистить поверхности от накипи.

Электромагнитные импульсы

Безреагентные умягчители воды на основе электромагнитных импульсов меняют способ кристаллизации солей. Создаются динамические электрические импульсы с разными характеристиками. Они идут по проводу-обмотке на трубе. Кристаллы обретают форму длинных полочек, которым трудно закрепиться на поверхности теплообмена.

В процессе обработки выделяется углекислота, которая борется с уже имеющимся известковым налетом и образует защитную пленку на металлических поверхностях.

Термоумягчение

Кто-то слышит про этот метод первый раз. Но на самом деле им пользуется каждый с детства. Это привычное для нас кипячение воды.

Все замечали, что после кипячения воды образуется осадок из солей жесткости. Кофе или чай делают из более мягкой воды, чем водопроводная.

А сколько нужно кипятить? Все просто: с ростом температуры и ее воздействием соли жесткости менее растворимые и больше выпадают в осадок. В процессе нагревания выделяется углекислый газ. Чем быстрее он улетучивается, тем больше образуется известняковый налет. Плотно закрытая крышка препятствует выведению углекислого газа, а в открытой емкости быстро испаряется жидкость.

При использовании термоумягчения следует оставлять крышку в емкости слегка открытой. Так же следует обеспечить максимальную площадь осаждения солей для ускорения умягчения питьевой воды.

При жесткости до 4 мг-экв/л термическое умягчение не нужно: соли будут оседать медленнее, чем испаряется вода. В оставшейся воде будет повышенная концентрация многих примесей.

Федеральное государственное образовательное учреждение высшего профессионального образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Политехнический Институт

Реферат

Методы осветления и умягчения воды.

Использование ингибитора ИОМС.

Руководитель ________________ Яковенко А.А

Студент ТЭ 06 - 03 ________________ Минаева Д.С

Красноярск 2009

Методы осветление воды.

Под осветлением воды понимают выделение из нее взвешенных веществ при непрерывном движении воды через специальные сооружения (отстойники, осветлители) с малыми скоростями. При малых скоростях движения воды содержащиеся в ней взвешенные вещества, удельный вес которых больше удельного веса воды, под действием силы тяжести осаждаются, образуя в отстойнике осадок.

Технологические схемы обработки воды определяются в каждом конкретном случае в зависимости от предъявляемых требований и включают следующие этапы работы:

    технологические исследования и предварительные лабораторные испытания применяемых реагентов;

    подбор и расчет оборудования для дозирования и смешивания реагентов;

    выбор оборудования для тонкослойного осветления и уплотнения взвеси;

    выбор и расчет скорых фильтров с зернистой загрузкой, как напорного, так и открытого типа;

    выбор технологии и оборудования для обезвоживания шлама с последующей утилизацией;

    выбор оборудования по обеззараживанию путем дозирования раствора хлорреагента (гипохлорит натрия) и контролю качества обработанной воды.

В зависимости от направления движения воды отстойники разделяют на горизонтальные, вертикальные и радиальные.

Горизонтальный отстойник (рис. 1) представляет собой резервуар прямоугольного сечения, продольная (более длинная) ось которого направлена по движению воды. Осветляемая вода по трубе 1 направляется в распределительный желоб 2, имеющий ряд отверстий, служащих для более равномерного распределения потока воды по сечению отстойника. Скорость движения воды в этих отверстиях не должна превышать 0,4 м/сек. Осветленная вода поступает в другой желоб 3 и из него по трубе 4 отводится на фильтры. Осевшие частицы (шлам) скапливаются на дне, которое должно иметь уклон, обратный движению воды.

Время отстаивания для горизонтальных отстойников принимают обычно для коагулированной смеси не более 4 ч. Горизонтальные отстойники для осветления больших количеств воды могут разделяться по высоте на несколько параллельно включенных отделений (этажей). Преимущества этажных отстойников (предложение проф. П. И. Пискунова) - малая площадь застройки и меньший расход бетона. Такой отстойник построен на одной из крупнейших очистных станций Советского Союза.

Рис. 1. Схема горизонтального отстойника: 1 - лоток; 2 - приемная камера; 3 - приемный желоб; 4 - на фильтр; 5 - для удаления осадка

Рис. 2. Схема вертикального отстойника 1 - центральная труба; 2-лоток; 3- отводящая труба; 4 - трубопровод для удаления осадка

Вертикальные отстойники (рис. 2) представляют собой круглый в плане, иногда квадратный, резервуар с коническим днищем и центральной трубой, в которую подается осветляемая вода из камеры хлопье образования.

По выходе из центральной трубы в отстойник вода движется вверх с малой скоростью и сливается уже осветленной через борт концентрически расположенного желоба, откуда отводится на фильтр. Выпадающий на дно отстойника осадок периодически удаляется.

Скорость протекания воды в центральной трубе принимается от 30 до 75 мм/сек. Время отстаивания воды в отстойнике Т = 2 ч. Скорость восходящего движения воды составляет 0,5-0,6 мм/сек.

Диаметр отстойника не должен превышать 12 м, а отношение диаметра к высоте отстойника обычно принимают не более 1,5.

Радиальные отстойники представляют собой круглые резервуары с малоконическим дном. Вода поступает в центральную трубу и из нее направляется в радиальном направлении к сборному лотку по периферии отстойника. Отстойники имеют небольшую глубину, осадок удаляют механизированным способом без нарушения работы отстойника. Радиальные отстойники сооружают диаметром от 10 л* и более при глубине от 1,5-2,5 ж (у стенки отстойника) до З-5 м (в центре).

Выбор типа отстойника зависит от суточной производительности станции, общей ее компоновки, рельефа местности, характера грунтов и т. д. Вертикальные отстойники рекомендуется применять при суточной производительности до 3000 м3. Горизонтальные Отстойники применяют при производительности станции более 30 000 м3/сут как в случае коагулирования воды, так и без него.

Радиальные отстойники целесообразны при больших расходах воды (более 40 000 м3/сут). Преимуществом этих отстойников по сравнению с прямоугольными горизонтальными является механизированное удаление осадка без прекращения работы отстойника. Их применяют при большой мутности речной воды (с коагулированием и без него) в основном для осветления производственной воды.

Осветлители со взвешенным осадком. Процесс осветления протекает значительно интенсивнее, если осветляемая вода после коагулирования пропускается через массу ранее образованного осадка, поддерживаемого во взвешенном состоянии током

Рис. 3. Осветлители: а - первоначальной конструкции; б - коридорного типа: 1 - распределительные трубы; 2 - желоба с затопленными отверстиями; 3 - рабочая часть осветлителя; 4- защитная зона; 5 - лоток отвода; 6 - труба для подсоса осадка; 7 - осадкоприемные окна; 8-уплотнитель осадка; 9 - трубы для сброса осадка) 10 - труба для отвода осветленной воды

Такие осветлители дают более высокий эффект осветления воды, чем в обычных отстойниках, что объясняется более быстрым укрупнением и задержанием взвеси при прохождении коагулированной воды через взвешенный осадок.

Применение осветлителя со взвешенным остатком дает возможность по сравнению с обычным отстойником снизить расход коагулянта, уменьшить размеры сооружений и получить более высокий эффект осветления воды.

Осветлитель первоначальной конструкции представляет собой цилиндрический резервуар с шламоуплотнителем в центральной его части (рис. 3, а). Здесь вода с реагентом поступает в воздухоотделитель, затем проходит вниз в дырчатые распределительные трубы 1, а далее- в отверстия дырчатого дна 2.

Вода, проходя через слой взвешенного осадка 3, выходит в зону осветления 4 и переливается в отводные желоба. В шламонакопитель 5 поступает излишек взвешенного осадка, откуда его периодически удаляют в канализацию.

Осветлитель коридорного типа (см. рис. 3, б) представляет собой прямоугольный резервуар. Коагулированная вода поступает в осветлитель по трубе 1 и через дырчатые трубы 2 распределяется в нижней (рабочей) части 3 осветлителя. Скорость движения воды в рабочей части должна быть такой, чтобы хлопья коагулянта находились во взвешенном состоянии. Этот слой способствует задержанию взвешенных частиц. Степень осветления воды при этом значительно выше, чем в обычном отстойнике.

Над рабочей частью находится защитная зона 4, где взвешенного слоя нет. Осветленная вода отводится лотком 5 и трубами 10 для последующей обработки. Избыточное количество осадка посредством отсоса в трубу 6 отводится через окна 7 в осадкоуплотнитель 8, где осадок уплотняется и периодически сбрасывается в канализацию по трубам 9.

Восходящую скорость потока в рабочей части осветлителя принимают равной 1-1,2 мм/сек.

Методы умягчения воды.

Устранение из воды солей жесткости, т. е. умягчение ее, необходимо производить для питания котельных установок, причем жесткость воды для котлов среднего и низкого давления должна быть не более 0,3 мг.экв/л. Умягчать воду требуется также для таких производств, как текстильное, бумажное, химическое, где вода должна иметь жесткость не более 0,7-1,0 мг.экв/л. Умягчение воды для хозяйственно-питьевых целей также целесообразно, особенно в случае, если она превышает 7 мг.экв/л.

Применяют следующие основные методы умягчения воды:

1) реагентный метод.- путем введения реагентов, способствующих образованию малорастворимых соединений кальция и магния и выпадению их в осадок;

2) катионитовый метод, при котором умягчаемая вода фильтруется через вещества, обладающие способностью обменивать содержащиеся в них катионы (натрия или водорода) на катионы кальция и магния, растворенных в воде солей. В результате обмена Задерживаются ионы кальция и магния и образуются натриевые соли, не придающие воде жесткость;

3) термический метод, заключающийся в нагревании воды до температуры выше 100°, при этом почти полностью удаляются соли карбонатной жесткости.

Часто методы умягчения применяют комбинированно. Например, часть солей жесткости удаляют реагентным способом, а оставшуюся часть - с помощью катионного обмена.

Из реагентных методов содово-известковый способ умягчения является наиболее распространенным. Сущность его сводится к получению вместо растворенных в воде солей Са Mg нерастворимых солей СаС0 3 и Mg(OH) 2 , выпадающих в осадок.

Оба реагента - соду Na 2 C0 3 и известь Са(ОН) 2 -вводят в умягчаемую воду одновременно или поочередно.

Соли карбонатной, временной жесткости удаляют известью, не карбонатной, постоянной жесткости - содой. Химические реакции при удалении карбонатной жесткости протекают следующим образом:

Са (НС0 3) 2 + Са (ОН) 2 = 2 СаС0 3 + 2Н 2 0.

При этом карбонат кальция СаС03 выпадает в осадок. При удалении бикарбоната магния Mg(HC0 3) 2 реакция идет так:

Mg (НСОа)2 + 2Са (ОН) 2 = Mg (ОН) 2 + 2СаС0 3 + 2Н 2 0.

Гидрат окиси магния Mg(OH) 2 коагулирует и выпадает в осадок. Для устранения некарбонатной жесткости в умягчаемую воду вводят Na 2 C0 3 . Химические реакции при удалении некарбонатной жесткости следующие:

Na 2 C0 8 + CaS0 4 = CaCO 8 +Na 2 S0 4 ;

Na 2 CO 3 + CaCl 2 = CaC0 3 + 2NaCl.

В результате реакции получается углекислый кальций, который выпадает в осадок.

Для глубокого умягчения применяют такие вспомогательные мероприятия, как подогревание обрабатываемой воды примерно до 90, при этом остаточная жесткость может быть доведена до 0,2- 0,4 мг.экв/л.

Без подогрева обработка воды проводится большими избыточными дозами извести с последующим удалением этих избытков путем продувки воды углекислотой. Последний процесс называется рекарбонизацией.

На рис. 4 представлена схема реагентной водоумягчительной установки, в состав которой входят устройство для приготовления и дозирования растворов реагентов, смесители, камеры реакции, осветлители, фильтры.

Для умягчения равномерно подаваемой воды, поступающей непрерывно, применяют те же дозаторы растворов соды и извести, что и при коагулировании. Если же расход умягчаемой воды имеет колебания, применяют так называемые пропорциональные дозаторы.

Рис. 4. Схема реагентного умягчения воды:1 -камера реакций (вихревой реактор); 2 - осветлитель; 3 - кварцевый фильтр; 4 -смеситель; 5, 6 и 7 - дозаторы растворов реагентов; 8, 9 и 10 - баки для растворения коагулянтов и соды для приготовления известкового молока; 11 - бак; 12 - насос; 13 - воздухоотделитель.

Содово-известковый способ пригоден для умягчения воды с любым соотношением карбонатной и некарбонатной жесткости.

Недостатки содово-известкового способа умягчения заключаются в следующем: 1) вода не умягчается полностью; 2) установки для умягчения громоздки; 3) необходима тщательная дозировка соды и извести, чего трудно достичь из-за непостоянства состава умягчаемой воды и реагентов.

Катионитовый способ умягчения основан на способности веществ, называемых катеонитами, обменивать содержащиеся в них катионы натрия Na+ или водорода Н+ на катионы кальция или магния, растворенных в воде. В соответствии с этим различают натрий-катионитовый и водород-натрий: катионитовый методы умягчения воды.

При помощи катионитов вода умягчается на установке, состоящей из нескольких металлических напорных резервуаров, загруженных катионитом (рис. 5).

Необработанная вода поступает в фильтр по трубам А, Б и В; выпуск умягченной воды происходит по трубе Г При работе фильтра задвижки 2 и 5 открыты, а остальные {1, 3, 4 и 6) закрыты. Перед регенерацией фильтр промывают.

Для промывки фильтра вода из бака Д подается по трубе Е и проходит по дренам снизу вверх. Продолжительность промывки 20-30 мин, интенсивность 4-6 л/сек на 1 м2. Промывная вода с фильтров отводится по трубам В, Б, Ж, причем задвижки 4 и 3 открыты, а остальные закрыты.

Регенерирующий раствор катионита при регенерации подается по трубе В, проходит фильтр сверху вниз и сбрасывается по трубе. В этом случае задвижки 1 и 6 открыты, остальные (2-5) закрыты; продолжительность регенерации около 30-60 мин, а отмывки от регенерирующего раствора 40-60 мин.

Рис. 5. Схема катионитовой водоумягчительной установки

Преимущества катионитового способа заключаются в следующем: 1) вода умягчается почти полностью; 2) дозировать нужно только раствор поваренной соли или серной кислоты; 3) фильтры изготовляют заводским способом. К числу недостатков этого способа следует отнести необходимость предварительного осветления воды, так как коллоидные и органические вещества обволакивают зерна катионитов и уменьшают их обменную способность.

Реагенты, применяемые при обработке воды, вводят, в воду в следующих местах:

а) хлор (при предварительном хлорировании) - во всасывающие трубопроводы насосной станции первого подъема или в водоводы, подающие воду на станцию очистки;

б) коагулянт - в трубопровод перед смесителем или в смеситель;

в) известь для подщелачивания при коагулировании - одновременно с коагулянтом;

г) активированный уголь для удаления запахов и привкусов в воде до 5 мг/л - перед фильтрами. При больших дозах уголь следует вводить на насосный станции первого подъема или одновременно с коагулянтом в смеситель водоочистной станции, но не ранее чем через 10 мин после введения хлора;

д) хлор и аммиак для обеззараживания воды вводят до очистных сооружений и в фильтрованную воду. При наличии в воде фенолов аммиак следует вводить как при предварительном, так и при окончательном хлорировании.

Раствор коагулянта приготовляют в растворных баках; откуда его надлежит выпускать или перекачивать в расходные баки. Для подачи в воду заданного количества раствора коагулянта следует предусматривать установку дозаторов.

При использовании автоматических дозаторов, основанных на принципе изменения электропроводности воды в зависимости от примесей, известь для подщелачивания следует вводить после отбора коагулированной воды, идущей к дозатору.

К специальным видам очистки и обработки воды относятся: опреснение, обессоливание, обезжелезивание, удаление из воды растворенных газов и стабилизация.

Механизм действия ингибиторов ИОМС.

При нагреве воды в процессе работы системы отопления происходит термический распад присутствующих в ней гидрокарбонат-ионов с образованием карбонат-ионов. Карбонат-ионы, взаимодействуя с присутствующими в избытке ионами кальция, образуют зародыши кристаллов карбоната кальция. На поверхности зародышей осаждаются все новые карбонат-ионы и ионы кальция, вследствие чего образуются кристаллы карбоната кальция, в котором часто присутствует карбонат магния в виде твердого раствора замещения. Осаждаясь на стенках теплотехнического оборудования, эти кристаллы срастаются, образуя накипь (рис. 6, а).

Основным компонентом, обеспечивающим противонакипную активность всех рассматриваемых ингибиторов, являются органофосфонаты - соли органических фосфоновых кислот. При введении органофосфонатов в воду, содержащую ионы кальция, магния и других металлов они образуют весьма прочные химические соединения - комплексы. (Во многие современные ингибиторы органофосфонаты входят уже в виде комплексов с переходными металлами, главным образом с цинком.) Так как в одном литре природной или технической воды содержится 1020–1021 ионов кальция и магния, а органофосфонаты вводят в количестве всего лишь 1018–1019 молекул на литр воды, все молекулы органофосфонатов образуют комплексы с ионами металлов, а комплексоны как таковые в воде не присутствуют. Комплексы органофосфонатов адсорбируются (осаждаются) на поверхности зародышей кристаллов карбоната кальция, препятствуя дальнейшей кристаллизации карбоната кальция. Поэтому при введении в воду 1–10 г/м3 органофосфонатов накипь не образуется даже при нагревании очень жесткой воды (рис. 6, б).

Комплексы органофосфонатов способны адсорбироваться не только на поверхности зародышей кристаллов, но и на металлических поверхностях. Образующаяся тонкая пленка затрудняет доступ кислорода к поверхности металла, вследствие чего скорость коррозии металла снижается. Однако наиболее эффективную защиту металла от коррозии обеспечивают ингибиторы на основе комплексов органических фосфоновых кислот с цинком и некоторыми другими металлами, которые были разработаны и внедрены в практику профессором Ю.И. Кузнецовым. В приповерхностном слое металла эти соединения способны распадаться с образованием нерастворимых соединений гидроксида цинка, а также комплексов сложной структуры, в которых участвует много атомов цинка и железа. В результате этого образуется тонкая, плотная, прочно сцепленная с металлом пленка, защищающая металл от коррозии. Степень защиты металла от коррозии при использовании таких ингибиторов может достигать 98%.

Современные препараты на основе органофосфонатов не только ингибируют солеотложения и коррозию, но и постепенно разрушают застарелые отложения накипи и продуктов коррозии. Это объясняется образованием в порах накипи поверхностных адсорбционных слоев органофосфонатов, структура и свойства (например, коэффициент температурного расширения) которых отличаются от структуры кристаллов накипи. Возникающие при эксплуатации системы отопления колебания и градиенты температуры приводят к расклиниванию кристаллических сростков накипи. В результате накипь разрушается, превращаясь в тонкую взвесь, легко удаляемую из системы. Поэтому при введении препаратов, содержащих органофосфонаты, в системы отопления с большим количеством застарелых отложений накипи и продуктов коррозии, необходимо регулярно спускать отстой из фильтров и грязевиков, установленных в нижних точках системы. Спуск отстоя следует производить, в зависимости от количества отложений, 1–2 раза в сутки, из расчета подпитки системы чистой, обработанной ингибитором, водой в количестве 0,25–1% водного объема системы в час. Необходимо отметить, что при повышении концентрации ингибитора свыше 10–20 г/м3 накипь разрушается с образованием весьма грубых взвесей, способных забить узкие места системы отопления. Поэтому передозировка ингибитора в этом случае грозит засорением системы. Наиболее эффективная и безопасная очистка систем отопления от застарелых отложений накипи и продуктов коррозии достигается при использовании препаратов, содержащих поверхностно-активные вещества, например, композиции «ККФ».

а) б)

Рис. 6. Разрез внутриквартального 89 мм трубопровода горячего водоснабжения:

а - по истечении двух лет работы на воде жeсткостью 8–12 мг-экв/дм3;

б - через шесть месяцев после начала обработки воды ингибитором ИОМС-1.

gastroguru © 2017