Методы измерения пыли в воздухе. Методы определения запыленности воздуха. Исследование запыленности воздуха

производится аспирационным весовым (гравиметрическим) методом с помощью электроаспиратора (рис. 2).

Рис. 2. Электроаспиратор для отбора разовых проб пыли

Пыль − это дисперсная система, где раздробленное ве-щество (дисперсная фаза) находится в непрерывной дис-персной среде, т.е. это взвешенные в воздухе, медленно осе-дающие твердые частицы размером от 0,001 до 100 мкм или аэрозоль.

Принцип действия электроаспиратора заключается в протягивании определенного объема воздуха через аспира-


тор с осаждением пылевых частиц на бумажном фильтре. Метод основан на улавливании пыли из просасываемого че-рез фильтр воздуха при стандартной скорости аспирации 10-20 л/мин. с последующим пересчетом на 1 м 3 воздуха (1 м 3 = 1000 л). Анализ воздуха может производиться как в пробах, отобранных однократно (продолжительность отбора проб 15-20 мин.), так и многократно не менее 10 раз в сутки через равные интервалы времени с усреднением полученных дан-ных (кратность отбора проб в течение суток определяет вы-бор для оценки вида ПДК – среднесуточной или максималь-ной разовой). Отбор проб воздуха производят в зоне дыха-ния. Для отбора пробы фильтр укрепляют в аллонже (патро-не) электроаспиратора, пропускают через него воздух со ско-ростью 20 л/мин. (V ) в течение 10 мин. (Т ). Объем отобран-ной пробы воздуха рассчитывают по формуле:

υ=Т V,

где T – время отбора пробы, мин., V – скорость отбора про-бы, л/мин. Негигроскопичный аэрозольной фильтр, пред-ставляющий собой ультратонкие волокна полимера, зафик-сированный в бумажном кольце, взвешивают на аналитиче-ских весах с точностью до 0,1 мг до (А 1 ) и после (А 2 ) отбора пробы воздуха. Содержание пыли Х в 1 м 3 воздуха рассчиты-вают по формуле:

Х = [(А 2 − А 1) 1000]/ υ,

где Х – содержание пыли в воздухе, мг /м 3 ; А 1 и А 2 − вес фильтра до и после отбора пробы, мг; υ − объем воздуха, л.

Для гигиенической оценки загрязнения воздуха пылью установленное содержание пыли сравнивают с максимальной или среднесуточной ПДК нетоксичной пыли в атмосферном воздухе; характеризуют дисперсный и химический состав, морфологическое строение, электрическое состояние, приро-ду (органическая, неорганическая, смешанная) и механизм образования (аэрозоль дезинтеграции или конденсации).


Гигиенические нормативы пыли для атмосферного воз-

− максимальная разовая ПДК мр 2 = 0,5 мг/м 3 ,

− среднесуточная ПДК с/с 3 = 0,15 мг/м 3 .

В помещениях ЛПУ требования к содержанию пыли в воздухе определяются классификацией помещений по чисто-те и ограничиваются размером частиц 0,5 мкм и 5,0 мкм.



В производственных помещениях: ПДК нетоксичной пыли = 10 мг/м 3 , ПДК пыли, содержащей свободный диоксид кремния, = 1-2 мг/м 3 .

3. Определение микробного загрязнения воздуха осу-

ществляется аспирационным методом в модификации Кро-това. Аппарат Кротова представляет собой аспиратор со съемной крышкой. Исследуемый воздух всасывается со ско-ростью 20-25 л/мин. через клиновидную щель в крышке при-бора. При переносе аппарата Кротова из одного помещения в другое его поверхность обрабатывают дезинфицирующим раствором. Пробу воздуха отбирают 10 мин. (Т ) со скоро-стью 20 л/мин (V ). Объем отобранной пробы воздуха рассчи-тывают по формуле.

где К 1 , К 2 ...К п - концентрации вещества;

t 1 , t 2 ,...t n - время отбора пробы.

Медиана (Me) - безразмерное среднее геометрическое значение концентрации вредного вещества, которая делит всю совокупность концентраций на две равные части: 50 % проб выше значения медианы, а 50% - ниже. Медиана рассчитывается по формуле:

Стандартное геометрическое отклонение, не превышающее 3, свидетельствует о стабильности концентраций в воздухе рабочей зоны и не требует повышенной частоты контроля; σ g более 6 указывает на значительные колебания концентраций в течение смены и необходимость увеличения частоты контроля среднесменных концентраций для данной профессиональной группы работающих (на данном рабочем месте).

2.3. Расчет контрольного уровня пылевой нагрузки. Контрольный уровень пылевой нагрузки(КПП) - это пылевая нагрузка, сформировавшаяся при условии соблюдения среднесменной ПДК пыли в течение всего периода профессионального контакта с фактором:

(5)

где ПДК- среднесменная предельно допустимая концентрация пыли в зоне

дыхания работника, мг/м 3 .

При соответствии фактической пылевой нагрузки контрольному уровню условия труда относят к допустимому классу, и подтверждается безопасность продолжения работы в тех же условиях.

2.4. Защита временем. При превышении контрольных пылевых нагрузок рекомендуется использовать способ «защита временем» , т.е. необходимо рассчитать стаж работы (Т 1), при котором ПН не будет превышать КПН. При этом КПН рекомендуется определять за средний рабочий стаж, равный 25 годам. В тех случаях, когда продолжительность работы более 25 лет, расчет следует производить, исходя из реального стажа работы.

(6)

где Т 1 – допустимый стаж работы в данных условиях;

КПН 25 – контрольная пылевая нагрузка за 25 лет работы в условиях соблюдения ПДК. Рассчитывается по формуле 6 при Т=25 лет.

В случае изменения уровней запыленности воздуха рабочей зоны или категории работ (объема легочной вентиляции за смену) фактическая пылевая нагрузка рассчитывается как сумма фактических пылевых нагрузок за каждый период, когда указанные показатели были постоянными. При расчете контрольной пылевой нагрузки также учитывается изменение категории работ в различные периоды времени.



2.5. Расчет уровня остаточной запыленности. Уровень остаточной запыленности (мг/м 3) рассчитывается по формуле:

единицы.

где Э 1 принимается по табл.2;

Э 2 – эффективность пылеподавления вентиляцией, принимается по табл.2.

(9)
В случае К ост1 >ПДК, остаточная запыленность определяется по формуле:

где Э 3 принимаем по табл.3.

Расчет варианта задания

Исходные данные:

Операция – выемка угля комбайном; АПФД – угольная пыль с содержанием 7% SiO 2 ; ПДК=4 мг/м 3 ; число рабочих смен в году N=260; количество лет контакта с АПФД (Т) равно 5; энергозатраты 300 Вт.

Фактические концентрации: K 1 =710 мг/м 3 , K 2 =560 мг/м 3 , K 3 =480 мг/м 3 , K 4 =1070 мг/м 3 . Длительность отбора проб: t 1 =30 мин, t 2 =50 мин, t 3 =60 мин, t 4 =20 мин.

Мероприятия по борьбе с пылью – орошение струей воды высокого давления; вентиляция.

Решение

1. Определяем среднесменную концентрацию пыли при выемке угля (К сс) по формуле 2:

2. Рассчитываем пылевую нагрузку по формуле 1. Так как энергозатраты трудящегося составляют 300 Вт, данная работа относится к III категории с Q=10 м 3:



3. Расчет контрольного уровня пылевой нагрузки:

4. Контрольная пылевая нагрузка за 25 лет работы в условиях соблюдения ПДК («защита временем»):

5. Расчет допустимого стажа работы в данных условиях:

6. Медиана определяется по формуле 3:

7. При этом геометрическое отклонение, исходя из формулы 4, составит:

8. Расчет ПН с учетом орошения, вентиляции и СИЗ, производим по формулам 7, 8, 9. Суммарная эффективность способов борьбы с пылью:

Остаточный уровень запыленности равный 24,9 мг/м 3 превышает ПДК более чем в 6 раз. Необходимо использовать СИЗ органов дыхания - респиратор типа У-2К (табл. 2). Следовательно,

Выводы: Для данных условий была рассчитана величина пылевой нагрузки, равная 8,1 кг за 5 лет, без применения средств и способов борьбы с пылью. В данных условиях общий стаж работы составил около 5 часов. После применения различных способов пылеподавления остаточная запыленность воздуха снизилась до 24,9 мг/м 3 , что все равно недостаточно и превышает ПДК в 6 раз. В таких случаях обязательно применение противопылевых респираторов. Применение респиратора позволило снизить остаточную запыленность до 0,5 мг/м 3 , что соответствует гигиеническим требованиям (не более 4 мг/м 3).

Контрольные вопросы:

1. Дайте определение понятия «пыль».

2. В чем проявляются «вредность» пыли, «опасность» пыли?

3. Какие свойства пыли обуславливают ее «вредность», «опасность»?

4. Дайте определение предельно допустимой концентрации.

5. Что такое остаточная запыленность воздуха?

6. Какие способы борьбы с пылью применяются на производстве?

Список литературы:

1. ГН 2.2.5.686-98 «Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны»;

2. Прусенко Б.Е., Сажин Е.Б., Сажина Н.Н. Аттестация рабочих мест: Учебное пособие. – М.: ФГУП Изд-во «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2004. – 238-251 с.;

3. Правила безопасности в угольных шахтах. Кн.3. Инструкция по борьбе с пылью и пылевзрывозащите. – Липецк: Липецкое издательство Роскомпечати, 1997. – 14-27 с.


Таблица 4

Варианты заданий

№ п/п Выполняемые работы АПФД ПДК мг/м 3 Стаж работы с АПФД Т, лет Энергоза-траты, Вт Фактические концентрации пыли K, мг/м 3 Мероприятия по пылеподавлению
Длительность отбора проб t, мин
К 1 К 2 К 3 К 4
t 1 t 2 t 3 t 4
Выемка полезного ископаемого
Медносульфидные руды
Гранит
Известняк Пылеотсос с укрытием
Водовоздушные эжекторы
Проведение горных выработок Антрацит с содержанием SiO 2 до 5 %
Глина Типовая оросительная система
Угли с содержанием SiO 2 10-70 % Внутреннее орошение на комбайнах
Доломит Пылеотсос без укрытия
Кварцит Типовая оросительная система
Сварочные работы Алюминий Пылеотсос с укрытием
Вольфрамокобальтовые сплавы с примесью алмаза до 5% Типовая оросительная система
Кремнемедистый сплав Пылеотсос без укрытия
Вольфрам Водовоздушные эжекторы
Сплавы алюминия Типовая оросительная система
Бурение скважин для зарядки ВВ Корунд белый Подача воды в зону пылеобразования
Кристобалит Промывка шпура
Медносульфидные руды Типовая оросительная система
Шамот Промывка шпура
Кварцит Подача воды в зону пылеобразования
Перегрузка культур растительного происхождения Зерновая пыль Пылеотсос без укрытия
Мучная пыль Водовоздушные эжекторы
Хлопковая пыль с примесью SiO 2 более 10 % Пылеотсос с укрытием
Льняная пыль Типовая оросительная система
Хлопчатобумажная пыль Пылеотсос без укрытия
Древесная пыль Типовая оросительная система
Погрузка породы Антрацит с содержанием SiO 2 до 5 % Предварительное увлажнение массива водой
Медносульфидные руды Типовая оросительная система
Известняк Пылеотсос без укрытия
Угли с содержанием SiO 2 5-10 % Предварительное увлажнение массива специальными добавками

Число рабочих смен в году N=260.

Методы определения запыленности воздуха разделяют на две группы:

С выделением дисперсной фазы из аэрозоля - весовой или массовый (гравиметрический), счетный (кониметрический), радиоизотопный, фотометрический;

Без выделения дисперсной фазы из аэрозоля - фотоэлектрические, оптические, акустические, электрические.

В основу гигиенического нормирования содержания пыли в воздухе рабочей зоны положен весовой метод. Метод основан на протягивании запыленного воздуха через специальный фильтр, задерживающий пы­левые частицы. Зная массу фильтра до и после отбора пробы, а также количество отфильтрованного воздуха, рассчитывают содержание пыли в единице объема воздуха.

Суть счетного способа состоит в следующем: проводится отбор определенного объема запыленного воздуха, из которого частички пыли осаждаются на специальный мембранный фильтр. Послечего проводится подсчет числа пылинок, исследуется их форма и дисперсность под микроскопом. Концентрация пыли при счетном методе выражается числом пылинок в 1 см 3 воздуха.

Радиоизотопный метод измерения концентрации пыли основан на свойстве радиоактивного излучения (обычно α-излучения) поглощаться частицами пыли. Концентрацию пыли определяют по степени ослабления радиоактивного излучения при прохождении через слой накопленной пыли.

Министерством здравоохранения и социального развития утверждены нормативные документы по определению содержания пыли:

МУ № 4436-87 «Измерение концентраций аэрозолей преимущественно фиброгенного действия»;

МУ № 4945-88 «Методические указания по определению вредных веществ в сварочном аэрозоле (твердая фаза и газы)».

Измерение запыленности весовым (гравиметрическим) методом

При измерениях концентрации пыли предварительно взвешенный «чистый» фильтр АФА-ВП-20 (АФА-ВП-10) закрепляют в патроне (аллонже), который соединяют шлангом с аспиратором ПУ-3Э и протягивают через фильтр такое количество воздуха, чтобы навеска уловленной пыли составляла от 1,0 до 50,0 мг (для АФА-ВП-10 от 0,5 до 25,0 мг).

Аспирационный фильтр аналитический (АФА) изготавливают из фильтровальной ткани ФПП-15, имеющей заряд статического электричества. Применение аналитических фильтров типа АФА позволяет анализировать воздушную среду с высокой степенью точности. Они обладают высокой задерживающей способностью, малым аэродинамическим сопротивлением потоку воздуха, большой пропускной способностью (до 100 л/мин), небольшой массой, малой гигроскопичностью, возможностью определять концентрацию пыли независимо от ее физических и химических свойств. Для удобства обращения края фильтров опрессовывают и помещают в защитные обоймы (рис. 2).

Рис. 2. Фильтр типа АФА

1 – фильтрационный материал; 2 – защитная обойма

Для отбора проб используются аспираторы. Мето­ды и аппаратура, используемые для определения концентрации пыли, должны обеспечивать определение величины концентрации пыли на уровне 0,3 ПДК с относительной стандартной погрешностью, не пре­вышающей ±40% при 95% вероятности. При этом для всех видов про­боотборников относительная стандартная ошибка определения пыли науровне ПДК не должна превышать ±25%. Для отбора проб рекоменду­ется использовать фильтры АФА-ВП-10, 20, АФА-ДП-3.

После просасывания запыленного воздуха фильтр извлекают из аллонжа, повторно взвешивают на аналитических весах с точностью до 0,1 мг и определяют массу навески пыли ΔР на фильтре по разности масс «чистого» и «грязного» фильтров.

Концентрация пыли при рабочих условиях:

, мг/м 3 (1)

где ΔР = Р к – Р н – масса уловленной фильтром пыли, мг; Р н и Р к – масса фильтра АФА соответственно до и после аспирации, мг;V зам – объем воздуха, из которого выделили пыль на фильтре, м 3 .

Одновременно с отбором проб воздуха на запыленность измеряют температуру (T, 0 С) и давление воздуха (В, мм рт. ст.) для приведения объема воздуха при рабочих условияхV зам, из которого выделили пыль на фильтре, к стандартным условиям (760 мм рт. ст. и 20 0 С):

, м 3 (2)

Тогда концентрация пыли в воздухе при стандартных условиях:

, мг/м 3 (3)

Результаты измерений и расчетов используют для санитарно-гигиенической оценки воздуха рабочей зоны по пылевому фактору, соотнося с предельно допустимыми концентрациями (ПДК), а также для определения эффективности способов и средств борьбы с пылью.

Уважаемые читатели, в этой статье мы поговорим о том, как определяется категория помещения с пылью.

Несмотря на то, что математический аппарат СП 12.13130.2009, который предназначен для определения категории пожарной опасности помещения с пылью, достаточно прост, определение ряда параметров вызывает определенные трудности.

Давайте рассмотрим все по порядку. Для начала следует отметить, что помещения с пылью могут относиться к категории Б по взрывопожарной или к по взрывопожарной опасности.

Прежде чем переходить к расчету на принадлежность помещения к одной из категорий В по пожарной опасности, необходимо расчетным путем обосновать, относится ли помещение, где возможно образование аэровзвеси, к категории Б по взрывопожарной опасности.

Основные расчетные формулы содержатся в разделе А.3 Приложения А СП 12.13130.2009.

В соответствии с формулой А.17 свода правил расчетную массу пыли, взвешенной в помещении в результате аварийной ситуации, следует брать минимальной из двух величин:

— суммы масс взвихрившейся пыли и пыли, вышедшей из аппаратов в результате аварии;

— массы пыли, содержащейся в пылевоздушном облаке, способной при появлении источника зажигания сгореть.

Здесь следует отметить, что не вся пыль способна гореть, т.е. коэффициент участия горючей пыли во взрыве, ≤0,5, что подтверждается формулой А.16 свода правил.

Коэффициент участия взвешенной пыли в горении зависит от фракционного состава пыли, а именно параметром, который называется критический размер частиц.

Для большинства органических пылей (древесная пыль, пластмассы, мука и др.) значение критического размера составляет порядка 200-250 мкм.

Пыль, состоящая из частиц более крупного размера, в горении участвовать не будет, за исключением случаев, когда она сжигается в специальных очагах (топках). Когда определяется категория помещения с пылью, как правило имеем дело либо с полностью мелкодисперсной пылью, размер частиц которой менее критического (например, сахарная пудра), либо с пылью, в состав которой входят частицы различного размера, как больше так и меньше критического. К такой пыли относится древесная пыль, зерновая пыль и др.

Фракционный состав пыли определяется экспериментально путем просеивания через системы специальных сит, которые носят название «фракционатор». В такие данные найти вряд ли возможно, хотя для ряда промышленных пылей (порошков) данные о фракционном составе можно запросить у производителя.

При отсутствии данных принимается, что все частицы пыли имеют размер менее критического, т.е. способны распространять горение. Масса пыли, которая способна выйти из аппарата в результате аварийной ситуации, определяется особенностями технологического процесса.

Масса взвихрившейся пыли – та часть отложившейся пыли, которая может перейти во взвешенное состояние в результате аварийной ситуации.

При отсутствии экспериментальных данных принимается, что 90% массы отложившейся (накопленной) пыли способно перейти в аэровзвесь. Пыль, которая выделяется в небольших количествах в производственном помещении в нормальном режиме работы, оседает на ограждающих конструкциях (стены, пол, потолок), на поверхности оборудования (корпуса технологических аппаратов, транспортные линии и др.), на полу под оборудованием.

На проектируемом производстве определяется периодичность пылеуборок: текущих и генеральных. По СП 12 принимается, что вся пыль, которая оседает на труднодоступных для уборки местах, накапливается там в период между генеральными пылеуборками. Пыль, которая оседает на доступных для уборки местах, накапливается там в период между текущими пылеуборками. Оценка доли пыли, оседающей на той или иной поверхности (доступной или труднодоступной), возможна лишь экспериментальным путем или методами моделирования.

Оценка эффективности пылеулавливания проектируемых производств, как правило, также невозможна, поэтому условно принимается, что вся пыль, выделяющаяся от оборудования в помещение, оседает внутри помещения.

Различным является и количество пыли, оседающей на различных участках поверхности, расположенных в помещении. Пыль, которая выделяется в нормальном режиме, витает в воздухе и за счет силы тяжести постепенно оседает на различных поверхностях.

При этом, ожидается, что наибольшее количество пыли оседает на более низких уровнях помещения, при условии, что источник пыли (оборудование) также расположено на нижнем уровне. Очевидно, что горизонтальные поверхности могут накапливать пыль практически в неограниченных количествах, на вертикальных поверхностях оседает ограниченное количество пыли, зависящее от вида поверхности.

Для , количество пыли, которое оседает на стенах следующее: окрашенные металлические перегородки – 7-10 г/м 2 , кирпичные стены – 40 г/м 2 , бетонные стены – 30 г/м 2 . Скорее всего, приведенные данные можно использовать и для других производств.

Теперь обратимся к формуле для вычисления количества пыли в зависимости от объема пылевоздушного облака. Следует отметить, что какие-либо аналитические выражения, по которым можно вычислить объем пылевоздушного облака, в отечественной литературе отсутствуют.

В зарубежной пожарно-технической литературе такие данные пока тоже не удалось найти, наверное, потому что в США и в Европе такой подход не применяется (имеется ввиду расчет категорий). Поэтому на практике приходится объем облака пыли каким-либо образом оценивать.

Например, можно условно принять за характерную форму облака конус с высотой от пола до источника пыли и основанием с радиусом, превышающим данную высоту в несколько раз. Хотя, не уверен, насколько данное допущение верно, поскольку экспериментальные данные в распоряжении отсутствуют.

Помимо критического размера, определяющим параметром является также стехиометрическая концентрация пыли.

Стехиометрическая концентрация пыли – такая концентрация пыли, при которой происходит ее полное сгорание с учетом количества кислорода, находящегося в единице объема воздуха.

Стехиометрическая концентрация пыли расчетным путем может быть определена лишь для веществ и материалов, для которых известен химический состав. К ним можно отнести большинство полимерных материалов (полиэтилен, полипропилен, полистирол и др.), различные лекарственные препараты, порошки металлов и сплавов.

Для других материалов, например для растительных (древесная и зерновая пыль, чай и др.) и пищевых материалов (мука, сухое молоко, какао и др.), стехиометрическую концентрацию нужно определять либо экспериментально, либо искать химический состав соответствующего материала, из которого состоит пыль.

Определение стехиометрической концентрации сводится к решению следующих последовательных задач:

1. Находится химический состав пыли.

2. Записывается химическое уравнение реакции полного сгорания пыли.

3. Определяется масса кислорода, необходимого для полного сгорания 1 кг пыли.

4. Определяется масса кислорода, содержащаяся в 1 м 3 воздуха, с учетом расчетной температуры.

5. Определяется масса пыли, которая может полностью сгореть в массе кислорода, содержащейся в 1 м 3 воздуха. Полученное значение и есть стехиометрическая концентрация пыли в пылевоздушном облаке.

Определение категории помещения с пылью не учитывает такой показатель пожарной опасности, как нижний концентрационный предел распространения пламени (НКПР). Как правило, концентрация пыли в пылевоздушном облаке при аварийных ситуациях превышает НКПР.

Ну и напоследок пара очень интересных видео о взрывах на производствах с пылью. Даже без знания английского и так все доходчиво и интересно показано. Рекомендую к просмотру!

Жду вас снова на о пожарной безопасности!


Назовите типы искусственных заземлителей.

Выносное и контурное + горизонтальное и вертикальное (условное)

20. Как можно снизить величину сопротивления заземлителя?

Общее сопротивление заземления зависит, как указывалось выше, от сопротивления прилегающих к заземлителю слоев грунта. Поэтому можно добиться снижения сопротивления заземления понижением удельного сопротивления грунта лишь в небольшой области вокруг заземлителя.

Искусственное снижение удельного сопротивления грунта достигается либо химическим путем при помощи электролитов, либо путем укладки заземлителей в котлованы с насыпным углем, коксом, глиной.

Запыленность

1, Что называется пылью?

Пылью называются измельченные частицы твердого вещества, способные в течение некоторого времени находиться в воздухе во взвешенном состоянии.

2. В чем заключается гигиеническая вредность пыли?
Пыль представляет собой гигиеническую вредность, так как она отрицательно влияет на организм человека. Под воздействием пыли могут возникать такие заболевания, как пневмокониозы, экземы, дерматиты, конъюнктивиты и др. Чем мельче пыль, тем она опаснее для человека. Наиболее опасными для человека считаются частицы размером от 0,2 до 7 мкм, которые, попадая в легкие при дыхании, задерживаются в них и, накапливаясь, могут стать причиной заболевания.

Существует три пути проникновения пыли в организм человека: через органы дыхания, желудочно-кишечный тракт и кожу.

3, что такое ПДК вредного вещества?

Преде́льно допусти́мая концентра́ция (ПДК) - утверждённый в законодательном порядке санитарно-гигиенический норматив. Под ПДК понимается такая концентрация химических элементов и их соединений в окружающей среде, которая при повседневном влиянии в течение длительного времени на организм человека не вызывает патологических изменений или заболеваний, устанавливаемых современными методами исследований в любые сроки жизни настоящего и последующего поколений.

Сущность весового метода определения концентрации пыли.

Сущность метода заключается в том, что определенный объем запыленного воздуха пропускают через высокоэффективный фильтр и по увеличению массы и объему профильтрованного воздуха рассчитывают массовую концентрацию пыли:

5. Каким образом измеряется счетная концентрация пыли?

Сущность его заключается в предварительном выделении пыли из воздуха и осаждении ее на предметных стеклах с последующим подсчетом числа частиц с помощью микроскопа. Разделив определенное расчетом число частиц на объем воздуха, из которого они осаждены, получают счетную концентрацию пыли (частиц/л):



6. Как измеряется объем воздуха, просасываемого через фильтр при весовом методе измерения концентрации пыли?

V0 – объем профильтрованного воздуха, приведенного к нормальным условиям (температуре 0 оС и барометрическому давлению B0 = 760 мм рт. ст.), м3.

где P0, P – барометрическое давление, Па, соответственно при нормальных и рабочих условиях (P0 = 101325 Па, P = B×133,322 Па); Т – температура воздуха в месте отбора пыли, оС; V – объем воздуха, пропущенного через фильтр при температуре Т и давлении В, м3,

где w – объемная скорость просасывания воздуха через фильтр, л/мин;
t – продолжительность отбора пробы, мин.

7. Какие санитарно-технические мероприятия позволяют снижать концентрацию пыли на рабочих местах до уровня ПДК?

7.4. Для снижения запыленности и создания допустимых параметров микроклимата в кабинах машин необходимо уплотнение дверей и окон и использование установок, для очистки, подогрева или охлаждения воздуха.

7.5. Применение в разрезах машин с двигателями внутреннего сгорания без эффективных средств нейтрализации и очистки выхлопных газов не допускается. Нейтрализаторы и средства очистки должны обеспечить содержание вредных веществ в воздухе рабочей зоны на уровнях, не превышающих ПДК. Применение этилированного бензина запрещается.

7.6. График движения автомашин не должен допускать их скопление с работающими двигателями на рабочих площадках, уступах, участках дороги. Минимальная дистанция между большегрузными самосвалами (10 т и выше) должна быть не менее 30 м. При организации погрузочных работ следует отдавать предпочтение петлевой схеме подъезда автотранспорта к месту погрузки.

7.7. Горная масса, нагруженная в кузов самосвала, вагон или на транспортерную ленту в теплый период года должна подвергаться орошению. Факел орошения должен перекрывать площадь погрузки.

7.8. Для улучшения воздухообмена в разрезах должны предусматриваться направляющие и защитные аэродинамические устройства, регулирующие естественные потоки воздуха.

7.9. При длительных инверсиях и штилях в случае накопления вредных газов на рабочих местах в застойных зонах разрезов глубиной более 100 м должна предусматриваться искусственная вентиляция с использованием специальных устройств.

7.10. При проектировании, изготовлении или импорте горных, транспортных и других машин следует учитывать возможное их использование в различных климато-географических регионах и горно-геологических зонах страны (наличие: полярного дня и ночи, многолетней мерзлоты, специфики горных пород, сильных ветров, штилей, температурных инверсий, широкого температурного диапазона наружного воздуха от + 40 °С до - 60 °С, длительных туманов), а также содержание токсичных веществ в выхлопных газах, которое должно соответствовать отечественным нормативам.

gastroguru © 2017