Средние теплопотери на м2. Расчёт теплопотерь ограждающими конструкциями. Факторы, влияющие на теплопотери

Расчет теплопотерь дома

Дом теряет тепло через ограждающие конструкции (стены, окна, крыша, фундамент), вентиляцию и канализацию. Основные потери тепла идут через ограждающие конструкции — 60-90% от всех теплопотерь.

Расчет теплопотерь дома нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме. Вот пример расчёта для газового котла и электрического . Также можно благодаря расчётам провести анализ финансовой эффективности утепления, т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя.

Теплопотери через ограждающие конструкции

Приведу пример расчета для внешних стен двухэтажного дома.
1) Вычисляем сопротивление теплопередаче стены , деля толщину материала на его коэффициент теплопроводности. Например, если стена построена из тёплой керамики толщиной 0,5 м с коэффициентом теплопроводности 0,16 Вт/(м×°C), то делим 0,5 на 0,16:

0,5 м / 0,16 Вт/(м×°C) = 3,125 м 2 ×°C/Вт

Коэффициенты теплопроводности строительных материалов можно взять .

2) Вычисляем общую площадь внешних стен. Приведу упрощённый пример квадратного дома:

(10 м ширина × 7 м высота × 4 стороны) - (16 окон × 2,5 м 2) = 280 м 2 - 40 м 2 = 240 м 2

3) Делим единицу на сопротивление теплопередаче, тем самым получая теплопотери с одного квадратного метра стены на один градус разницы температуры.

1 / 3,125 м 2 ×°C/Вт = 0,32 Вт / м 2 ×°C

4) Cчитаем теплопотери стен. Умножаем теплопотери с одного квадратного метра стены на площадь стен и на разницу температур внутри дома и снаружи. Например, если внутри +25°C, а снаружи -15°C, то разница 40°C.

0,32 Вт / м 2 ×°C × 240 м 2 × 40 °C = 3072 Вт

Вот это число и является теплопотерей стен. Измеряется теплопотеря в ваттах, т.е. это мощность теплопотери.

5) В киловатт-часах удобнее понимать смысл теплопотерь. За 1 час через наши стены при разнице температур в 40°C уходит тепловой энергии:

3072 Вт × 1 ч = 3,072 кВт×ч

За 24 часа уходит энергии:

3072 Вт × 24 ч = 73,728 кВт×ч


Понятное дело, что за время отопительного периода погода разная, т.е. разница температур всё время меняется. Поэтому, чтобы вычислить теплопотери за весь отопительный период, нужно в пункте 4 умножать на среднюю разницу температур за все дни отопительного периода.

Например, за 7 месяцев отопительного периода средняя разница температур в помещении и на улице была 28 градусов, значит теплопотери через стены за эти 7 месяцев в киловатт-часах:

0,32 Вт / м 2 ×°C × 240 м 2 × 28 °C × 7 мес × 30 дней × 24 ч = 10838016 Вт×ч = 10838 кВт×ч

Число вполне «осязаемое». Например, если бы отопление было электрическое, то можно посчитать сколько бы ушло денег на отопление, умножив полученное число на стоимость кВт×ч. Можно посчитать сколько ушло денег на отопление газом, вычислив стоимость кВт×ч энергии от газового котла. Для этого нужно знать стоимость газа, теплоту сгорания газа и КПД котла.

Кстати, в последнем вычислении вместо средней разницы температур, количества месяцев и дней (но не часов, часы оставляем), можно было использовать градусо-сутки отопительного периода — ГСОП, некоторая информация . Можно найти уже посчитанные ГСОП для разных городов России и перемножать теплопотери с одного квадратного метра на площадь стен, на эти ГСОП и на 24 часа, получив теплопотери в кВт*ч.

Аналогично стенам нужно посчитать значения теплопотерь для окон, входной двери, крыши, фундамента. Потом всё просуммировать и получится значение теплопотерь через все ограждающие конструкции. Для окон, кстати, не нужно будет узнавать толщину и теплопроводность, обычно уже есть готовое посчитанное производителем сопротивление теплопередаче стеклопакета . Для пола (в случае плитного фундамента) разница температур не будет слишком большой, грунт под домом не такой холодный, как наружный воздух.

Теплопотери через вентиляцию

Примерный объем имеющегося воздуха в доме (объём внутренних стен и мебели не учитываю):

10 м х10 м х 7 м = 700 м 3

Плотность воздуха при температуре +20°C 1,2047 кг/м 3 . Удельная теплоемкость воздуха 1,005 кДж/(кг×°C). Масса воздуха в доме:

700 м 3 × 1,2047 кг/м 3 = 843,29 кг

Допустим, весь воздух в доме меняется 5 раз в день (это примерное число). При средней разнице внутренней и наружной температур 28 °C за весь отопительный период на подогрев поступающего холодного воздуха будет в среднем в день тратится тепловой энергии:

5 × 28 °C × 843,29 кг × 1,005 кДж/(кг×°C) = 118650,903 кДж

118650,903 кДж = 32,96 кВт×ч (1 кВт×ч = 3600 кДж)

Т.е. во время отопительного периода при пятикратном замещении воздуха дом через вентиляцию будет терять в среднем в день 32,96 кВт×ч тепловой энергии. За 7 месяцев отопительного периода потери энергии будут:

7 × 30 × 32,96 кВт×ч = 6921,6 кВт×ч

Теплопотери через канализацию

Во время отопительного периода поступающая в дом вода довольно холодная, допустим, она имеет среднюю температуру +7°C. Нагрев воды требуется, когда жильцы моют посуду, принимают ванны. Также частично нагревается вода от окружающего воздуха в бачке унитаза. Всё полученное водой тепло жильцы смывают в канализацию.

Допустим, что семья в доме потребляет 15 м 3 воды в месяц. Удельная теплоёмкость воды 4,183 кДж/(кг×°C). Плотность воды 1000 кг/м 3 . Допустим, что в среднем поступающая в дом вода нагревается до +30°C, т.е. разница температур 23°C.

Соответственно в месяц теплопотери через канализацию составят:

1000 кг/м 3 × 15 м 3 × 23°C × 4,183 кДж/(кг×°C) = 1443135 кДж

1443135 кДж = 400,87 кВт×ч

За 7 месяцев отопительного периода жильцы выливают в канализацию:

7 × 400,87 кВт×ч = 2806,09 кВт×ч

Заключение

В конце нужно сложить полученные числа теплопотерь через ограждающие конструкции, вентиляцию и канализацию. Получится примерное общее число теплопотерь дома.

Надо сказать, что теплопотери через вентиляцию и канализацию довольно стабильные, их трудно уменьшить. Не будете же вы реже мыться под душем или плохо вентилировать дом . Хотя частично теплопотери через вентиляцию можно снизить с помощью рекуператора.

Если я где-то допустил ошибку, напишите в комментарии, но вроде всё перепроверил несколько раз. Надо сказать, что есть значительно более сложные методики расчета теплопотерь, там учитываются дополнительные коэффициенты, но их влияние незначительное.

Дополнение.
Расчет теплопотерь дома также можно сделать с помощью СП 50.13330.2012 (актуализированная редакция СНиП 23-02-2003). Там есть приложение Г «Расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию жилых и общественных зданий», сам расчет будет значительно сложнее, там используется больше факторов и коэффициентов.


Показаны 25 последних комментариев. Показать все комментарии (54).





















Андрей Владимирович (11.01.2018 14:52)
В целом все отлично для простых смертных. Единственное я бы посоветовал, для тех кто любит указывать на неточности, в начале статьи указать более полную формулу
Q=S*(tвн-tнар)*(1+∑β)*n/Rо и объяснить,что (1+∑β)*n с учетом всех коэффициентов будет незначительно отличаться от 1 и не может грубо исказить расчет теплопотерь всей ограждающей конструкции, т.е. берем за основу формулу Q=S*(tвн-tнар)*1/Rо. С расчетом теплопотерь вентиляции не согласен, считаю по другому.Я бы высчитал общую теплоемкость всего объема, а затем умножил на реальную кратность. Удельную теплоемкость воздуха я бы все таки взял морозного (греть то будем уличный воздух), а она будет прилично выше. Да и теплоемкость воздушной смеси лучше взять сразу в Вт, равна 0.28 Вт / (кг °С).


На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

  • Предписывающему;
  • Потребительскому.

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома .

Предписывающий подход - это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

Санитарно-гигиенические требования:

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру : для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома . Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи .

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q - это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2);
  • ΔT - это разница между температурой на улице и в комнате (°С);
  • R - это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Материал и толщина стены

Сопротивление теплопередаче R m .

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

0.592
0.502
0.405
0.187

Сруб из бревна Ø 25
Ø 20

0.550
0.440

Сруб из бруса

Толщ. 20 сантиметров
Толщ. 10 сантиметров

0.806
0.353

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

0.476
0.709

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Деревянные полы

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Т нар. = -30 °С. Т внутр. = 20 °С.)

Тип окна

R T

q . Вт/м2

Q . Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

4-16-4
4-Ar16-4
4-16-4К
4-Ar16-4К

0.32
0.34
0.53
0.59

156
147
94
85

250
235
151
136

Двухкамерный стеклопакет

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К

0.42
0.44
0.53
0.60
0.45
0.47
0.55
0.67
0.47
0.49
0.58
0.65
0.49
0.52
0.61
0.68
0.52
0.55
0.65
0.72

119
114
94
83
111
106
91
81
106
102
86
77
102
96
82
73
96
91
77
69

190
182
151
133
178
170
146
131
170
163
138
123
163
154
131
117
154
146
123
111

Примечание
. Четные цифры в условном обозначении стеклопакета указывают на воздушный
зазор в миллиметрах;
. Буквы Ar означают, что зазор заполнен не воздухом, а аргоном;
. Буква К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной -30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых , а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

24
-26
-28
-30

76
83
87
89

75
81
83
85

70
75
78
80

66
71
75
76

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

24
-26
-28
-30

91
97
102
104

90
96
101
102

82
87
91
94

79
87
89
91

Рубленая стена (25 см)
с внутр. обшивкой

24
-26
-28
-30

61
65
67
70

60
63
66
67

55
58
61
62

52
56
58
60

Рубленая стена (20 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (18 см)
с внутр. обшивкой

24
-26
-28
-30

76
83
87
89

76
81
84
87

69
75
78
80

66
72
75
77

Стена из бруса (10 см)
с внутр. обшивкой

24
-26
-28
-30

87
94
98
101

85
91
96
98

78
83
87
89

76
82
85
87

Каркасная стена (20 см)
с керамзитовымзаполнением

24
-26
-28
-30

62
65
68
71

60
63
66
69

55
58
61
63

54
56
59
62

Стена из пенобетона (20 см)
с внутр. штукатуркой

24
-26
-28
-30

92
97
101
105

89
94
98
102

87
87
90
94

80
84
88
91

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Пример 1.

Угловая комната (1 этаж)


Характеристики комнаты:

  • 1 этаж.
  • площадь комнаты - 16 м 2 (5х3.2).
  • высота потолка - 2.75 м.
  • наружных стен - две.
  • материал и толщина наружных стен - брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна - два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы - деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура -30 °С.
  • требуемая температура в комнате +20 °С.
  • Площадь наружных стен за вычетом окон: S стен (5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: S окон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: S пола = 5х3.2 = 16 м 2
  • Площадь потолка: S потолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Q стен = 18.94х89 = 1686 Вт.
  • Q окон = 3.2х135 = 432 Вт.
  • Q пола = 16х26 = 416 Вт.
  • Q потолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Q суммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)


Характеристики комнаты:

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна - 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура -30°С.
  • требуемая температура в комнате +20°С.
  • Площадь торцевых наружных стен за вычетом окон: S торц.стен = 2х(2.4х3.8-0.9х0.6-2х1.6х0.8) = 12 м 2
  • Площадь скатов крыши, ограничивающих комнату: S скатов.стен = 2х1.0х4.2 = 8.4 м 2
  • Площадь боковых перегородок: S бок.перегор = 2х1.5х4.2 = 12.6 м 2
  • Площадь окон: S окон = 4х1.6х1.0 = 6.4 м 2
  • Площадь потолка: S потолка = 2.6х4.2 = 10.92 м 2

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Q торц.стен = 12х89 = 1068 Вт.
  • Q скатов.стен = 8.4х142 = 1193 Вт.
  • Q бок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Q окон = 6.4х135 = 864 Вт.
  • Q потолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Q суммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 - 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Т нар. =-20 °С. Т внутр. =20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро-
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

12
25
50
75

0.15
0.3
0.65
1.0

12
25
50
75

6
12
24
36

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

1.0
0.65
0.45

75
50
34

17
23
26

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

2.5
1.5
0.9

190
110
70

7
10
13

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

10
15
20

0.6
0.9
1.2

45
68
90

10
15
20

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 - 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери ).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре -25 °С необходимо 213 Вт на 1 м 2 общей площади, а при -30 °С - 230 Вт. Для хорошо утепленных домов - этот показатель будет составлять: при -25 °С - 173 Вт на м 2 общей площади, а при -30 °С - 177 Вт.

Энергоэффективная реконструкция здания поможет сэкономить тепловую энергию и повысить комфортность жизни. Наибольший потенциал экономии заключается в хорошей теплоизоляции наружных стен и крыши. Самый простой способ оценить возможности эффективного ремонта – это потребление тепловой энергии. Если в год потребляется более 100 кВт ч электроэнергии (10 м³ природного газа) на квадратный метр отапливаемой площади, включая площадь стен, то энергосберегающий ремонт может быть выгодным.

Потери тепла через внешнюю оболочку

Основная концепция энергосберегающего здания – это сплошной слой теплоизоляции над нагретой поверхностью контура дома.

  1. Крыша. С толстым слоем теплоизоляции потери тепла через крышу можно уменьшить;

Важно! В деревянных конструкциях теплозащитное уплотнение крыши затруднено, так как древесина набухает и может повреждаться от большой влажности.

  1. Стены. Как и с крышей, потери тепла снижаются при применении специального покрытия. В случае внутренней теплоизоляции стен существует риск того, что конденсат будет собираться за изоляцией, если влажность в помещении слишком высокая;

  1. Пол или подвал. По практическим соображениям тепловая изоляция производится изнутри здания;
  2. Термические мосты. Тепловые мосты представляют собой нежелательные охлаждающие ребра (теплопроводники) снаружи здания. Например, бетонный пол, который одновременно является балконным полом. Многие тепловые мосты находятся в области почвы, парапетах, оконных и дверных рамах. Существуют также временные тепловые мосты, если детали стен закреплены металлическими элементами. Термомосты могут составлять значительную часть потерь тепла;
  3. Окна. За последние 15 лет теплоизоляция оконного стекла улучшилась в 3 раза. Сегодняшние окна обладают специальным отражающим слоем на стеклах, что уменьшает потери излучения, это одно,- и двухкамерные стеклопакеты;
  4. Вентиляция. Обычное здание имеет воздушные утечки, особенно в области окон, дверей и на крыше, что обеспечивает необходимый воздухообмен. Однако в холодное время года это вызывает значительные теплопотери дома от выходящего нагретого воздуха. Хорошие современные здания достаточно воздухонепроницаемы, и необходимо регулярно вентилировать помещения, открывая окна на несколько минут. Чтобы уменьшить потери тепла за счет вентиляции, все чаще устанавливаются комфортные вентиляционные системы. Этот вид теплопотерь оценивается в 10-40%.

Термографические съемки в здании с плохой изоляцией дают представление о том, как много тепла теряется. Это очень хороший инструмент для контроля качества ремонта или нового строительства.

Способы оценки теплопотерь дома

Существуют сложные методики расчетов, учитывающие различные физические процессы: конвекционный обмен, излучение, но они часто являются излишними. Обычно используются упрощенные формулы, а при необходимости можно добавить к полученному результату 1-5%. Ориентация здания учитывается в новых постройках, но солнечное излучение также не влияет значительно на расчет теплопотерь.

Важно! При применении формул для расчетов потерь тепловой энергии всегда учитывается время нахождения людей в том или ином помещении. Чем оно меньше, тем меньшие температурные показатели надо брать за основу.

  1. Усредненные величины. Самый приблизительный метод, не обладает достаточной точностью. Существуют таблицы, составленные для отдельных регионов с учетом климатических условий и средних параметров здания. Например, для конкретной местности указывается значение мощности в киловаттах, необходимое для нагрева 10 м² площади помещения с потолками высотой 3 м и одним окном. Если потолки ниже или выше, и в комнате 2 окна, показатели мощности корректируются. Этот метод совершенно не учитывает степень теплоизоляции дома и не даст экономии тепловой энергии;
  2. Расчет теплопотерь ограждающего контура здания. Суммируется площадь внешних стен за вычетом размеров площадей окон и дверей. Дополнительно находится площадь крыши с полом. Дальнейшие расчеты ведутся по формуле:

Q = S x ΔT/R, где:

  • S – найденная площадь;
  • ΔT – разность между внутренней и наружной температурами;
  • R – сопротивление передаче тепла.

Результат, полученный для стен, пола и крыши, объединяется. Затем добавляются вентиляционные потери.

Важно! Такой подсчет теплопотерь поможет определиться с мощностью котла для здания, но не позволит рассчитать покомнатное количество радиаторов.

  1. Расчет теплопотерь по комнатам. При использовании аналогичной формулы рассчитываются потери для всех комнат здания по отдельности. Затем находятся теплопотери на вентиляцию путем определения объема воздушной массы и примерного количества раз в день ее смены в помещении.

Важно! При расчете вентиляционных потерь нужно обязательно учитывать назначение помещения. Для кухни и ванной комнаты необходима усиленная вентиляция.

Пример расчета теплопотерь жилого дома

Применяется второй способ расчета, только для внешних конструкций дома. Через них уходит до 90 процентов тепловой энергии. Точные результаты важны, чтобы выбрать необходимый котел для отдачи эффективного тепла без излишнего нагрева помещений. Также это показатель экономической эффективности выбранных материалов для теплозащиты, показывающий, как быстро можно окупить затраты на их приобретение. Расчеты упрощенные, для здания без наличия многослойного теплоизоляционного слоя.

Дом обладает площадью 10 х 12 м и высотой 6 м. Стены толщиной в 2,5 кирпича (67 см), покрытые штукатуркой, слоем 3 см. В доме 10 окон 0,9 х 1 м и дверь 1 х 2 м.

Расчет сопротивления передаче тепла стен:

  1. R = n/λ, где:
  • n – толщина стен,
  • λ – удельная теплопроводность (Вт/(м °C).

Это значение ищется по таблице для своего материала.

  1. Для кирпича:

Rкир = 0,67/0,38 = 1,76 кв.м °C/Вт.

  1. Для штукатурного покрытия:

Rшт = 0,03/0,35 = 0,086 кв.м °C/Вт;

  1. Общая величина:

Rст = Rкир + Rшт = 1,76 + 0,086 = 1,846 кв.м °C/Вт;

Вычисление площади внешних стен:

  1. Общая площадь внешних стен:

S = (10 + 12) х 2 х 6 = 264 кв.м.

  1. Площадь окон и дверного проема:

S1 = ((0,9 х 1) х 10) + (1 х 2) = 11 кв.м.

  1. Скорректированная площадь стен:

S2 = S – S1 = 264 – 11 = 253 кв.м.

Тепловые потери для стен будут определяться:

Q = S x ΔT/R = 253 х 40/1,846 = 6810,22 Вт.

Важно! Значение ΔT взято произвольно. Для каждого региона в таблицах можно отыскать среднее значение этой величины.

На следующем этапе идентичным образом высчитываются теплопотери через фундамент, окна, крышу, дверь. При вычислении показателя тепловых потерь для фундамента берется меньшая разность температур. Затем надо просуммировать все полученные цифры и получить итоговую.

Чтобы определить возможный расход электроэнергии на отопление, можно представить эту цифру в кВт ч и рассчитать ее за отопительный сезон.

Если использовать только цифру для стен, получается:

  • за сутки:

6810,22 х 24 = 163,4 кВт ч;

  • за месяц:

163,4 х 30 = 4903,4 кВт ч;

  • за отопительный сезон 7 месяцев:

4903,4 х 7 =34 323,5 кВт ч.

Когда отопление газовое, определяется расход газа, исходя из его теплоты сгорания и коэффициента полезного действия котла.

Тепловые потери на вентиляцию

  1. Найти воздушный объем дома:

10 х 12 х 6 = 720 м³;

  1. Масса воздуха находится по формуле:

М = ρ х V, где ρ – плотность воздуха (берется из таблицы).

М = 1, 205 х 720 = 867,4 кг.

  1. Надо определить цифру, сколько раз сменяется воздух во всем доме за сутки (например, 6 раз), и высчитать теплопотери на вентиляцию:

Qв = nxΔT xmx С, где С – удельная теплоемкость для воздуха, n – число раз замены воздуха.

Qв = 6 х 40 х 867,4 х 1,005 = 209217 кДж;

  1. Теперь надо перевести в Квт ч. Так как в одном киловатт-часе 3600 килоджоулей, то 209217 кДж = 58,11 кВт ч

Некоторые методики расчета предлагают взять потери тепла на вентиляцию от 10 до 40 процентов общих теплопотерь, не высчитывая их по формулам.

Для облегчения расчетов теплопотерь дома есть калькуляторы онлайн, где можно вычислить результат для каждой комнаты или дома целиком. В предлагаемые поля просто вводятся свои данные.

Видео

Принято считать, что для средней полосы России мощность отопительных систем должна рассчитываться исходя из соотношения 1 кВт на 10 м 2 отапливаемой площади. Что говорится в СНиП и каковы реальные расчетные теплопотери домов, построенных из различных материалов?

СНиП указывает на то, какой дом можно считать, скажем так, правильным. Из него мы позаимствуем строительные нормы для Московского региона и сравним их с типичными домами, построенными из бруса, бревна, пенобетона, газобетона, кирпича и по каркасным технологиям.

Как должно быть по правилам (СНиП)

Однако взятые нами значения в 5400 градусо-суток для московского региона являются пограничными к значению 6000, по которому в соответствии со СНиПом сопротивление теплопередаче стен и кровли должно составлять 3,5 и 4,6 м 2 ·°С/Вт соответственно, что эквивалентно 130 и 170 мм минеральной ваты с коэффициентом теплопроводности λА=0,038 Вт/(м·°К).

Как в реальности

Зачастую люди строят «каркасники», бревенчатые, брусовые и каменные дома исходя из доступных материалов и технологий. Например, чтобы соответствовать СНиП, диаметр бревен сруба должен быть больше 70 см, но это абсурд! Потому чаще всего строят так, как удобнее или как больше нравится.

Для сравнительных расчетов мы воспользуемся удобным калькулятором теплопотерь, который расположен на сайте его автора. Для упрощения расчетов возьмем одноэтажное прямоугольное помещение со сторонами 10 х 10 метров. Одна стена глухая, на остальных по два небольших окна с двухкамерными стеклопакетами, плюс одна утепленная дверь. Крыша и потолок утеплены 150 мм каменной ваты, как наиболее типичный вариант.

Кроме теплопотерь через стены есть еще понятие инфильтрации – проникновения воздуха через стены, а также понятие бытового тепловыделения (от кухни, приборов и т.п.), которое по СНиП приравнивается к 21 Вт на м 2 . Но мы это учитывать сейчас не будем. Равно как и потери на вентиляцию, потому как это требует и вовсе отдельного разговора. Разница температур принята за 26 градусов (22 в помещении и -4 снаружи – как усредненное за отопительный сезон в московском регионе).

Итак, вот итоговая диаграмма сравнения теплопотерь домов из различных материалов :

Пиковые теплопотери рассчитаны для наружной температуры -25°С. Они показывают, какой максимальной мощности должна быть система отопления. «Дом по СНиП (3,5, 4,6, 0,6)» – это расчет исходя из более строгих требований СНиП к тепловому сопротивлению стен, кровли и пола, который применим к домам в чуть более северных регионах, нежели чем Московская область. Хотя, зачастую, могут применяться и к ней.

Главный вывод – если при строительстве вы руководствуетесь СНиП, то мощность отопления следует закладывать не 1 кВт на 10 м 2 , как принято считать, а на 25-30% меньше. И это еще без учета бытового тепловыделения. Однако соблюсти нормы не всегда получается, а детальный расчет отопительной системы лучше доверить квалифицированным инженерам.

Также вам может быть интересно :


Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное
gastroguru © 2017