Шпунтовое ограждение котлованов. Организация и технология выполнения работ по устройству шпунтового ограждения из шпунта ларсен Устройство шпунтовых стен из бревен

Чтобы ливневые и грунтовые воды не затапливали строительный котлован, а его края на обрушивались вниз - они укрепляются специальными металлическими пластинами, имеющими особую форму, позволяющую получать сборное водонепроницаемое ограждение. По имени своего изобретателя они получили название шпунт Ларсена, и нашли широкое применение не только при строительстве зданий.

Наша компания осуществляет как забивку железобетонных свай , так и погружение различных видов шпунта , в том числе и шпунта Ларсена. Для этого применяются сваебойные установки на колесном ходу на базе автомобилей КРАз и Урал. Они позволяют оперативно прибывать к месту производства работ и осуществлять их даже в условиях плотной застройки при ограниченном маневре.

Рис. 1 : Шпунты Ларсена в разобранном виде

Способы погружения шпунта Ларсена

Шпунт Ларсена можно монтировать, используя различные способы, которые будут отличаться от окружающих условий.

  • Завинчивание . Используется, если вблизи находятся какие-либо сооружения. Такой способ предотвращает возможность выемки грунта из фундаментальной опоры.
  • Забивка . Предварительное лидерное бурение скважины . Высокая производительность и возможность использования в густо застраиваемых районах.
  • Подмыв . С помощью этого способа грунт частично разрыхляется и вымывается водяными струями, что способствует уменьшению коэффициента сопротивления под шпунтовый наконечник.
  • Вибровдавливание . Применение вибропогружающей техники обеспечивает низкий шумовой фон и четкость в соблюдении необходимых параметров. Используется на мягких и водонасыщенных грунтах. В некоторых случаях применяется вибромолот.
  • Вдавливание . При использовании шпунтов Ларсена обычно прибегают к технологии вдавливания, так как она имеет свои достоинства по отношению к другим.

Области применения шпунта Ларсена

Ограждения из шпунта Ларсена широко применяются в строительстве и используются для решения следующих задач:

  • защита от осыпания и обрушения стен котлованов ;
  • предотвращение затопления строительных площадок (в том числе при производстве работ на дне водоемов);
  • строительство разнообразных гидротехнических сооружений (дамб, мостов, шлюзов, каналов, причалов и т. п.);
  • укрепление береговых линий и набережных;
  • укрепление оползневых участков;
  • ограждение городских свалок;
  • строительство всевозможных очистных сооружений и т. д.

Устройство шпунта Ларсена

Этот вид забивного шпунта представляет собой металлический профиль, края которого имеют закругленную форму, и могут стыковаться между собой в замок. Простое устройство шпунта Ларсена позволяет быстро и легко обеспечивать защиту углубленных стройплощадок по всему периметру.

Современные производители предлагают на выбор несколько видов шпунта типа Ларсен:

  • L – профиль,
  • S – профиль,
  • Z – профиль,
  • и самый распространенный вид шпунта - корытообразный профиль.

Размеры профиля также различны, причем наиболее длинные шпунты доходят до 34 метров, а самые широкие профили - 80 см.

Схема монтирования шпунта Ларсена

Монтаж профилей и устройство стального сплошного шпунта по периметру строительной площадки осуществляется небольшими (по 2-3 профиля) секциями, которые погружаются в грунт сваебойной установкой методом забивки. Соседние шпунты, при этом, находятся в зеркальном положении (развернуты на 180 градусов), что и обеспечивает их замковое соединение.

Рис. 2 : Погружённый шпунт Ларсена

Для обеспечения герметичности стыков их обрабатывают силиконовым герметиком. При значительных размерах котлована шпунты дополнительно укрепляются балками и распорками, увеличивающими жесткость конструкции.

Шпунт Ларсена Л5 технические характеристики

Шпунт Ларсена Л5 является строительным элементом, отвечающим за высокое качество, так как его производство основано по нормам ТУ-14-2-879-89.

Рис. 3

Для изготовления шпунта Л5 применяются углеродистые стали:

  • Ст3кп − кипящая сталь, изготовленная по ГОСТу 380-94, где 3 − условное процентное содержание углерода.
  • Ст3сп − полуспокойная сталь, изготовленная по ГОСТу 380-94, где 3 − условное процентное содержание углерода.
  • 16ХГ − конструкционная легированная сталь, изготовленная по ГОСТу 4543-71. Отвечает за показатели прочности.

Стали образца Ст3кп и Ст3сп изготавливаются методом горячей прессованной прокатки, тогда как легированный металл 16ХГ создается с помощью холодной штамповки.

Описание шпунта Ларсена Л5 :

  • Профиль имеет площадь поперечного сечения в сто двадцать семь квадратных сантиметров.
  • Его длина может быть от пяти до двадцати двух метров.
  • Толщина стенки равняется двадцати одному сантиметру.

Почему используют шпунт Ларсена Л5

  • Многократность использования. Высокие антикоррозийные свойства позволяют использовать шпунты Л5 до шести раз. Для этого после оканчивания строительных работ вся шпунтовая конструкция снимается для дальнейшего использования.
  • Удобная транспортировка. Перевоз металлических профилей возможен на любом транспорте, будь то автомобиль или поезд. Во время движения шпунты крепят специальными подкладками, обеспечивающих хорошую фиксацию.
  • Хранение. Возможность складирования в любых помещениях, даже на открытом воздухе.
  • Много возможностей. Шпунт Ларсена типа Л5 позволяет закрепить поверхности различной формы, в том числе извилистые или округлые.
  • Большой выбор. Возможность использовать определенный вид профиля под специфический вид строительных работ.

Шпунт Ларсена Л4 технические характеристики

Шпунт Ларсена Л4 имеет вид корытной прокатной конструкции. Производится из стали Ст3кп и Ст3сп с помощью технологии горячей прокатки. Металл марки 16ХГ используется реже.

Рис. 4

Описание шпунта Ларсена Л4 :

  • Площадь поперечного сечения профиля равняется девяноста четырем квадратным сантиметрам.
  • Масса одного погонного метра составляет семьдесят два килограмма.
  • Длина металлической пластины начинается от пяти до двадцати двух метров. Мерная протяженность профиля варьируется от десяти до двадцати двух метров.

Монтаж шпунтовых профилей Л4 проводится с помощью паровоздушных дизельных молотов или вибротехники. Также после исхода строительных работ шпунт может быть извлечен из грунта и использован вторично.

Посылы для использования шпунта Ларсена Л4:

  • Антикоррозия . Устойчивость к появлению коррозийных образований увеличивает срок службы.
  • Прочность . Устойчивость к механическим повреждениям.
  • Хранение . Складирование профилей может осуществляться в любом помещении и на открытом воздухе.
  • Надежность . Высокая устойчивость и крепость металлических оснований обеспечивают непоколебимость построенного сооружения.

Размер шпунта Ларсена по ГОСТу

Чтобы наглядно сравнить и узнать размеры шпунтов Ларсена по ГОСТу, достаточно посмотреть на нижеприведенную таблицу.

Тип Ширина профиля, мм Ширина стенки, мм Высота профиля, мм Толщина стенки, мм Толщина полки, мм Масса 1 метра, кг Количество метров в тонне
Л4 436 292 204,2 14,8 9,5 74,0 13,5
Л5 466 332 196 21,0 11,0 100,0 10,0

Рис. 5

Метод статического вдавливания , используемый для погружения шпунтов в грунт, признан «щадящим», так как является практически бесшумным.

Рис 6

Этапы проведения процесса вдавливания шпунта:

  • Установка . Расположение спецтехники на контрольных точках установки шпунтов Ларсена, предусмотренных проектом.
  • . Выполнение нагрузки с помощью анкерных грузов гидравлических установок.
  • Установка шпунта . Расположение шпунтового ствола в зажимы направляющей ловушки.
  • Процесс погружения . Непосредственный момент вдавливания шпунтового ствола в грунт и его центрирование.
  • Перестановка . Выполнение разгрузки вдавливающей установки и ее перебазирование на следующую контрольную точку.
  • Измерение . Проверка необходимой глубины залегания шпунта, его проектные отклонения и прочие нюансы. При значительной разнице между значениями в проекте и реальными, выполняется переустановка шпунта.

Видео , показывающее процесс вдавливания шпунта с лидерным подбуриванием:

Преимущества технологии

Преимущества технологии вдавливания шпунта Ларсена

  • Возможность применения вблизи стоящих сооружений;
  • Меньший коэффициент потребления энергии;
  • Небольшая вибрация и практическое отсутствие шумового фона;
  • Высокая скорость монтажа.
  • Необходимость использования на грунтах с большой водонасыщенность и слабых песчаных почвах.
  • Отсутствие механических повреждений на шпунтовом стволе, тогда как при использовании ударного метода повышается вероятность нарушения целостности шпунта.
  • Мобильность и компактность используемой техники.
  • Экономичность.

Шпунт Ларсена цена за метр

Начальная стоимость одного погонного метра шпунта при диаметре в 400 мм начинается от трехсот пятидесяти рублей. Идеально рассчитать цену можно в программе AutoCad, используя таблицу значений, приведенную выше.

Наши услуги по погружению шпунта Ларсена

Наша компания производит работы по погружению шпунта Ларсена методом забивки на любых объектах и с различными целями. Чаще всего это ограждение котлованов при производстве строительных работ, устройство искусственных водоемов, укрепление насыпей вдоль строящихся дорог и подъездных путей к строительным площадкам и в ряде других случаев.

Кроме того, мы осуществляем забивку железобетонных шпунтовых свай и шпунта из металлических труб, и любого металлопроката. Такое решение вполне приемлемо при отсутствии угрозы затопления котлована. Промежутки между шпунтовыми сваями зашиваются забиркой из досок и обеспечивают безопасность производства работ.

Заказ вдавливания труб

1. Строительная компания Богатырь примет заказ на вдавливание труб в городе Москва. Осуществление работ нашей компанией в Москве и области – это большая ответственность и тщательный контроль над качеством исполняемых работ.

2. Узкопрофильные специалисты-инженеры быстро и качественно проведут все расчеты. А специально обученные рабочие под руководством бригадиров с точностью выполнят все необходимые работы в указанный срок. Для конкретной стройплощадки возможны индивидуальные решения, исходя из местных условий.

3. Наши специалисты проконсультируют Вас по любым вопросам и предложат наиболее приемлемые варианты проведения работ. При необходимости можно получить подробную консультацию, позвонив по указанному телефону.

Статьи по теме

Полезные материалы

JQuery(document).ready(function(){ jQuery("#plgjlcomments1 a:first").tab("show"); });

Практически любые строительные работы, проводимые ниже уровня рельефа, вынуждают решать вопросы устойчивости стенок котлована и защиты от воды. В некоторых специфических направлениях, относимых к гидротехническому строительству, создание непроницаемого барьера между местом проведения работы и водной средой является отправной точкой.

Так выглядит шпунтовое ограждение котлована

В большинстве случаев эти проблемы решаются через устройство шпунтового ограждения.

В чем отличие

Пример укрепления стен котлована от осыпания грунта

В чем тогда состоит особенность шпунтовой стенки, и чем она отличается от иных? Прежде всего, тем, что для ее устройства нет необходимости проводить земляные работы. Шпунтовые элементы предварительно погружаются в грунт, надежно закрепляются в нем, и лишь потом почва вынимается. Как видите, шпунтовые работы совершенно противоположны обычному строительству. Готовая стена появляется из грунта, а не возводится на нем.

Шпунтовая стенка не нуждается в и не требует учета глубины промерзания. Она заглубляется на величину, превышающую уровень промерзания грунта, и имеет очень незначительное давление на грунт. Шпунтовые сваи удерживаются не прочностью основания, а силой трения грунта, действующего на поверхность. Отличий шпунтовой стены от обыкновенной довольно много. Стоит к этому добавить и то, что элемент в основном работает как защемленная консоль.
Он способен выдерживать колоссальные изгибающие и смещающие нагрузки, доступные только основательно армированной бетонной стене. При необходимости проводится расчет шпунтовых ограждений, например, на устойчивость и сдвиг.

Где и когда применяют

Хотя шпунтовым ограждением можно назвать и , труб или бетонных свай, важным качеством настоящего инвентарного изделия является возможность создания герметичной мембраны, отсекающей защищаемую площадку от поступления воды извне. Это свойство делает востребованными шпунтовые работы во всех случаях, когда требуется изоляция территории от грунтовых, поверхностных вод или открытой воды водоемов. Таким способом строятся опоры мостов на дне реки, возводятся набережные, проводятся работы на заболоченных территориях и при высоком уровне грунтовых вод.

Второй причиной применения шпунта обычно служит необходимость удержания грунтовых стенок котлованов или откосов.

Укрепление грунта шпунтовыми стенами

Стена котлована всегда делается пологой, чтобы избежать обрушения грунта под собственным весом. Но при значительной глубине выемки или при стесненных условиях, обеспечить необходимый угол откоса не всегда удается. Ограждение котлована шпунтом дает возможность избежать устройства любых откосов и создавать котлован с вертикальными стенками. Иногда это является единственным способом уберечь расположенные рядом с котлованом фундаменты существующих зданий от разуплотнения и смещения грунта, явившегося следствием проводимых работ.

Виды шпунтовых элементов

Первоначально шпунтовые стены выполнялись из бревен или деревянных пластин. Такие шпунтовые ограждения до сих пор широко применяются в мелиорации, благоустройстве территорий и прочих видах работ, не связанных с высокой сложностью и требованиями. Отличает этот материал дешевизна и доступность. Оборачиваемость и долговечность его, естественно, невысокие.

Так выглядят профили для монтажа шпунтовых стен

Наиболее универсальными и распространенными являются металлические элементы коробчатого сечения, называемые «шпунт Ларсена». С их помощью можно выполнить любой комплекс работ, связанных с устройством шпунтовой стенки. Стальные элементы позволяют погружать его даже в тяжелую и каменистую почву. Этот вид шпунта можно применять многократно. После завершения работ элементы удаляются из проектного положения и могут использоваться снова.

Однако металлический шпунт Ларсена имеет высокий вес и значительную стоимость. Не всегда есть возможность сохранить элементы без подрезки или деформаций.

При этом дорогие изделия после применения превращаются в металлолом.
В строительную практику внедряется шпунт из полимеров - поливинилхлорида и композита. Помимо малого веса, эти изделия отличаются меньшим коэффициентом трения поверхности, что облегчает их погружение и выемку.

Пример шпунта Ларсена изготовленного из полимеров

Меньшая прочность приводит к ограничениям по выдерживаемым нагрузкам и прохождению тяжелых грунтов. В то же время существует множество ситуаций, когда их применение оправдано, а свойства полностью удовлетворяют требованиям.

Стальной шпунт Ларсена

Представляет собой пространственный элемент коробчатого сечения с линейными замками по краям. Осуществляя погружение, фиксатор одного элемента вставляется в паз другого, что создает неразрывное соединение по всей длине. Элемент изготавливается из высокопрочной легированной стали, что гарантирует высочайшие прочностные характеристики.

В зависимости от выдерживаемых нагрузок толщина шпунта может изменяться от 15 миллиметров до 23 миллиметров в распространенных марках. Оборачиваемость, присущая шпунту Ларсена, хорошо характеризует рекомендация производителя, предлагающего после двадцати установок срезать верхнюю кромку, которая деформируется в процессе погружения, в длину до двадцати сантиметров.
Хотя зачастую все выглядит не столь радужно. При погружении в тяжелые грунты может происходить деформация замковых стыков и искривление изделий. Отдельные шпунтовые элементы могут заклиниваться между собой, что приводит к необходимости обрезать часть стойки автогеном и «хоронить» на месте установки.

Шпунт Ларсена выпускается нескольких конфигураций профиля и замковых соединений:

  • Тип Z;
  • Тип S;
  • Тип LP;
  • Тип OMEG.

Это позволяет точнее подбирать тип изделия к особенностям грунтовых и эксплуатационных условий, роду нагрузок и применяемому оборудованию.

Шпунт из полимеров

Материалы из полимерного сырья проникают в области, казалось бы, монопольно занятые в строительстве металлами. Высочайшие требования к шпунтовым ограждениям оказалось возможным реализовать в изделиях из поливинилхлорида и стеклопластиковых композиций. Несмотря на меньшую жесткость и большую хрупкость, для них доступен значительный сегмент рынка.

Пример укрепления берега пластиковыми шпунтами

Во многих случаях шпунтовые ограждения применяются как стационарное сооружение, без извлечения из грунта после установки. Таким образом, укрепляют откосы, создают террасы, защищают береговую линию от размыва и выполняют иные шпунтовые работы. Востребованным свойством при этом оказывается долговечность конструкции, невосприимчивость к коррозии. Именно им полимерные материалы обладают в полной мере.

Там, где металл со временем теряет свою несущую способность или требует дополнительной защиты, отлично служат полимерные шпунты. Привлекательной стороной пластиковых шпунтов является их вес. Один метр такого ограждения весит примерно в десять раз меньше, чем металлического. В малом строительстве, ограниченном в применении большегрузной и мощной техники, это оказывается неоценимым достоинством.

Сваи из труб

В качестве не извлекаемых элементов для устройства шпунтовой стенки иногда используются .
Такое решение позволяет утилизировать те, которые были в употреблении. Кроме относительной дешевизны, у них нет положительных качеств. Трубы не позволяют создать плотную непроницаемую для грунтовых вод поверхность. Обычно их применяют для укрепления откосов или в качестве не извлекаемой опалубки для дальнейшего . Сваи из труб не имеют замков, поэтому выдерживать геометрическое положение в ряду очень сложно.

Вариант укрепления грунта шпунтовыми сваями

Обеспечение вертикальности погружения также представляет большую проблему. Площадь контакта сечения трубы с грунтом на один метр сооружения существенно выше, чем у инвентарного шпунта. Это требует использования мощной техники, способной обеспечить необходимое усилие.

Следует учесть, что стенки труб тоньше и гораздо хуже противостоят деформациям, чем шпунт Ларсена. Поэтому при прохождении трубы через каменистый грунт, нижнее сечение может полностью смяться, сделав невозможным достижение проектной отметки. Обращаться к такому методу устройства шпунтового ограждения стоит только в крайнем случае.

важный этап нулевого цикла работ в многоэтажном строительстве. В промышленных масштабах рытье котлованов производят при помощи экскаватора. Согласно положениям СНиП № 3.02.01 «Земляные сооружения», все котлованы глубиной более 2 м должны укрепляться шпунтовыми ограждениями, препятствующими их обрушению и затоплению грунтовыми водами.

В данной статье представлена технология ограждения котлованов шпунтом. Вы узнаете, какие виды шпунта используются и как выполняется их монтаж. Также будет рассмотрены особенности проектирования шпунтовых ограждений и приведены примеры расчетов.

Когда и зачем необходимо ограждение котлованов шпунтом?

Потребность укрепления котлованов шпунтовыми ограждениями обуславливается требованиями техники безопасности и нормативами СНиП, согласно положениям которых укреплению шпунтовыми стенками подлежат следующие виды котлованов:

  • все котлованы глубиной более 1 м. в песчаной почве;
  • котлованы глубиной от 1.25 м в супесях;
  • котлованы глубиной от 1.5 м в глинистом грунте и суглинке;
  • котлованы глубиной от 2 м. в грунтах высокой плотности.

Функциональное назначение шпунтового ограждения — защита стенок котлована от обрушения, которое может произойти при проведении на строительной площадке работ по забивке свай (на свайных фундаментах стоит свыше 80% многоэтажных зданий).

Технология шпунтового ограждения также может рассматриваться в качестве альтернативы водопонижающим работам. Используемый для монтажа ограждения шпунт имеет пазовые замки, посредством которых отдельные шпунтины соединяются в герметичную, не пропускающую воду стенку, что сводит к минимуму риск затопления котлована грунтовыми водами.

Виды шпунта для ограждения котлованов

В современной строительной практике для ограждения котлованов применяется два вида шпунтового металлопроката — шпунт Ларсена и трубопшунт . Деревянный и железобетонный шпунт практически не используется ввиду финансовой нецелесообразности.

Шпунт Ларсена представляет собой корытообразный профиль, длина которого может доходить до 35 метров, а ширина до 80 см. Существует несколько модификаций шпунта Ларсена, отличающихся в плане габаритных характеристик:

  • шпунт Л4;
  • шпунт Л5;
  • шпунт Л5-УМ;
  • шпунт Ларсена «Омега»;
  • шпунт Л5.

Чаще всего используется шпунт Л5, изготовленный из сталей марок СТ3КП либо 16 ХГ. Ширина профиля Л5 составляет 42 см, вес 1 п.м. — 100 кг, вес 1 м 2 — 217 кг. Нормативная прочность шпунтового ограждения из профиля Л5 составляет 800 кНм/м.

Ограждения из шпунтовых труб применяются в условиях нестабильных, склонных к горизонтальным сдвигам грунтов, в которых стенки из корытообразного профиля не имеют требуемой устойчивости. За счет большего сечения труб, которое дает увеличенную площадь защемления шпунта грунтовыми массами, момент сопротивления и прочность стенки из труб значительно выше.

Диаметр шпунтовых труб варьируется в пределах 530-1420 мм. Трубы, используемые для ограждения котлованов, имеют унифицированную в соответствии с нормативами СНиП маркировку типа Т1420×12 , в которой:

  • Т — трубчатый шпунт;
  • 1420 — диаметр (мм);
  • 2 — толщина стенки (мм).

Как и шпунт Ларсена, трубошпунт имеет пазовые замки, расположенные на боковых контурах труб, посредством которых конструкции соединяются в сплошную стенку. При монтаже ограждений дополнительно используются стальные поворотные элементы, посредством которых стенке придается требуемая пространственная конфигурация.

Широкое распространение в строительной практике стального шпунта обуславливается возможностью его повторного использования, которому не подлежат железобетонные и деревянные конструкции. Строительная организация получает возможность сделать временное шпунтовое ограждение и по завершению фундаментных работ демонтировать шпунт и реализовать его на вторичном рынке, возместив тем самым часть финансовых затрат. Согласно нормам СНиП, оборачиваемость шпунтовых труб и шпунта Ларсена может доходить до 20 циклов.

Расчет шпунтового ограждения

Расчет шпунтовых ограждений выполняется профильными специалистами в соответствии с требованиями СНиП № 2.09.03 «Проектирование подпорных стен». Целью расчетов ограждения является:

  • определения требуемого типоразмера шпунта;
  • определение глубины погружения шпунта исходя из соответствия расчетной устойчивости и сопротивлению стенки нормативным данным;
  • проектирование дополнительных мер по укреплению шпунтовой стенки.

Расчет сопротивление шпунтовой стенки к опрокидыванию выполняется по формуле: , в которой:

  • Оu — нормативное сопротивление;
  • Oz — сила защемления шпунта в грунте;
  • К — коэфф. условий работы шпунта (зависит от типа грунта);
  • Cn — коэфф. запаса надежности (1.2).

Расчет прочности шпунтового ограждения ведется по формуле: , где:

  • Lk — величина нагрузки на м2 ограждения;
  • Pck — расчетное сопротивление стенки;
  • Du — момент сопротивления стенки;
  • К — коэфф. работы шпунта в грунте.

Расчет глубины погружения шпунта осуществляется по формуле: T = t0 + ∆t, в которой ∆t = :

  • Fn — эпюра распределения нагрузок по шпунтовой стенке;
  • qtO — момент максимальной нагрузки на ограждение, исходящей от давления почвы;
  • d — коэфф. пассивного давления почвы на стенку (l — активное воздействие).

На погружение шпунта в каждом конкретном случае составляется технологическая карта, в которой указываются сведения и инструкции по реализации работ для персонала, выполняющего шпунтовое ограждение.

Технологическая карта создается на основе ТТК (типовой карты) №4-104-1 «Устройство металлических шпунтовых стенок» (обновленная версия ТТК выпущена в 21.05.2015 г). Технологическая карта на временное шпунтовое ограждение должна утверждаться главным инженером строительной компании подрядчика и лицом, ответственным за технику безопасности.

Вибропогружение трубчатого шпунта (видео)

Технология монтажа шпунтовых стенок

Устройство шпунтового ограждения выполняется с привлечением строительной спецтехники — копровых установок. Копр представляет собой самоходную машину на гусеничной либо колесной базе, которая укомплектована необходимым для погружения шпунта оборудованием.

Функциональная оснастка копра включает:

  • копровую мачту — стальная направляющая , на которой фиксируется погружающее оборудование и шпунтовая конструкция;
  • погружающий механизм — ударный молот либо вибпропогружатель;
  • лебедочные блоки — для понятия и установки шпунта в исходное положение.

Существует три метода монтажа шпунта: ударная забивка, вибропогружение и статическое вдавливание . В строительной практике наиболее распространен метод забивки — это наиболее эффективная и недорогая технология, однако действующие СНиП запрещают забивать шпунт в условиях плотной застройки, поскольку динамические нагрузки, вырабатываемые молотом в процессе забивки, могут стать причиной деформации и разрушений фундаментов близстоящих зданий.

Вибропогружение — метод, при реализации которого шпунт углубляется в землю под воздействием высокочастотных низкоамплитудных колебаний. Вибропогружатель вырабатывает колебания, которые передаются на зафиксированный в нем шпунт, далее вибрация переходит на контактирующие со шпунтиной пласты почвы, которые под воздействием колебаний разуплотняются, что приводит к углублению шпунта под своим весом и массой давящего на него вибопрогружателя.

К сожалению, достаточно часто мы сталкиваемся с неэффективными проектными решениями в части устройства шпунтовых ограждений. Данная статья призвана облегчить понимание различных технологий и их ценовых характеристик.

Итак, у Вас на руках, наконец то, долгожданный проект с положительным заключением экспертизы и огромное желание поскорее выйти на стройплощадку и начать работы. Но положительное заключение абсолютно не означает, что проектная документация разработана на принципах экономической эффективности и разумной достаточности. В этой статье мы постараемся ответить на самые популярные вопросы.

В 95% случаев основным материалом для сооружения силовой конструкции шпунтового ограждения являются шпунт Ларсена и трубы б/у. Часто мы видим в проектной документации, что автор проекта перестраховался. И сделал это за счет средств заказчика. Неверный выбор конструкции и метода погружения может увеличить затраты заказчика и на 10 и на 20 миллионов рублей и даже больше, в зависимости от объема работ. Для начала краткое описание технологии погружения шпунта в грунт.

Вибропогружение шпунта (труб, шпунта Ларсена)

Вибропогружение - современная, достаточно дорогостоящая технология, требующая сложного оборудования и квалифицированных специалистов. Вибропогружатель одинаково хорошо справляется с трубами всех диаметров, шпунтом Ларсена и его аналогами, двутавровыми балками и пр. Оборудование на базе кранов (как на фото), либо на базе экскаваторов. Вибропогружение - безальтернативный метод при работе в песчаных водонасыщенных грунтах. Стоимость вибропогружения (работ) за при наших условных 500 шпунтов в районе 700 рублей за погонный метр. Но при работе в чистом поле, вдали от существующих зданий и сооружений, при наличии глинистых грунтов, есть более дешевые и быстрые способы погружения шпунтовых элементов.

Забивка шпунта (погружение шпунта забивкой)

Это, пожалуй, самый простой, быстрый и дешевый способ погружения шпунта, который применяется достаточно часто, но имеет ряд ограничений. Начнем с трубы. Забивка осуществляется дизель-молотом, аналогично забивке свай. В трубе делается небольшое отверстие газовым резаком для того, чтобы ее можно было подцепить крюком и завести в наголовник молота. Далее труба забивается до нужной проектной отметки. Можно предварительное пробурить лидерную скважины, в случае, если этого требуют геологические условия. Скважины, как правило не обрушаются. В данном случае проблемным является обводненный песок, быстро затягивающий пробуренную скважину, но и его труба преодолеет под сильными и напористыми ударами молота.

Цена вопроса, конечно же зависит от диаметра труб и объема работ, но примем условные 350 рублей за погонный метр при объеме работ около 500 труб.

Что касается шпунта Ларсена, его также можно забить молотом. На молот одевается специальный наголовник с лепестковым захватом и далее технология ничем не отличается за исключением того, что Ларсен надо погружать "в замок". Малейшая погрешность в процессе забивки и мощный удар молота вырывает шпунт из замка. Исправить в этом случае уже практически ничего нельзя. Поэтому для шпунта Ларсена, конечно же, гораздо предпочтительнее вибропогружение. Стоимость забивки шпунта Ларсена составляет около 500 рублей за погонный метр ввиду повышенных требований к качеству и точности производства работ.

Ограничения использования метода забивки: шум, динамические нагрузки от удара молота, сложнее извлекать трубы из-за высокого уровня защемления и повышенной уплотненности грунта во время забивки. То есть технология не подходит для плотной застройки (центра города). Зато если расстояния позволяют, а трубы вынимать не планируется, забивка - самый оптимальный вариант.

Суть технологии сводится к бурению скважин диаметром чуть больше диаметра трубы и опускании трубы в скважины. Для 219 трубы шнек 250, для 325 - 350, для 426 - 450 и т.д. Технология бесшумная, быстрая удобная и, на наш взгляд, оптимальна если грунты не насыщены водой. В водонасыщенных грунтах скважина быстро заилится и трубу не удастся погрузить без дополнительных методов воздействия. Бурение под трубы может осуществляться чем угодно: копровой установкой (наш случай), ямобуром, малогабаритными самоходными буровыми типа Беркут, гидробуром на базе экскаватора, или манипулятора. Простота технологии делает ее самой распространенной и часто применяемой. Отсутствия защемления трубы в грунте, вопреки мнению многих "специалистов", не является недостатком. Достаточно посмотреть на приведенную ниже схему, чтобы понять, что подземная часть не даст трубе ни накрениться, ни тем более упасть. Здесь схематично показан наклон трубы. На практике его не видно, наклон в рамках погрешности погружения и в соответствиями с допусками СНиП. Зато трубу, погруженную таким способом гораздо легче извлекать. Правда, если с момента погружения прошло более года, грунт обожмет трубу также сильно, как если бы под нее не бурили.

Шпунт Ларсена таким способом не погружается, хотя под Ларсен, иногда, также применяется лидерное бурение небольшим диаметром с целью нарушения структуры грунта и облегчения процесса вибропогружения.

Стоимость погружения труб с бурением зависит от диаметра и объема работ. При условных 500 трубах объема стоимость бурения под трубу составит от 370 рублей за 219 трубу до 500 рублей за 426 трубу. Недостатков, повторимся, у технологии практически нет. Но трубы, конечно же, не заменят шпунт Ларсена там, где он нужен. А Ларсен правильно погружать вибропогружением , и только им.

Ограничения по такой технологии, пожалуй, одно - сильно обводненные грунты. При таких геологических условиях, только что пробуренную скважину затягивает илистый и песчаный обводненный грунт и погрузить туда трубу без дополнительных манипуляций уже не представляется возможным.

Вдавливание шпунта (Задавливание)

Вдавливание - самая тихая и бесшумная технология из всех существующих. Но без недостатков никак не обойтись. Вдавливающие установки очень громоздки, требуют хорошей подготовки строительной площадки, электроэнергию 380В 50 кВт, к тому же достаточно медлительны. Отсюда и высокая стоимость работ, а главное - постоянно отпугивающая заказчиков с небольшими объемами работ стоимость перебазировки. Дело в том, что за счет огромного веса, установка в демонтированном состоянии перевозится 5-6 машинами, а основная платформа даже в демонтированном состоянии весит 60-80 тонн и является негабаритным грузом по ширине. Установка шпунта Ларсена вдавливанием возможна лишь с некоторыми ограничениями, поэтому перед заказом установки необходимо проконсультироваться со специалистами. Стоимость вдавливания шпунта и труб - от 700 рублей за погонный метр.

В условиях слабых грунтов, склонных к потере устойчивости при приложении динамических воздействий при погружении свай, движении строительной техники, разгрузке строительных материалов и т. п., могут происходить как деформации ограждений котлованов, так и распорных конструкций, проседание и выпор грунта внутрь подземного сооружения, сопровождающиеся просадками грунта и деформациями конструкций фундаментов зданий, прилегающих к разрабатываемому котловану.

В этой связи с учетом схем, представленных на рис. 3.3-3.12, рассмотрим наиболее распространенные технические решения обеспечения устойчивости шпунтовых ограждений.

Рис. 3.3.

a - консольное; б - с горизонтальными креплениями стальными балками; в - с анкерными стенками из шпунта; г - с горизонтальными анкерными плитами; 1 - шпунтовое ограждение; 2 3 4 - анкерная стенка из шпунта; 5 - стальные анкерные тяги; 6 - анкерные плиты, уложенные по грунту

А. Открытый котлован

  • 1. Консольные ограждения, в том числе с поясами жесткости из стальных балок различного сечения применяют для котлованов глубиной до 4-5 м с ограничением динамических воздействий при перемещении строительной техники и запретом складирования материалов вблизи ограждения (рис. 3.3, а). При этом в условиях слабых грунтов необходимо обеспечить заглубление шпунта ниже дна котлована не менее 2/3 его глубины. Для обеспечения совместной работы шпунта по верху ограждения обязательно устраивается обвязочная балка из стального проката, в основном двутавров, спаренных швеллеров, или шпунта (рис. 3.3, 2).
  • 2. Временные распорные горизонтальные крепления из металлических банок различною сечения (в основном труб диаметром 450-720 мм, двутавров или соединенных сваркой шпунтин) при ширине котлована до 15-20 м (рис. 3.3, б). Для котлованов с большими размерами применяют промежуточные сваи стойки из шпунта или колонных двутавров, а также конструктивные элементы стен здания, выполняемые до разработки грунта при поэтапной откопке котлована по захваткам (рис. 3.4,3). Распорки устраиваются в один или несколько ярусов с определяемых расчетом шагом, который обычно составляет 4-6 м.

Рис. 3.4.

I - шпунтовые ограждения; 2 - распределительный пояс (обвязочная балка); 3 - горизонтальные стальные балки; 4 - промежуточные опоры (сваи-стойки) из шпунта

Рис. 3.5.

а, в - обвязочными балками из двутавра; б -узел крепления анкерного стержня к обвязочной балке из швеллеров; в - обвязочные балки из двух двутавров; д,е -обвязочные балки из двух и одной шпунтины соответственно; / - шпунт; 2 - двутавр; 3 - стальная шпилька; 4 - стальная труба или деревянный брус; 5 - швеллер; б - стальная поддерживающая косынка; 7 - анкерный стрежень; 8 - упорная стальная пластина; 9 - стальная шайба; 10 - гайка; 11 - фиксирующий стальной клин

Конструктивные решения устройства крепления шпунтовых ограждений котлованов шириной до 10-15 м представлены на рис. 3.5, а, для котлованов шириной до 20-30 м на рис. 3.6 .

3. Для снижения металлоемкости в качестве распорных систем крепления шпунтовых ограждений можно использовать инвентарные стальные рамные элементы с заменяемыми концевыми частями

Рис. 3.6.

(рис. 3.7, а). В крайние стержни, примыкающие к шпунту, включают домкраты, позволяющие рейдировать перемещения ограждения котлована и контролировать усилия в распорках.

Рис. 3.7.

а - стальными инвентарными рамами с домкратами; б - железобетонными фермами; I - шпунт; 2 - обвязочные балки; 3 - стальные инвентарные рамные элементы;

4 - домкраты; 5 - железобетонные фермы (промежуточные опоры условно не показаны)

Рамные конструкции в некоторых случаях изготавливают из горизонтальных железобетонных ферм, имеющих промежуточные стойки

  • (см. рис. 3.7). После разработки котлована такие конструкции могут быть включены в состав ребристых перекрытий подземных этажей сооружения. На фермах, перекрывающих котлованы больших пролетов, можно располагать строительное и технологическое оборудование, а также скла- дировагь материалы в процессе возведения подземной части здания.
  • 4. Крепление ограждения к вертикальным анкерным стенкам или горизонтальным плитам стальными тягами на расстоянии не менее величины S = Н к tg(45° - Н к - глубина котлована, в, г). Такое конструктивное решение ограждения требует дополнительных площадей за границами котлована. Оно не обеспечивает горизонтальной устойчивости ниже дна котлована. Узел крепления анкерной тяги к ограждению показан на рис. 3.5, б. Анкерные стенки могут также устраиваться из групп шпун- тин (2-3 гит.), погружаемых через 2-5 м вдоль контура ограждения. Анкерные тяги выполняют из арматурных стержней, что позволяет регулировать их натяжение в зависимости от горизонтальных перемещений шпунтового ограждения. При глубине котлована свыше 6 м анкерные тяги устраивают в траншеях с заложением на 2-3 м ниже уровня поверхности земли.
  • 5. «Островной» способ с грунтовыми бермами и подкосными креплениями из стальных балок или ферм, упираемых в участки фундаментной плиты или во временные сваи-колонны из шпунта или двутавров, погружаемых в дно котлована (рис. 3.8, a-е). Котлован разрабатывают по этапам: сначала грунт откапывают на полную глубину, за исключением зон (грунтовых призм или берм), прилегающих к шпунтовому ограждению, затем устраивают угловые горизонтальные распорки из труб, в котловане выполняют участки фундаментных плит, в которые упирают подкосиые крепления, на втором этапе выполняют окончательную доработку котлована и возводят подземные конструкции здания. Крепление шпунтового ограждения при необходимом расчет ном обосновании возможно выполнять опиранием горизонтальных распорок в конструкции строящегося здания (перекрытия или стены) (рис. 3.8, в). Распорные конструкции последовательно демонтируют по мере возведения конструкций здания и обратной засыпки котлована.
  • 6. Крепление шпунтовых ограждений грунтовыми инъекционными анкерами, заглубляемыми в плотные грунты за пределы зон активного давления грунта на ограждения и воспринимающими выдергивающие усилия (рис. 3.8, г). Величина усилий, воспринимаемых одиноч-

ным анкером для глинистых грунтов находится в диапазоне от 0,1 до 0,5 мН. Анкеры устраивают по периметру котлована с шагом 0,8-3,0 м с углом наклона горизонтали до 30-60°. Анкерные тяги устраивают из буровых труб, арматурных стрежней, канатов или труб, которые используются при бурении и промывке скважины цементным, глинистым или полимерным раствором. Для крепления со шпунтовой стеной в ней устраивают отверстия, а анкерные тяги крепят на стальной обвязочной балке из швеллера или двутавра. В условиях слабых грунтов такое решение имеет ограниченное применение, так как требует заглубления на значительные по величине глубины (свыше 25-30 м), а при устройстве анкеров под существующими инженерными коммуникациями, дорогами или зданиями в конструкциях последних могут возникать дополнительные деформации из-за изменения напряженно-деформированного состояния грунта вследствие его взаимодействия с заделкой анкера. Такое конструктивное решение, несмотря на повышенные требования к качеству работ и квалификации подрядчика, большую стоимость и трудозатраты, эффективно для котлованов больших объемов, когда нет возможности использовать распорные конструкции, устанавливаемые внутри котлована.

7. Укрепление грунта по всей глубине шпунта, а также создание грунтоцементных диафрагм по всей площади ниже заложения котлована по технологии струйной цементации (рис. 3.8, д). Для создания сплошных диафрагм толщиной до 1500 мм грунтоцементные сваи устраивают но сетке 600х 520 мм, проектная прочность материала грунтоцемен- та принимается порядка 1,0 МПа, а модуль деформации 400 МПа . Расход материалов на 1 м бурения составляет: воды 200-350 л, цемента 300-650 кг; комплексных добавок 7-12 кг.

Рис. 3.8.

а, б, в - с грунтовыми бермами и подкосами в фундаментную плиту; г -с грунтовыми анкерами; д - с грунтоцементными диафрагмами, выполненными по струйной технологии; 1 - шпунтовое ограждение; 2 - распределительный пояс (обвязочная балка); 3 - временная, грунтовая берма; 4 - стальной подкос или ферма; 5 - фундаментная плита или сваи; 6 - временная анкерная стенка (сплошная или прерывистая); 7 - несущие конструкции подземного этажа; 8 - горизонтальные стальные балки; 9 - грунтовый анкер;

10,11 -вертикальный и горизонтальный грунтоцементный массив

Б. Закрытый котлован, в котором шпунтовые ограждения постоянные конструкции, воспринимающие нагрузки от конструкций здания

I. Крепление ограждения с помощью горизонтальных дисков перекрытий, бетонируемых по технологии «сверху - вниз» (top-down). При такой технологии шпунтовые ограждения могут комбинироваться с траншейными бетонными стенами в грунте. Разработка грунта ведется через технологические проемы в поэтапно устраиваемых перекрытиях, бетонируемых непосредственно по опалубке, уложенной на грунт. Дня опор перекрытий используют постоянные сваи - колонны, устраиваемые до выполнения основного контура ограждения котлована.

Дтя повышения производительности при извлечении грунта и бетонирования перекрытий применяют так называемый « полузакрытый » способ (semi top-down), когда по контуру шпунтового ограждения устраивают консольные участки перекрытий шириной 3-6 м и большими проемами в центре, которые бетонируют после полного извлечения грунта и устройства гидроизоляции нижнего уровня (рис. 3.9, а). Перекрытия по периметру котлована выполняются способом «сверху вниз», а в центральной части после извлечения грунт а по классической схеме - «снизу вверх». Крепление ограждения котлована происходит за счет пространственной работы участков перекрытий по периметру.

При такой схеме возможны два варианта выполнения работ .

Вариант 1. Устройство участков дисков перекрытий по периметру осуществляется в процессе поэтапной экскавации грунта из котлована в следующей последовательности (рис. 3.10):

  • погружение шпунта по периметру сооружения (рис. 3.10, а);
  • погружение свай-колони (рис. 3.10, б);
  • бетонирование плиты перекрытия первого подземного этажа по грунту;
  • в пределах контура плиты устраивают технологические проемы через которые будет извлекаться грунт и спускаться необходимое оборудование и рабочие (рис. 3.10, в);
  • извлечение на поверхность грунта в пределах первого подземного этажа и устройство нижележащего монолитного перекрытия с технологическими отверстиями (рис. 3.10, г);
  • указанные операции последовательного извлечения грунта и уст ройства монолитных перекрытий повторяют до достижения уров-

Рис. 3.9. Способы устройства подземных конструкций по технологии «сверху - вниз»: a - полузакрытый способ; б - с инвентарными стальными фермами; 1 - шпунт; 2 - монолитное перекрытие; 3 - промежуточные сваи-колонны; 4 - технологическое отверстие для извлечения грунта; 5 - инвентарные фермы

ия последнего подземного этажа е устройством монолитной плиты по грунту с горизонтальной гидроизоляцией (рис. 3.10, д). На последнем этапе с последнего подземного уровня извлекают землеройную технику и опалубку через технологические отверстия, которые затем бетонируют.

Вариант 2. Сохранение грунтовых берм, препятствующих перемещениям шпунтового ограждения до устройства перекрытий. Работы ведутся в следующей последовательности (рис. 3.11):

  • погружают шпунт по периметру сооружения (рис. 3.11, о);
  • с уровня дневной поверхности грунта выполняют крайние сваи-колонны (рис. 3.11,5) для дальнейшего опирания перекрытий по периметру шпунтового ограждения (рис. 3.11, б);
  • разрабатывают котлован на проектную отметку с сохранением грунтовых берм по периметру ограждения (рис. 3.11, 7). С уровня дна котлована выполняют сваи (рис. 3.11,9), по которым устраивают гидроизоляцию и фундаментную плиту центральной части здания (рис. 3.10, в);
  • возводят конструкции каркаса центральной части здания. Параллельно на уровне дневной поверхности грунта бетонируют участки перекрытий по периметру шпунтового ограждения. Для извлечения грунта оставляют технологические отверстия (рис. 3.11, 7);
  • на участках, примыкающих к шпунту, через технологические отверстия извлекают грунт в пределах первого подземного этажа. Устраивают монолитное перекрытие, которое также соединяю! с конструкцией каркаса центральной части здание (рис. 3.11,6);

Указанные операции последовательного извлечения грунта и устройства участков монолитных перекрытий повторяют до достижения уровня последнего подземного этажа, с устройством монолитной плиты. На последнем этапе с последнего подземного уровня извлекают землеройную технику и опалубку через технологические отверстия, которые затем бетонируют (рис. 3.11, е).

Рис. 3.10. Этапы технологии устройства подземных конструкций по технологии «сверху - вниз» с несущими ограждающими конструкциями из шпунта: а д - этапы устройства подземных конструкций; 1 шпунт; 2 - стреловой кран; 3 - вибрационный погружатель; 4 - промежуточные сваи-колонны; 3 - буровая установка; б - грейфер; 7-технологическое отверстие для извлечения грунта; 8 - монолитное перекрытие; 9 - экскаватор; 10 - опорные столики; 11 -автобетоносмеситель; 12 - автобетононасос; 13 - надземные несущие конструкции; 14 - монолитная плита с горизонтальной гидроизоляцией, устраиваемые по грунту основания 69

Рис. 3.11.

/ - шпунт; 2 - стреловой кран; 3 - вибратор; 4 - буровая установка; 5 - сваи-колонны по периметру ограждения; 6 - грейфер; 7 - грунтовые бермы; 8 - фундаментная плита центральной части здания; 9 - буронабивные сваи, устраиваемые со дна котлована; 10 - монолитные перекрытия по периметру шпунтового ограждения; // - технологическое отверстие для извлечения грунта; 12 - монолитные перекрытия центральной части здания;

13,14 - бетононасос и автобеносмеситель, соответсвенно; 15 - экскаватор

Существуют решения, разработанные МИИОСП им. Герсеванова, при которых в верхнем ярусе котлована монтируют инвентарные металлические конструкции ферм (см. рис. 3.9, 5). Фермы опирают на шпунтовое ограждение, а бетонируемые поэтапно по мере разработки грунта подземные перекрытия подвешивают к конструкциям ферм . После бетонирования элементов каркаса здания временные конструкции подвески и ферм демонтируют.

Способ позволяет минимизировать влияние строительных процессов и разработки грунта подземного объема на напряженно-деформированное состояние фунтового массива и конструкции, расположенных рядом зданий и сооружений. Вместе с тем эта технология является наиболее затратной и требуют высокой квалификации со стороны специализированной строительной организации.

Состав машин, позволяющий реализовать указанные технологии комплексно-механизированным способом, представлен в табл. 3.4.

Таблица 3.4

Перечень машин и оборудования, применяемых при технологии устройства подземных конструкций по технологии «сверху - вниз» с несущими ограждающими конструкциями из шпунта

Технологический этап

Применяемое оборудование

Погружение шпунта

Вибрационный погружатель на кране, буровой установке или экскаваторе

Устройство

промежуточных

свай-колонн

Буровая установка, пневмоколесный кран, бетононасос, автобеновоз

Устройство

монолитных

перекрытий

Пневмоколесный кран, сварочный агрегат, бетононасос, автобетоновоз

Извлечение грунта из- под перекрытий

Мини-экскаватор на пневмоколесном ходу, грейфер на кране. Возможно извлечение грунта на поверхность через технологические отверстия по ленточным транспортерам, устанавливаемым на перекрытиях подземных этажей

Возможные конструктивные решения крепления монолитных перекрытий к шпунтовому офаждения показаны на рис. 3.12 .

На основании представленных технологических схем с учетом анализа опыта работ в сложных грунтовых условиях по устройству шпунтовых офаждений и их креплений авторами выполнен расчет технологичное™ нескольких вариантов крепления офаждений условного КОТлована глубиной 6 м с размерами в плане 40x30 м. Длина шпунта 18 м. Рассматривались следующие технологические варианты:

  • вариант 1 - устройство временных распорных горизонтальных балок из стальных труб диаметром 630 мм, монтируемых с шагом 6 м, с промежуточным опиранием на сваи-стойки из шпунта; по периметру ограждения для всех вариантов устраивается обвязочный пояс из стального двутавра высотой 400 мм;
  • вариант II - «островной» способ с грунтовыми бермами и подкосными креплениями из стальных труб длиной 12 м диаметром 426 мм, устанавливаемыми с шагом 6 м и закрепляемыми к участкам фундаментной плиты в котловане;
  • вариант III - крепление шпунтовых ограждений грунтовыми инъекционными анкерами из штанг диаметром 73 мм длиной 30 м, выполняемыми в один ряд с шагом 2 м; анкера предусмотрены по технологии Титан (Ishebeck GMBH) ;
  • вариант IV - крепление ограждения стальными тягами к прерывной анкерной стене из шпунта (по три шпунтины марки 4Z-36-700 Арселор на сваю) длиной 9,5 м. Тяги диаметром 75 мм, длиной 15 м укладываются с шагом 5 м в траншеи глубиной 2,0 м;

Рис. 3.12.

a - на стальных опорных столиках; б, в - на монолитных железобетонных поясах; 1 - шпунт; 2 - балка или плита перекрытия, 3 - горизонтальная стальная балка, 4 - опорный столик, привариваемый к шпунту, 5-монолитный

железобетонный пояс

вариант V - цементация грунта по всей глубине погружения шпунта, а также создание грунтоцементных диафрагм мощностью 2 м под дном котлована с шагом 600х 520 мм (вплотную к шпунтовому ограждению с шагом 500x440 мм).

Показатели стоимости были приняты на основании территориальных действующих единичных расценок и данных поставщиков строительных материалов. Сроки работ рассчитывались по нормам ЕНиР с учетом производительности современного оборудования. Критерии технологичности рассчитывались по формулам (2.1)-(2.3).

Дифференциальные (простые) критерии технологичности устройства креплений шпунтовых ограждений представлены в табл. 3.5.

Таблица 3.5

Простые критерии технологичности устройства укреплений шпунтовых ограждений

Варианты

Простые критерии технологичности х.

Стоимость, тыс. р.

Металлоемкость, т

Стоимость материалов, тыс. р.

Трудозатраты,

Коэффициент увеличения площади

Продолжительность, дн

С горизонтальными распорками

С грунтовыми бермами

Грунтовыми

анкерами

С анкерной стеной

Струйной

цементацией

Примечание : в таблице выделены наилучшие значения по рассматриваемому показателю технологичности; коэффициент увеличения площади рассчитывался как отношение площади занимаемой конструкциями ограждения к площади котлована; при расчете производительности для варианта 3 учитывались работы по разработке котлована и устройству участков фундаментной плиты.

Результаты приведения простых критериев х в безразмерные величины приведены в табл. 3.6

Таблица 3.6

Простые критерии в безразмерном виде

Варианты

Простые критерии в безразмерном виде:

т„ = х„ /хГ % , т„ = хГ/х«

Стоимость

Металлоемкость

Стоимость материалов

Трудозатраты

Увеличение

Продолжительность

С горизонтальными распорками

С грунтовыми бермами

Г рунтовыми анкерами

С анкерной стеной

Струйной

цементацией

Для расчета обобщенных и интегральных критериев технологичности коэффициенты весомости /-х, /^.определялись в зависимости от значимости каждого критерия по методике Гмошинского В. Г., принятой в инженерном прогнозировании .

Например, для опытного котлована при строительстве второй сцены Мариинского театра с раскреплением шпунтового ограждения стальными труба величина/^ составила 1,3 %, что потребовало дополнительного усиления шпунтового ограждения в виде закрепления грунтов методами струйной цементации .

Следует отметить, что при устройстве шпунтовых ограждений котлованов, устраиваемых вблизи исторической застройки в слабых грунтах, величин}" эквивалентной жесткости следует принимать^

С учетом вышеизложенного в табл. 3.10 представлен современный опыт устройства шпунтовых ограждений котлованов глубиной свыше 6 м в Санкт-Петербурге, показывающий, что применение специальных, преимущественно вибрационных, технологий погружения шпунта в комплексе с дополнительными мероприятиями по устройству разнообразных удерживающих систем, обеспечивает надлежащее качество и устойчивость ограждений котлованов.

Выбор технолог ических параметров устройства ш пунтовых ограждений и систем обеспечения их устойчивости в условиях слабых динамически неустойчивых грунтов является важной технической задачей, требующей в первую очередь грамотного расчетного обоснования на основании современных методик и программных комплексов. Основные принципы и методики расчета шпунтовых ог раждений рассмотре- ны в следующем разделе.

Примеры устройства шпунтовых ог раждений котлованов в Санкт-Петербурге

Таблица 3.10

Технология

погружения

ТРК Галерея, Литовский пр.

Вибрационная

Грунтовые анкера и грунтовые бермы и подкосы, опертые на фундаментную плиту

ТЦ Стокман, Невский пр.

Г рунтоцементная диафрагма на глубине 17-20 м. Стена в грунте, перекрытия, устраиваемые по технологии «сверху-вниз»

Административное здание банка, Малоохтинский пр.

Вторая сцена Мариинского театра, Крюков канал

Перекрытия по технологии «сверху-вниз», струйная технология

Гостиничный комплекс Парк Инн,

Гончарная ул.

Стена в грунте. Горизонтальные распорные балки

Офисный центр, Почтамтская ул.

Грунтоцементная i диафрагма на глубине 7-10 м. Горизонтальные распорные балки

Реконструкция здания под гостиничный комплекс,

наб. р. Мойки, д. 73, 75, 77, 79

Вдавливание

Перекрытия по технологии «сверху-вниз»

Жилой дом, Депутатская ул., д. 34А

Вибрационная

Грунтовые бермы и горизонтальные распорные балки

Окончание табл. 3.10

Технология

погружения

Технология устройства крепления шпунтового ограждения

Офисный центр, Невская ратуша, Дегтярный нер.

Вибрационная

Грунтовые анкера длиной 30 м

Жилой комплекс,

пр. Медиков, д. 10

Горизонтальные распорные балки

Жилой дом, Рыбацкий пр.,

  • 12-20

Г рунтовые бермы и подкосы, опертые на фундаментную плиту

Жилой дом, ул. Победы у дома 18 ГГ по Московскому пр.

Вдавливание

Вибрационная

Г оризонтальные распорные балки в два яруса на промежуточных колоннах

Жилой дом, ул. Смольного, д. 4, корп. Б-2, Б-5, Б-6

Вибрационная

Горизонтальные распорные балки на промежуточных колоннах

Автомобильный завод «Магна» в пос. Шушары, Московское ш.

Горизонтальные распорные балки

Примечание : //.. L - глубина котлована и длина шпунта соответственно.

gastroguru © 2017