Кристаллическое состояние. Аморфное и кристаллическое состояния вещества

Внутри химических частиц, но и размещением самих частиц в пространстве относительно друг друга и расстояниями между ними. В зависимости от расположения частиц в пространстве различают ближний и дальний порядок.

Ближний порядок заключается в том, что частицы вещества закономерно размещаются в пространстве на определенных расстояниях и направлениях друг от друга. Если такая упорядоченность сохраняется или периодически повторяется во всем объеме твердого вещества, то формируется дальний порядок. Иначе говоря, дальний и ближний порядки — это наличие корреляции микроструктуры вещества либо в пределах всего макроскопического образца (дальний), либо в области с ограниченным радиусом (ближний). В зависимости от совокупного (или подавляющего) действия ближнего или дальнего порядка размещения частиц твердое тело может иметь кристаллическое или аморфное состояние.

Наиболее упорядоченным является размещение частиц в кристаллах (от греческого « кристалос » — лед), в которых атомы, молекулы или ионы расположены только в определенных точках пространства, названных узлами .

Кристаллическое состояние — это упорядоченная периодическая структура, которая характеризуется наличием как ближнего, так и дальнего порядка размещения частиц твердого вещества.

Характерным признаком кристаллических веществ по сравнению с аморфными является анизотропия.

Анизотропия — это разница физико-химических свойств кристаллического вещества (электро- и теплопроводности, прочности, оптических характеристик и т.д.) в зависимости от выбранного направления в кристалле.

Анизотропия обусловлена ​​внутренним строением кристаллов. В разных направлениях расстояние между частицами в кристалле разная, поэтому и количественная характеристика того или иного свойства для этих направлений будет разной.

Особенно ярко анизотропия проявляется в монокристаллах. На этом свойстве основано производство лазеров, обработка монокристаллов полупроводников, изготовление кварцевых резонаторов и ультразвуковых генераторов. Типичным примером анизотропного кристаллического вещества является графит, структура которого представляет собой параллельные слои с различными энергиями связи в середине слоев и между отдельными слоями. Благодаря этому теплопроводность вдоль слоев в пять раз выше, чем в перпендикулярном направлении, а электропроводность в направлении отдельного слоя близка к металлической и сотни раз больше электропроводности в перпендикулярном направлении.

Структура графита (указана длина связи С-С внутри слоя и расстояние между отдельными слоями в кристалле)

Иногда одно и то же вещество может образовывать кристаллы различной формы. Это явление называют полиморфизмом, а различные кристаллические формы одного вещества — полиморфными модификациями, например, алотропы алмаз и графит; a-, b-, g- и d-железо; a- и b-кварц (обратите внимание на различие понятий «аллотропия», которое относится исключительно к простым веществам в любом , и «полиморфизм», которое характеризует строение только кристаллических соединений).

В то же время различные по составу вещества могут образовывать кристаллы одинаковой формы — это явление называют изоморфизмом. Так, изоморфными веществами, имеющими одинаковые кристаллические решетки, являются Al и Cr и их оксиды; Ag и Au; BaCl 2 и SrCl 2 ; KMnO 4 и BaSO 4 .

Подавляющее большинство твердых веществ при обычных условиях существует в кристаллическом состоянии.

Твердые вещества, не имеющие периодической структуры, относятся к аморфным (от греческого « аморфос » — бесформенный). Однако некоторая упорядоченность структуры в них присутствует. Она проявляется в закономерном размещении вокруг каждой частицы ее ближних «соседей», то есть аморфные вещества имеют только ближний порядок и этим напоминают жидкости, поэтому их с некоторым приближением можно рассматривать как переохлажденные жидкости с очень высокой вязкостью. Разница между жидким и твердым аморфным состоянием определяется характером теплового движения частиц: в аморфном состоянии они способны лишь к колебательным и вращательным движения, но не могут перемещаться в толще вещества.

Аморфное состояние — это твердое состояние вещества, характеризующееся наличием ближнего порядка в размещении частиц, а также изотропностью — одинаковыми свойствами в любом направлении.

Аморфное состояние веществ менее стабильно по сравнению с кристаллическим, так аморфные вещества могут переходить в кристаллическое состояние под действием механических нагрузок или при изменении температуры. Однако некоторые вещества могут находиться в аморфном состоянии в течение достаточно большого периода. Например, вулканическое стекло (возраст которого доходит до нескольких миллионов лет), обычное стекло, смолы, воск, большинство гидроксидов переходных металлов и тому подобное. При определенных условиях в аморфном состоянии могут находиться почти все вещества, кроме металлов и некоторых ионных соединений. С другой стороны, известны вещества, способные существовать только в аморфном состоянии (органические полимеры с неравномерной последовательностью элементарных звеньев).

Физические и химические свойства вещества в аморфном состоянии могут существенно отличаться от ее свойств в кристаллическом состоянии. Реакционная способность веществ в аморфном состоянии значительно выше, чем в кристаллическом. Например, аморфный GeO 2 значительно активнее в химическом отношении, чем кристаллический.

Переход твердых веществ в жидкое состояние в зависимости от строения имеет свои особенности. Для кристаллического вещества плавления происходит при определенной , которая является фиксированной для данного вещества, и сопровождается скачкообразным изменением ее свойств (плотность, вязкость и т.д.). Аморфные вещества, напротив, переходят в жидкое состояние постепенно, в течение некоторого интервала температур (так называемый интервал размягчения), во время которого происходит плавное, медленное изменение свойств.

Сравнительная характеристика аморфных и кристаллических веществ:

состояние

твердого вещества

характеристика

примеры

аморфное 1. Ближний порядок размещения частиц;

2. Изотропность физических свойств;

3. Отсутствие фиксированной температуры плавления;

4. Термодинамическая нестабильность (большой запас внутренней энергии)

5. Текучесть

Янтарь, стекло, органические полимеры
кристаллическое 1. Дальний порядок размещения частиц;

2. Анизотропнисть физических свойств;

3. Фиксированная температура плавления;

4. Термодинамическая устойчивость (небольшой запас внутренней энергии)

5. Наличие симметрии

Металлы, сплавы, твердые соли, углерод (алмаз, графит).

Тема урока. Кристаллическое состояние вещества. Типы связей в кристаллах. Аморфные тела.

Цели урока:

образовательные: дать понятие кристаллических и аморфных тел твердой фазы вещества. Раскрыть их физические свойства. Выяснить различие и сходство. Обратить внимание обучающихся на диалектическое единство всех трех фаз вещества (газообразное, жидкое и твердое) и на различие их физических свойств, обусловленное переходом количественных изменений энергетических состояний молекул в качественно новые.

Развивающие : развивать умение анализировать, делать выводы, применять полученные знания на практике

Воспитательные: Воспитывать доброжелательное отношение к сокурсникам, воспитывать ответственность за порученное дело.

Тип занятия – Лекция с применением информационных технологий

Оборудование: Мультимедийный проектор, презентация.

Набор кристаллических тел (нафталин, поваренная соль, смола, металл, графит, алмаз), набор кристаллических решеток.

Ход урока

I. Орг. момент (2 мин);

План лекции

1. Симметрия и энергетика кристаллов .

2. Монокристаллы, поликристаллы. Анизотропия.

3. Аморфные тела . Свойства аморфных тел.

4. Типы связей в кристаллах и виды кристаллических структур:

а) ионная; б) атомная; в) молекулярная; г) металлическая.

5. Жидкие кристаллы. Применение

6. Применение кристаллов в профессиональной деятельности.

Минералы. Физические свойства минералов. Диагностические признаки.

II . Изучение нового материала-(65мин.)

1. Симметрия и энергетика кристаллов

Ребята, кто-то из вас читал книгу А.Е. Ферсмана «Занимательная минералогия», рассказы о самоцветах. Если нет, то я советую вам прочесть.

Минералогия в представлении Ферсмана – это наука, которой могут позавидовать науки о живых существах; «На ее основе создается самая замечательная техника, получаются металлы, извлекаются строительные камни – одним словом строится все наше хозяйство и промышленность».

В своей книге А.Е. Ферсмана пишет: «Я хочу вас увлечь, чтобы вы начали интересоваться горами и каменоломнями, рудниками, чтобы вы начали собирать коллекции минералов, чтобы вы захотели отправиться вместе с нами из города подальше, к течению реки, где высокие каменистые берега, к вершинам гор и скалистому берегу моря, туда, где лежит камень, добывают песок, или взрывают руду. Там всюду мы с вами найдем чем заняться, и в мертвых скалах, песках и камнях мы с вами научимся читать какие-то великие законы природы, которые управляют всем миром и по которым построен весь мир.

Взгляните на кристаллы и изделия из граненых самоцветов. Разве вам не захочется понять, как возникла эта красота, как образуются эти удивительные произведения природы, разве у вас не появится желание поближе познакомиться с их свойствами.

Ведь поразительные красивые кристаллы – это не только украшения, они находят разностороннее применение и в технике, быту.

Вы, конечно, слушали об алмазном бурение, о применении рубинов в часовых механизмах, в измерительных приборах, о кристаллах применяемых в полупроводниковых приборах.

А металлы – этот основной материал современной техники. Знаете ли вы, что все металлы имеют кристаллическое строение. Любой физик скажет всем твердое тело – кристалл. Почти весь мир кристалличен. В мире царит кристалл и его твердые, прямолинейные законы. – писал академик Ферсман. Давайте поближе познакомимся с основными законами кристалла.

Проблема: Какими общие свойства характерны для кристаллов.

Решение проблемы:

Посмотрите внимательно на рисунки, образцы, что можно отметить общего для кристаллов.

А) правильная многогранная форма.

Кристалл, можно разбить на множество кусочков и каждый кусочек будет кристаллом. Самое главное в кристалле не наружная его форма, а своеобразие его внутренних свойств. Обратим внимание на правильность формы кристалла – симметрию.

По выражению нашего знаменитого кристаллографа Е.С. Федорова «Кристаллы блещут симметрией».

Точки в кристаллической решетке, соответствуют более устойчивому положению равновесия частиц, твердого тела, называются узлами решетки. Узлы решетки имеют правильное расположение, которые периодически повторяются внутри кристалла.

Сделайте вывод: Кристаллы это твердые тела, атомы и молекулы которых занимают определенные, упорядочные положения в пространстве.

Следствие этого – правильная внешняя форма кристалла. (например, крупинка соли имеет плоские грани составляющие друг с другом прямые узлы). Это можно заметить рассматривая соль в лупу. Геометрически правильная форма снежинки.

2. Монокристаллы, поликристаллы. Анизотропия.

Также главным свойством кристалла, является анизотропия – зависимость физических свойств от выбранного в кристалле направления. У некоторых кристаллов наблюдается различная механическая прочность по разным направлениям. Например, кусок слюды легко расслаивается в вертикальном направлении.

Легко расслаивается в горизонтальном направлении карандаш, когда мы пишем карандашом расслоение происходит непрерывно и слои графита остаются на бумаге. Это происходит по тому, что решетка графита имеет сложную структуру, она как бы разделена на слои, которые легко сдвигаются. Когда пишем карандашом, то сдвинутые чешуйки графита ложатся на листе бумаги. Атомы располагаются в вершинах правильных шестиугольников.

Расстояние между слоями сравнительно велико, примерно в 2 раза больше, чем длина стороны шестиугольника. Поэтому связи между слоями менее прочные, чем связи внутри них.

Многие кристаллы по-разному проводят тепло и электрический ток в различных направлениях. Зависят от направления и оптические свойства. Так, кристалл кварца по-разному преломляет свет в зависимости от направления падающих на него лучей.

Существуют монокристаллы и поликристаллы. Одиночные кристаллы называются монокристаллами.

Правильное расположение частиц в узлах решетки кристалла называются дальним порядком. Опыт показал, что идеального дальнего порядка в расположении частиц твердого вещества не существует. Любые отсутствия от идеального порядка в кристалле называют дефектом.

Чаще всего одиночные кристаллы имеют очень маленькие размеры, хотя монокристаллы горного хрусталя иногда бывает величиной с человеческий рост. Твердое тело состоящее из большого числа маленьких кристаллов, называют поликристаллическим. Множество кристаллов различимы в микроскопе, поскольку эти кристаллики относительно друг друга расположены хаотично, твердое тело является изотропным , т.е. имеет одинаковые свойства по всем направлениям, хотя каждый кристаллик обладает анизотропией.

Поликристалл- металл, сплавы металлов, кусок сахар.

3. Аморфные тела. Свойства аморфных тел.

.Аморфные тела («морфе» – форма и «а» - частица имеющая смысл отрицания)

У аморфных тел нет строго порядка в расположении атомов. Только ближайшие атомы расположены в строгом порядке. Часто одно и тоже вещество может находится как в кристаллическом, так и в аморфной форме. Например SiO 2 (кварц) в кристаллической форме, так и в аморфной (кремнезем). Все аморфные тела изотропны – одинаковое физическое свойство по всем направлениям. При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твердым телам и текучесть, подобно жидкости.

Кусок смолы растекается по поверхности. При низкой температуре ведет себя подобно твердому телу, при высокой температуре – образуют текучесть, так как с ростом температуры постоянно учащаются перескоки атомов, из одного положения в другое.

4. Типы связей в кристаллах и виды кристаллических структур:

а) ионная; б) атомная; в) молекулярная; г) металлическая .

Внутренние строение кристаллов представляет собой соединение мельчайших частиц вещества – молекул и атомов - в определенном правильном порядке. Как же узнать внутренние расположение частиц, ведь они невидимы не только невооруженным глазом, но и даже в лучшем микроскопе. На помощь пришли рентгеновские лучи. Про свечение или кристаллы, можно точно составить представление о их внутреннем строении..

Таким образом, с помощью рентгеновских лучей, было установлено, что частицы атомы и молекулы имеют правильное расположение, т.е. образуют правильную кристаллическую решетку.

Точки в кристаллической решетки соответствуют наиболее устойчивому положению равновесия частиц твердого тела называемого узлами.

Различные типы кристаллов и возможные расположения узлов в пространственной решетки, изучает кристаллография. В физике кристаллические структуры рассматривают не сточки зрения геометрии, и по характеру, сил действующих между частицами, т.е. по типу связей между частицами. По характеру сил, которые действуют между частицами, находящиеся в узлах решетки различают четыре типичных кристаллических структуры:

    ионную; - молекулярную;

    атомную; - металлическую.

Выясним в чем существует важность этих структур.

Ионная – кристаллическая структура характеризуется наличием положительных и отрицательных ионов в узлах решетки.

Силами, которыми удерживают ионы в узлах такой решетки являются силы электрического притяжения и отталкивания между этим ионами. Если рассмотреть кристаллическую решетку Na + Cl - разноименно заряженные частицы – ионы в ионной решетке расположены ближе друг к друга, чем одноименно заряженное, поэтому силы притяжения преобладают над силами отталкивания. Этим обусловлено значение прочности кристаллов с ионной решеткой. При плавление из ионной кристаллической решетки в расплав переходят ионы, которые являются свободными носителями. Поэтому такие расплавы являются хорошими носителями от тока.

Атомная – кристаллическая структура характеризуется наличием нейтральных атомов в узлах решетки между которыми существует ковалентная связь. Ковалентной связью , такая связь при которой каждые два соседние атома удерживаются рядом силами притяжения, возникающими при взаимном обмене двумя валентными электронами.

Имеются много твердых веществ с атомной решеткой: алмаз, кварц, германий, кремний. Рассмотрим схему изображения алмазной решетки. Ковалентная связь создает весьма прочные кристаллы, поэтому кристалл обладает большой механической прочностью и плавится при большой температуре.

Молекулярная кристаллическая структура – отличается пространственной решеткой, в узлах которой находятся нейтралы молекулы вещества.

Силами, удерживающими молекулы в узлах этой решетки, являются силы межмолекулярного воздействия, эти силы слабые, твердые вещества с молекулярной решеткой легко разрушаются при механическом воздействии и имеют низкую температуру плавления. Примерами веществ с молекулярной решеткой, являются нафталин, твердый азот.

Металлическая кристаллическая структура - отличается наличием в узлах решетки положительно заряженных ионов металла. У атомов всех металлов валентные электроны очень слабо связаны с атомами. Электронные облака таких атомов перекрывают сразу много атомов в кристаллической решетки (т.е. двигаются без препятственно по всему кристаллу). Каждый атом теряет свои электроны, и атомы превращаются в положительно заряженные по всему кристаллу (большой тепло варов, электропроводы).

Важными механическими свойствами материалов, которые приходится учитывать в машиностроении, является хрупкость и твердость. На практике встречаются материалы, которые при небольших нагрузках деформируются, а при больших нагрузках разрушаются, прежде чем из них, появится остаток деформации. Такие материалы называются хрупкими . Хрупкие материалы очень чувствительны к ударной нагрузке. При резком ударе разрушаются. Твердость материала можно определить разными способами. Обычно более твердым является такой материал который оставляет царапины на другом материале.

5. Жидкие кристаллы. Применение.

Жи́дкие криста́ллы - это фазовое состояние, в которое переходят некоторые вещества при определенных условиях (температура, давление, концентрация в растворе). Жидкие кристаллы обладают одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой вязкие жидкости, состоящие из молекул вытянутой или дискообразной формы, определённым образом упорядоченных во всем объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности.

Одно из важных направлений использования жидких кристаллов - термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы - сильно нагретые или холодные, неработающие - сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ - информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.

6. Минералы. Физические свойства минералов. Диагностические признаки.

Минералы – однородные по составу и строению кристаллические вещества, образовавшиеся в результате природных физико – химических процессов и являющиеся составными частями горных пород и руд. Физические свойства минералов зависят от химического состава, типа кристаллической структуры, имеют большое практическое значение и важны для их диагностики.

Внешний вид минералов различен. По внешней форме можно выделить изометричес-кие (равномерно развитые), вытянутые, шестоватые, плоские, таблитчатые и др.

Минералы различают по общему виду их кристаллов, зависящему от преобладающей простой формы. Облик минералов может быть кубическим (флюорит, пирит, галит), октаэдрическим (алмаз, магнетит), тетраэдрическим (сфалерит, тетраэдрит), призматическим (диопсид, скаполит, берилл), дипирамидальным (шеелит, цркон) и пр.

Морфология минералов зависит от условий их образования. Свободно растущие минералы обладают более развитой формой. Различия в условиях образования минералов и помехи при кристаллизации приводят к образованию минералов необычного вида. Совокупность минералов одного и того же происхождения называют агрегатом. Наиболее распространены зернистые агрегаты, ими сложены все кристаллические горные породы. Зернистые агрегаты различаются по величине зерен: крупнозернистые, среднезернистые, мелкозернистые; также выделяют равномернозернистые и неравномернозернистые. Землистые агрегаты характерны для порошковатых, рыхлых минералов и осадочных горных пород – глин, бокситов и др. Различают шестоватые, волокнистые, пластинчатые, чешуйчатые и др. агрегаты. Помимо этих форм выделения минералов распространены и другие агрегаты:

Друзы (щетки) – незакономерные сростка кристаллов;

Конкреции – имеют вид желваков, шаровидных стяжений, со скорлуповатым или радиальнолучистым строением;

Секреции – форма отложений минерального вещества в полостях, при росте минерала от периферии к центру (жеоды, миндалины);

Дендриты –формы ветвящегося древовидного строения, образующиеся при проникновении растворов по тонким волосным трещинам породы;

Оолиты – агрегаты мелких шариков, имеющие в разрезе концентрическое (реже радиальнолучистое) строение, образующиеся в водной среде;

Натеки и почковидные агрегаты – поверхностные образования, могут иметь форму сосулек, растущих сверху (сталактиты) и снизу (сталагмиты); а также налеты, выцветы, корочки.

Для минералов характерны явления полиморфизма и изоморфизма.

Изоморфизм – явление взаимного замещения атомов в узлах кристаллической решетки без нарушения ее строения.

Результатом изоморфизма являются изоморфные смеси. Многие минералы часто содержат незначительные примеси различных химических элементов, которые обусловлены закономерным вхождением в кристаллическую решетку минерала – это изоморфные примеси . С примесями связано резкое изменение электрических свойств, появление окраски, люминесценции, хотя их количество ничтожно мало, и они не входят в химическую формулу минерала.

Изоморфные смеси часто образуют непрерывные изоморфные ряды от одного конечного числа к другому. Такой изоморфизм называется совершенным или неограничеснным. Он характерен для изоморфных смесей, которые возникают при любых соотношениях компонентов (например, в плагиоклазах может присутствовать как альбитовая, так и анортитовая составляющая в различных соотношениях).

В тех случаях, когда изоморфный ряд при определенных соотношениях компонентов разрывается с образованием новых минералов, изоморфизм называется несовершенным или ограниченным (например, щелочные полевые шпаты могут распадаться с образованием таких минералов, как ортоклаз, санидин и микроклин ).

Ограниченные изоморфные смеси при изменении термодинамических условий (особенно при понижении температуры) могут распадаться на составные компоненты – это распад твердых растворов. Так, например, при высокой температуре щелочные полевые шпаты образуют непрерывный изоморфный ряд. При понижении температуры они распадаются на две фазы с преобладанием K и Na. В пределах каждой фазы возникают взаимные прорастания – пертиты и антипертиты .

Изменчивость химического состава в изоморфном ряду вызывает и изменение их физических свойств: твердости, плотности, показателей преломления.

Различают два вида изоморфизма:

- изовалентный – взаимозамещаются ионы имеющие одинаковую валентность;

- гетеровалентный – замещение ионов разных валентностей.

По степени совершенства изоморфных замещений выделяют совершенный (полный) изоморфизм – замещение одного элемента другим происходит в пределах до 100% и несовершенный (ограниченный) – замещение элементов, частичное от сотых долей до нескольких процентов.

Факторы изоморфизма:

    Близость размерных параметров изоморфных компонентов – объема элементарной ячейки и атомных радиусов ионов.

    Сходство характера химической связи. Минералы с ионным типом химической связи не образуют взаимозамещений с минералами, характеризующимися ковалентной связью. Это изоструктурные минералы.

Полиморфизм – явление при котором одно и тоже по составу вещество может иметь различные структуры и кристаллизоваться в различных видах симметрии. Несмотря на одинаковый состав, свойства этих минералов будут различными.

Наряду с полиморфизмом среди минералов наблюдаются явления сдвигов или поворотов отдельных структурных элементов (цепочек, слоев) относительно друг друга при полном сохранении структуры внутри этих элементов. Такое явление получило название политипия.

Данные виды кристаллов называют полиморфными и политипными модификациями.
Факторами возникновения таких модификаций являются:

Температура;

Давление;

Двойникование явление закономерного срастания кристаллов.
Двойники срастания имеют одну общую плоскость, которая на поверхности выражена двойниковым швом

    Двойники прорастания имеют общую двойниковую плоскость

    Простые двойники – срастание 2-х кристаллов

    Сложные двойники – срастание более 2-х кристаллов

    Полисинтетические двойники образуют параллельные слои (пластинки) кристаллического вещества.

Физические свойства минералов определяются взаимодействием между структурой и химическим составом. Они влияют на внешний вид минерала, на его физические характеристики, в том числе и механические.

1. Плотность минерала определяется как величина массы, занимающей единицу объема, и выражается в граммах на кубический сантиметр (г/см 3). Это фундаментальное физическое свойство, которое изменяется в зависимости, как от химического состава, так и от структуры.


2. Твердость – сопротивление материала резанью, царапанью или вдавливанию.

Минералы

Шкала Мооса

Метод микровдавливания (кг/мм 2)

Тальк

Гипс

Кальцит

Флюорит

Апатит

Ортоклаз

Кварц

1120

Топаз

1427

Корунд

2060

Алмаз

10 060

3. Спайность – способность минерала раскалываться при ударе или другом механическом воздействии по определенным кристаллографическим плоскостям.
Степень совершенства проявления спайности исследуемого минерала определяется путем ее сопоставления с данными следующей 5-ступенчатой шкалы:

    Спайность весьма совершенная проявляется в способности кристалла расщепляться на тонкие пластинки. Получить излом иначе, чем по спайности в этих кристаллах чрезвычайно трудно (слюда, молибденит)

    Спайность совершенная проявляется при ударе молотком в виде выколов, представляющих собой уменьшенное подобие разбиваемого кристалла. Так, при разбивании галита получают мелкие правильные кубики, при дроблении кальцита – правильные ромбоэдры (топаз, хромдиопсид, флюорит, барит).

    Спайность средняя характеризуется тем, что на обломках кристаллов отчетливо наблюдаются как плоскости спайности, так и неровные изломы по случайным направлениям (полевые шпаты, пироксены).

    Спайность несовершенная обнаруживается с трудом при тщательном осмотре неровной поверхности скола минерала (апатит, касситерит).

    Весьма несовершенная, т.е. практически отсутствует. Минералы, обладающие подобным типом спайности имеют мелкораковистый или раковистый излом (корунд, кварц).

4. Отдельность – способность минерала раскалываться вдоль структурно-ослабленных плоскостей, возникающих вследствие двойникования, дефектов роста, включений. В отличие от спайности, где раскалывание происходит вдоль определенных плоскостей может произойти в любом месте, отдельность возникает лишь в определенных местах и проявляется не у всех образцов (типично для корунда, гематита, некоторых пироксенов). Практическое значение отдельности имеют при обогащении (например, при отделении флюорита от кварца), и при огранке необходимо внимательно просматривать прозрачные камни, их возможные внутренние дефекты, во избежании образования направленных трещин и раскалывания.

5.Излом.

Минералы, разрушающиеся не по спайности, диагностируются по типу излома: неровный, раковистый, занозистый, землистый, крючковатый, зернистый и другие.

Наиболее распространен – раковистый излом. Минерал при ударе раскалывается по вогнутым поверхностям с характерными гребнями, располагающимися приблизительно концентрически вокруг места удара, причем вся поверхность напоминает створку раковины моллюска. Такой излом наблюдается у стекол и наиболее ярко проявляется у вулканического стекла – обсидиана. Раковистый излом легко дает скрытокристаллический кварц, наблюдается у яснокристаллического кварца и оливина.

Занозистый излом применяется к поверхностям с небольшими, но острыми и зазубренными неровностями.

6. Прочность – способность минерала реагировать на удар, раздавливание, разрезание и изгиб.

Самородные металлы -- медь, серебро, золото – могут быть сплющены при ударе молотка. Такое свойство называется ковкостью. Нож на поверхности минералов, обладающих ковкостью, оставляет блестящий след.

Однако большинство минералов являются хрупкими , и при легких ударах или надавливании крошатся. Нагрузка, при которой появляется первая видимая трещина, называется «числом хрупкости».


7. Электрические свойства.

Электропроводностью называют способность минерала проводить электричество. Электропроводность отражает тип химических связей, особенности химического состава, структуры и дефектности, т.е. электронное строение кристалла (расположение и взаимодействие атомов).

8. Магнитные свойства.

В соответствии с поведением в магнитном поле все кристаллические вещества делятся на следующие категории: диамагнитные, парамагнитные, ферромагнитные, антиферромагнитные и ферримагнитные.

Диамагнитные вещества имеют небольшое отрицательное значение Х и слабо отталкиваются внешним магнитным полем.

Парамагнитные вещества характеризуются небольшим положите-льным значением и слабо притягиваются полем.

При отсутствии внешнего поля ни диамагнитные, ни парамагнитные вещества не сохраняют никакого магнитного момента.

Ферромагнитные вещества обладают магнитным моментом даже при отсутствии окружающего поля. Они сильно притягиваются даже слабым магнитным полем и остаются постоянно намагниченными.

III . Закрепление материала – (20 мин.)

1. Составить блок-схему;

2. Заполнить таблицу (систематизация материала)

Параметры кристаллической структуры

Типы связей

Ионная

Атомная

Молекулярная

Металлическая

Пространственная решетка

Частицы, составляющие кристалл

Характер связей

3.Тестовые задания.

1. Наука о кристаллах и кристаллическом веществе, их строении, свойствах и

процессах образования - …

1. Геология

2. Кристаллография

3. Петрография

4 Стратиграфия

5. Минералогия

2. Особенность кристаллических веществ:

1. Упорядоченное расположение слагающих их атомов, ионов или молекул.

2. Редко упорядоченное расположение слагающих их атомов, ионов или молекул.

3. Неупорядоченное расположение слагающих их атомов, ионов или молекул.

4. Независимое расположение слагающих их атомов, ионов или молекул.

4. Соответствие между минералом и типом (классом), с учетом химического состава:

Минерал

Класс минералов

    графит

    силикаты

    галенит

    самородные элементы

    лимонит

    сульфиды

    нефелин

    гидрооксиды

5. Какой из видов метаморфизма протекает на больших глубинах в результате совместного воздействия на горные породы высокой температуры, давления, послемагматических растворов:

1. термальный

2. динамометаморфизм

3. контактовый

4. региональный

5. регрессивный

6. Какие из предложенных форм кристалла относятся к низшей, средней и высшей сингониям:

    триклинная

    моноклинная

    тригональная,

    тетрагональная

    гексагональная

    ромбическая

    кубическая.

7. Определить, для каких минералов какое явление характерно.

Сера

Графит

Ортоклаз

Полиморфизм.

Оливин

Алмаз

Арагонит

Корунд

Альбит

Гипс

Кварц

Золото

Изоморфизм.

Форстерит

Халцедон

Анортит

8. Определить, какие формы образования характерны для предложенных минералов.

Кварц

Друзы

Фосфорит

Кальцит

Конкреции

Марказит

Топаз

Секреции

Эффузивные ГП

Пирит

Дендриты

Арагонит

Медь самородная

Оолиты

Боксит

Малахит

Почковидные агрегаты

Лимонит

Халцедон

Корунд

9. Какие из минералов относятся к минералам глин:

1. каолинит 5. андалузит

2. галлуазит 6. арагонит

3. монтмориллонит 7. минералы слюд

4. нонтрон

10. Какие из минералов относятся к классу «силикаты»

1. барит

9. галит

2. роговая обманка

10. ортоклаз

3. малахит

11. магнезит

4. нефелин

12. оливин

5. гипс

13. опал

6. кордиерит

14. волластонит

7. доломит

15. хромит

8. тальк

16. иллит

IV . Дом задание (3мин.) Решить исследовательскую задачу; вырастить кристалл поваренной соли или медного купороса и объяснить процесс выращивания кристаллов.

Характеризуется наличием дальнего порядка в расположении частиц (атомов, ионов, молекул). В К. с. существует и ближний порядок, к-рый характеризуется постоянными координац. числами, валентными углами и длинами хим. связей. Инвариантность характеристик ближнего порядка в К. с. приводит к совпадению структурных ячеек при их трансляционном перемещении и образованию трехмерной периодичности структуры (см. Кристаллохимия. Кристаллы ). Вследствие своей макс. упорядоченности К. с. в-ва характеризуется миним. внутр. энергией и является термодинамически равновесным состоянием при данных параметрах -давлении, т-ре, составе (в случае твердых растворов ) и др. Строго говоря, полностью упорядоченное К. с. реально не м. б. осуществлено, приближение к нему имеет место при стремлении т-ры к О К (т. наз. идеальный кристалл). Реальные тела в К. с. всегда содержат нек-рое кол-во дефектов , нарушающих как ближний, так и дальний порядок. Особенно много дефектов наблюдается в твердых р-рах, в к-рых отдельные частицы и их группировки статистически занимают разл. положения в пространстве. Вследствие трехмерной периодичности атомного строения основными признаками кристаллов являются однородность и св-в и симметрия, к-рая выражается, в частности, в том, что при определенных условиях образования приобретают форму многогранников (см. Монокристаллов выращивание ). Нек-рые св-ва в-ва на пов-сти кристалла и вблизи от нее существенно отличны от этих св-в внутри кристалла, в частности из-за нарушения симметрии. Состав и, соотв., св-ва меняются по объему кристалла из-за неизбежного изменения состава среды по мере роста кристалла. Т. обр., однородность св-в так же, как и наличие дальнего порядка, относится к характеристикам "идеального" К. с. Большинство тел в К. с. является поликристаллическими и представляет собой сростки большого числа мелких кристаллитов (зерен) - участков размером порядка 10 -1 -10 -3 мм, неправильной формы и различно ориентированных. Зерна отделены друг от друга межкристаллитными слоями, в к-рых нарушен порядок расположения частиц. В межкристаллитных слоях происходит также концснтрирование примесей в процессе кристаллизации. Из-за случайной ориентации зерен поликристаллич. тело в целом (объем, содержащий достаточно много зерен) м. б. изотропным, напр. полученное при осаждении кристаллич. порошков с послед. спеканием. Однако обычно в процессе кристаллизации и особенно пластич. деформации возникает текстура -преимуществ, ориентация кристаллич. зерен в определенном направлении, приводящая к анизотропии св-в. На диаграмме состояния однокомпонентной системы вследствие полиморфизма К. с. может отвечать неск. полей, расположенных в области сравнительно низких т-р и повыш. давлений. Если имеется лишь одно поле К. с. и в-во химически не разлагается при повышении т-ры, то поле К. с. граничит с полями жидкости и газа по линиям плавления кристаллизации и возгонки - конденсации соотв., причем и газ (пар) могут находиться в метастабильном (переохлажденном) состоянии в поле К. с., тогда как К. с. не может находиться в поле жидкости или , т. е. кристаллич. в-во нельзя перегреть выше т-ры плавления или возгонки. Нек-рые в-ва (мезогены) при нагреве переходят в жидкокристаллич. состояние (см. Жидкие кристаллы ). Если на диаграмме однокомпонентной системы имеются два и более полей К. с., эти поля граничат по линии полиморфных превращений. Кристаллич. в-во можно перегреть или переохладить ниже т-ры полиморфного превращения. В этом случае рассматриваемое К. с. в-ва может находиться в поле др. кристаллич. модификации и является метастабильным. В то время как жидкость и пар благодаря существованию критич. точки на линии испарения можно непрерывно перевести друг в друга, вопрос о возможности непрерывного взаимного превращ. К. с. и жидкости окончательно не решен. Для нек-рых в-в можно оценить критич. параметры -давление и т-ру, при к-рых DH пл и DV пл равны нулю, т. е. К. с. и жидкость термодинамически неразличимы. Но реально такое превращ. не наблюдалось ни для одного в-ва (см. Критическое состояние ). В-во из К. с. можно перевести в неупорядоченное состояние (аморфное или стеклообразное), не отвечающее минимуму своб. энергии, не только изменением параметров состояния (давления, т-ры, состава), но и воздействием ионизирующего излучения или тонким измельчением. Критич. размер частиц, при к-ром уже не имеет смысла говорить о К. с., примерно 1 нм, т. е. того же порядка, что и размер элементарной ячейки. К. с. отличают обычно от др. разновидностей твердого состояния (стеклообразного, аморфного) по рентгенограммам в-ва. Лит.: Шаскольская М. П., Кристаллография, М., 1976; Современная кристаллография, под ред. Б. К. Вайнштeйна. т. I. М., 1979. П. И. Федоров.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ" в других словарях:

    кристаллическое состояние - kristalinė būsena statusas T sritis chemija apibrėžtis Būsena, kai medžiagos dalelės (atomai, jonai, molekulės) išsidėsčiusios taisyklinga, visomis kryptimis periodiškai pasikartojančia tvarka. atitikmenys: angl. crystalline state rus.… … Chemijos terminų aiškinamasis žodynas

    кристаллическое состояние - kristalinė būsena statusas T sritis fizika atitikmenys: angl. crystalline state vok. kristalliner Zustand, m rus. кристаллическое состояние, n pranc. état cristallin, m … Fizikos terminų žodynas

    КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ - правильное, закономерное расположение частиц (атомов, молекул) в пространстве, образующее кристаллическую решетку … Металлургический словарь

    Характеризуется тем, что звенья макромолекул образуют структуры с трехмерным дальним порядком. Размер этих структур не превышает неск. мкм; обычно их называют кристаллитами. В отличие от низкомол. в в, полимеры никогда не кристаллизуются нацело,… … Химическая энциклопедия

    Прил., кол во синонимов: 1 закристаллизовавшийся (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Состояние вещества, когда слагающие его частицы (атомы, ионы, молекулы) занимают строго фиксированные положения по геометрическим законам пространственных гр. и соответственных решеток. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией … Геологическая энциклопедия

    СОСТОЯНИЕ - (1) аморфное (рентгеноаморфное) состояние твёрдого вещества, в котором нет кристаллической структуры (атомы и молекулы расположены беспорядочно), оно изотропно, т. е. имеет одинаковые физ. свойства по всем направлениям и не имеет чёткой… … Большая политехническая энциклопедия

    В Викисловаре есть статья «состояние» Состояние абстрактный термин, обозначающий множество стабильных значений переменных … Википедия

    У этого термина существуют и другие значения, см. Стекло (значения). Основная статья: Стекло Стеклообразное состояние твёрдое аморфное метастабильное состояние вещества, в котором нет выраженной кристаллической решётки, условные элементы… … Википедия

    - (от греч. а отрицательная частица и morphē форма) твёрдое состояние вещества, обладающее двумя особенностями: его свойства (механические, тепловые, электрические и т. д.) в естественных условиях не зависят от направления в веществе… … Большая советская энциклопедия

Естественным отличием строения большинства твердых материалов (за исключением монокристаллов), в сравнении с жидкими и особенно газообразными (низкомолекулярными) веществами, является их более сложная многоуровневая организация (см. табл. 4.1 и рис. 4.3). Это связано с уменьшением ковалентности и ростом ме- талличности и ионности гомо- и гетероядерных связей элементов их микроструктуры (см. рис. 6.2 и 6.6 и табл. 6.1-6.7), что приводит к росту числа элементов в структуре вещества и материала и соответствующему изменению его агрегатного состояния. При изучении структурной иерархии твердых материалов необходимо понимать единство и различия в уровнях структурной организации твердых металлических и неметаллических материалов с учетом степени упорядоченности в объеме материала элементов, их образующих. Особое значение имеет разница в структуре твердых кристаллических и аморфных тел, заключающаяся в способности кристаллических материалов, в отличие от аморфных тел, образовывать целый ряд более сложных структур, чем базовый электронно-ядерный химический уровень структур.

Аморфное состояние. Специфика аморфного (в пер. с греч. - бесформенного) состояния заключается в нахождении вещества в конденсированном (жидком или твердом) состоянии с отсутствием в его структуре трехмерной периодичности в расположении элементов (атомных остовов или молекул), составляющих это вещество. В результате особенности аморфного состояния обусловлены отсутствием дальнего порядка - строгой повторяемости во всех направлениях одного и того же элемента структуры (ядра или атомного остова, группы атомных остовов, молекулы и т.п.) на протяжении сотен и тысяч периодов. В то же время у вещества в аморфном состоянии существует ближний порядок - согласованность в расположении соседних элементов структуры, т.е. порядок, соблюдаемый на расстояниях, сравнимых с размерами молекул. С расстоянием эта согласованность уменьшается и через 0,5- 1 нм исчезает. Аморфные вещества отличаются от кристаллических изотропностью, т.е. подобно жидкости они имеют одинаковые значения данного свойства при измерении в любом направлении внутри вещества. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств - это второй важный признак, отличающий аморфное состояние твердого вещества от кристаллического. В отличие от кристаллического вещества, имеющего определенную температуру плавления, при которой происходит скачкообразное изменение свойств, аморфное вещество характеризуется интервалом размягчения и непрерывным изменением свойств.

Аморфные вещества менее устойчивы, чем кристаллические. Любое аморфное вещество в принципе с течением времени должно кристаллизоваться, и этот процесс должен быть экзотермическим. Часто аморфные и кристаллические формы - это различные состояния одного и того же по составу химического вещества или материала. Так, известны аморфные формы ряда гомоядерных веществ (серы, селена и др.), оксидов (В 2 О э, Si0 2 , Ge0 2 и др.).

Вместе с тем многие аморфные материалы, в частности большинство органических полимеров, закристаллизовать не удается. На практике кристаллизация аморфных, особенно высокомолекулярных, веществ наблюдается очень редко, так как структурные изменения затормаживаются из-за большой вязкости этих веществ. Поэтому, если не прибегать к специальным методам, например к длительному высокотемпературному воздействию, переход в кристаллическое состояние протекает с крайне малой скоростью. В подобных случаях можно считать, что вещество в аморфном состоянии практически вполне устойчиво.

В отличие от аморфного состояния, присущего веществам, находящимся как в жидком или расплавленном виде, так и в твердом конденсированном, стеклообразное состояние относится только к твердому агрегатному состоянию вещества. В результате в жидком или расплавленном аморфном состоянии могут находиться вещества с любым преимущественным типом связи (ковалентным, металлическим и ионным) и, следовательно, и с молекулярной и немолекулярной структурой. Однако в твердом аморфном , или точнее,- стеклообразном состоянии будут в первую очередь находиться вещества на основе ВМС, характеризуемые преимущественно ковалентным типом связи элементов в цепях макромолекул. Это связано с тем, что твердое аморфное состояние вещества получают в результате переохлаждения его жидкого состояния, что препятствует процессам кристаллизации и приводит к «замораживанию» структуры с ближним порядком расположения элементов. Отметим, что наличие макромолекул в структуре полимерных материалов ввиду влияния сте- рического - размерного фактора (ведь из катионов легче создать кристалл, чем из молекул) приводит к дополнительному усложнению процесса кристаллизации. Поэтому органические (полиметилметакрилат и т.д.) и неорганические (оксиды кремния, фосфора, бора и т.д.) полимеры способны образовывать стекла или реализовать аморфное состояние в твердых материалах. Правда, сегодня и расплавы металлов при сверхвысоких скоростях охлаждения (>10 6 °С/с) переводят в аморфное состояние, получая аморфные металлы или металлические стекла с комплексом новых ценных свойств.

Кристаллическое состояние. В кристаллическом теле наблюдается как ближний , так и дальний порядок расположения элементов структуры (атомные остовы или частицы в виде индивидуальных молекул), т.е. элементы структуры размещаются в пространстве на определенном расстоянии друг от друга в геометрически правильном порядке, образуя кристаллы - твердые тела, имеющие естественную форму правильных многогранников. Эта форма является следствием упорядоченного расположения в кристалле элементов, образующих трехмерно-периодическую пространственную укладку в виде кристаллической решетки. Вещество в кристаллическом состоянии характеризуется периодической повторяемостью в трех измерениях расположения в ее узлах атомных остовов или молекул. Кристалл является равновесным состоянием твердых тел. Каждому химическому веществу, находящемуся при данных термодинамических условиях (температуре, давлении) в кристаллическом состоянии, соответствует определенная кристаллическая ковалентная или молекулярная, металлическая и ионная структуры. Кристаллы обладают той или иной структурной симметрией атомных остовов (катионов в металле либо катионов и анионов в ионных кристаллах) или молекул, соответствующей ей макроскопической симметрией внешней формы, а также анизотропией свойств. Анизотропность - это неодинаковость свойств (механических, физических, химических) монокристалла в различных направлениях его кристаллической решетки. Изотропность - это одинаковость свойств вещества в различных ее направлениях. Естественно, что эти закономерности изменения свойств вещества определяются спецификой изменения или неиз- менения их структуры. Реальные кристаллические материалы (включая металлы) являются квазиизотропными структурами, т.е. они изотропны на мезоструктурном уровне (см. табл. 4.1) и их свойства одинаковы во всех направлениях. Это связано с тем, что большинство природных или искусственных кристаллических материалов являются поликристаллическими веществами, а не монокристаллами

(типа алмаза). Они состоят из большого количества так называемых зерен или кристаллитов, кристаллографические плоскости которых повернуты относительно друг друга на некоторый угол а. При этом в любом направлении мезоструктуры материала располагается примерно одинаковое количество зерен с различной ориентацией кристаллографических плоскостей, что приводит к независимости его свойств от направления. Каждое зерно состоит из отдельных элементов - блоков, которые повернуты относительно друг друга на углы порядка нескольких минут, что также обеспечивает изотропность свойств уже самого зерна в целом.

Кристаллические состояния одного и того же вещества могут различаться строением и свойствами, и тогда говорят, что данное вещество существует в различных модификациях. Существование нескольких кристаллических модификаций у данного вещества называется полиморфизмом, а переход из одной модификации в другую - полиморфным превращением. В отличие от полиморфизма, аллотропия - это существование элемента в виде различных «простых» (или, точнее, гомоядерных) веществ независимо от их фазового состояния. Например, кислород 0 2 и озон О э - аллотропные формы кислорода, существующие в газообразном, жидком и кристаллическом состояниях. В то же время алмаз и графит - аллотропные формы углерода - являются одновременно и его кристаллическими модификациями, в этом случае понятия «аллотропия» и «полиморфизм» совпадают для его кристаллических форм.

Нередко также наблюдается явление изоморфизма, при котором два разных по природе вещества образуют кристаллы одинаковой структуры. Такие вещества могут замещать друг друга в кристаллической решетке, образуя смешанные кристаллы. Впервые явление изоморфизма было продемонстрировано немецким минералогом Э. Мичерлихом в 1819 г. на примере КН 2 Р0 4 , KH 2 As0 4 и NH 4 H 2 P0 4 . Смешанные кристаллы являются совершенно однородными смесями твердых веществ - это твердые растворы замещения. Поэтому можно сказать, что изоморфизм - это способность образовывать твердые растворы замещения.

Традиционно кристаллические структуры традиционно делят на гомодесмические (координационные) и гетеродесмические. Гомо- десмическую структуру имеют, например, алмаз, галогениды щелочных металлов. Однако гораздо чаще кристаллические вещества имеют гетеродесмическую структуру; ее характерная черта - присутствие структурных фрагментов, внутри которых атомные остовы соединены наиболее прочными (обычно ковалентными) связями. Эти фрагменты могут представлять собой конечные группировки элементов, цепи, слои, каркасы. Соответственно выделяются островные, цепочечные, слоистые и каркасные структуры. Островными структурами обладают почти все органические соединения и такие неорганические вещества, как галогены, 0 2 , N 2 , С0 2 , N 2 0 4 и др. Роль островов играют молекулы, поэтому такие кристаллы называются молекулярными. Часто в качестве островов выступают многоатомные ионы (например, сульфаты, нитраты, карбонаты). Цепочечное строение имеют, например, кристаллы одной из модификаций Se (атомные остовы связаны в бесконечные спирали) или кристаллы PdCl 2 , в которых присутствуют бесконечные ленты; слоистую структуру - графит, BN, MoS 2 и др.; каркасную структуру - СаТЮ 3 (атомные остовы Ti и О, объединенные ковалентными связями, образуют ажурный каркас, в пустотах которого расположены атомные остовы Са). Часть из этих структур относят к неорганическим (безуглерод- ным) полимерам.

По характеру связи между атомными остовами (в случае гомо- десмических структур) или между структурными фрагментами (в случае гетеродесмических структур) различают: ковалентные (например, SiC, алмаз), ионные, металлические (металлы и интерметаллические соединения) и молекулярные кристаллы. Кристаллы последней группы, в которой структурные фрагменты связаны межмолекулярным взаимодействием, имеют наибольшее число представителей.

Для ковалентных монокристаллов типа алмаза, карборунда и др. характерны тугоплавкость, высокая твердость и износостойкость, что является следствием прочности и направленности ковалентной связи в сочетании с их трехмерной пространственной структурой (полимерные тела).

Ионные кристаллы представляют собой образования, в которых сцепление элементов микроструктуры в виде противоионов обусловлено преимущественно ионными химическими связями. Примером ионных кристаллов являются галогениды щелочных и щелочноземельных металлов, в узлах кристаллической решетки которых находятся чередующиеся положительно заряженные катионы металла и отрицательно заряженные анионы галогена (Na + Cl - , Cs + Cl - , Ca + F^, рис. 7.1).

Рис. 7.1.

В металлических кристаллах сцепление атомных остовов в виде катионов металла обусловлено преимущественно металлическими ненаправленными химическими связями. Данный тип кристаллов характерен для металлов и их сплавов. В узлах кристаллической решетки находятся атомные остовы (катионы), связанные между собой ОЭ (электронным газом). Подробнее структура металлических кристаллических тел будет рассмотрена далее.

Молекулярные кристаллы образованы из молекул, связанных друг с другом ван-дер-ваальсовыми силами или водородной связью. Внутри молекул действует более прочная ковалентная связь (С к преобладает над С и и С м). Фазовые превращения молекулярных кристаллов (плавление, возгонка, полиморфные переходы) происходят, как правило, без разрушения отдельных молекул. Большинство молекулярных кристаллов - кристаллы органических соединений (например, нафталин). Молекулярные кристаллы образуют также такие вещества, как Н 2 , галогены типа J 2 , N 2 , 0 2 , S g , бинарные соединения типа Н 2 0, С0 2 , N 2 0 4 , металлоорганические соединения и некоторые комплексные соединения. К молекулярным кристаллам относятся также кристаллы таких природных полимеров, как белки (рис. 7.2) и нуклеиновые кислоты.

Полимеры, как уже было указано выше, как правило, также относятся к веществам, образующим молекулярные кристаллы. Однако в случае, когда упаковка макромолекул имеет складчатую или фибриллярную конформацию, правильнее было бы говорить о ковалентно-молекулярных кристаллах (рис. 7.3).


Рис. 7.2.


Рис. 7.3.

Это связано с тем, что вдоль одного из периодов решетки (например, периода с в случае полиэтилена, макромолекулы которого находятся в складчатой конформации, образуя ламель) действуют прочные химические (рис. 7.3), преимущественно ковалентные, связи. В то же время вдоль двух других периодов решетки (например, периодов b и с в тех же складчатых кристаллах полиэтилена) действуют уже более слабые силы межмолекулярного взаимодействия .

Деление кристаллов на указанные группы в значительной мере условно, поскольку существуют постепенные переходы от одной группы к другой по мере изменения характера связи в кристалле. Например, среди интерметаллидов - соединений металлов друг с другом - можно выделить группу соединений, в которых снижение металлической компоненты химической связи и соответствующий рост ковалентной и ионной компонент приводят к образованию ХС в соответствии с классическими валентностями. Примерами таких соединений могут служить соединения магния с элементами главной подгруппы IV и V групп Периодической системы, являющимися переходными между металлами и неметаллами (Mg 2 Si, Mg 2 Ge, Mg 2 Sn, Mg 2 Pb, Mg 3 As 2 , Mg 3 Sb 7 , Mg 3 Bi 7), к основным характерным особенностям которых обычно относят следующие:

  • их гетероядерная кристаллическая решетка отличается от гомо- ядерных решеток исходных соединений;
  • в их соединении обычно сохраняется простое кратное соотношение компонентов, позволяющее выразить их состав простой формулой А ш В;? , где А и В - соответствующие элементы; т и п - простые числа;
  • гетероядерные соединения характеризуются новым качеством структуры и свойств в отличие от исходных соединений.

В кристалле структурные элементы (ионы, атомные остовы, молекулы), образующие кристалл, располагаются закономерно по разным направлениям (рис. 7Ла). Обычно пространственное изображение структуры кристаллов представляют схематично (рис.7.45), отмечая точками центры тяжести структурных элементов, включая характеристики решетки.

Плоскости, параллельные координатным плоскостям, находящиеся на расстоянии а, Ь, с друг от друга, делят кристалл на множество равных и параллельно ориентированных параллелепипедов. Наименьший из них называют элементарной ячейкой, их совокупность образует пространственную кристаллическую решетку. Вершины параллелепипеда являются узлами пространственной решетки, с этими узлами совпадают центры тяжести элементов, из которых построен кристалл.

Пространственные кристаллические решетки полностью описывают строение кристалла. Для описания элементарной ячейки кристаллической решетки используют шесть величин: три отрезка, равные расстояниям до ближайших элементарных частиц по осям координат а, Ь, с, и три угла между этими отрезками а, (3, у.

Соотношения между этими величинами определяют форму ячейки, в зависимости от которой все кристаллы разделяют на семь систем (табл. 7.1).

Размер элементарной ячейки кристаллической решетки оценивают отрезки а, Ь, с. Их называют периодами решетки. Зная периоды решетки, можно определить радиус атомного остова элемента. Этот радиус равен половине наименьшего расстояния между частицами в решетке.

О степени сложности решетки судят по числу структурных элементов, приходящихся на одну элементарную ячейку. В простой пространственной решетке (см. рис. 7.4) всегда на одну ячейку приходится один элемент. В каждой ячейке имеется восемь вершин, но


Рис. 7.4. Расположение элементов в кристалле : а - изображение с размещением объема атомного остова элемента; б - пространственное изображение элементарной ячейки и ее параметры

Табл и ца 7.1

Характеристики кристаллических систем

каждый элемент в вершине относится, в свою очередь, к восьми ячейкам. Таким образом, от узла на долю каждой ячейки приходится У 8 объема, а всего узлов в ячейке восемь, и, следовательно, на одну ячейку приходится один структурный элемент.

В сложных пространственных решетках на одну ячейку всегда приходится больше одного структурного элемента, которые наиболее распространены в важнейших чистых металлических соединениях (рис. 7.5).

В ОЦК-решетке кристаллизуются следующие металлы: Fe a , W, V, Сг, Li, Na, К и др. В ГЦК-решетке кристаллизуются Fe y , Ni, Со а, Си, Pb, Pt, Аи, Ag и др. В ГПУ-решетке кристаллизуются Mg, Ti a , Со р, Cd, Zn и др.

Система, период и число структурных элементов, приходящихся на элементарную ячейку, позволяют полностью представить расположение последних в кристалле. В ряде случаев используют дополнительные характеристики кристаллической решетки, обусловленные ее геометрией и отражающие плотность упаковки элемен-


Рис. 7.5. Типы сложных элементарных ячеек кристаллических решеток: а - ОЦК; 6 - ГЦК; в - ГПУ тарных частиц в кристалле. Такими характеристиками являются КЧ и коэффициент компактности.

Число ближайших равноудаленных элементарных частиц определяет координационное число. Например, для простой кубической решетки КЧ будет 6 (Кб); в решетке объемно-центрированного куба (ОЦК) для каждого атомного остова число таких соседей будет равно восьми (К8); для гранецентрированной кубической решетки (ГЦК) КЧ число равно 12 (К 12).

Отношение объема всех элементарных частиц, приходящихся на одну элементарную ячейку, ко всему объему элементарной ячейки определяет коэффициент компактности. Для простой кубической решетки этот коэффициент равен 0,52, для ОЦК - 0,68 и ГЦК - 0,74.

  • Sirotkin R.O. The effect of morphology on the yield behaviour of solution crystallisedpolyethylenes: PhD thesis, University of North London. - London, 2001.

Характеризуется наличием дальнего порядка расположения частиц.

Существует и ближний порядок, который характеризуется постоянными координационными числами, валентными узлами и длинами химических связей.

Вследствие своей максимальной упорядоченности кристаллическое состояние вещества характеризуется запасом минимальной внутренней энергией и является термодинамическим равновесным состоянием при данных P и Т. Полностью упорядоченное кристаллическое состояние реально не может быть осуществлено.

Реальные тела в кристаллическом состоянии всегда содержат некоторое количество дефектов, нарушенный ближний и дальний порядок (в основном, твердые растворы, в которых отдельные атомы, ионы, группировки занимают статистически различное положение в пространстве).

Некоторые свойства вещества на поверхности кристалла и вблизи от поверхности существенно отличны от этих свойств внутри кристалла.

Состав и свойства меняются по объему кристалла из-за неизбежного состава среды по мере роста кристалла.

Таким образом, однородность свойств, как и наличие дальнего порядка, относятся к характеристикам идеального кристаллического состояния. Большинство тел в кристаллическом состоянии являются поликристаллическими и представляют собой сростки большого количества мелких зерен, участков порядка 10 -1 – 10 -3 м непонятной формы и различно ориентированных.

Эти зерна отделены друг от друга межкристаллитными слоями, в которых нарушен порядок расположения частиц. В них происходит концентрирование примесей в процессе кристаллизации.

Из-за случайной ориентации зерен поликристаллическое тело может быть изотропным.

В процессах кристаллизации (особенно пластической деформации) образуется текстура, которая характеризуется преимущественно ориентацией зерен.

Некоторые вещества при нагреве переходят в жидкокристаллическое состояние. Кристаллическое вещество можно перегреть или переохладить ниже температуры полиморфного превращения. В этом случае кристаллическое состояние данного вещества может находиться в поле других кристаллических модификаций и являться метастабильным.

Вещество из кристаллического состояния можно перевести в неупорядоченное состояние (аморфное), не отвечающее минимуму свободной энергии не только при изменении параметров состояние (Т, Р, состав), но и воздействием ионизирующего излучения.

Можно тонким измельчением монокристалла привести кристаллическое вещество в неупорядоченное состояние (аморфное).

Кристаллический размер частиц, при котором уже бессмысленно говорить о кристаллическом состоянии, составляет примерно 1 нм (это примерно тот же порядок, что и размер свободной ячейки).

Методы выращивания монокристаллов

В основе классификации – создание благоприятных условий: форма кристалла, скорость, степень стабилизации технологии.

Под методом кристаллизации понимают ряд отличительных признаков техники выращивания кристаллов, необходимость использования контейнера или тигля, его конфигурация, тип источника нагрева, положение и направление фронта кристаллизации относительно зеркала расплава.

Метод выращивания из расплава является более распространенным и чаще применяется (относительно высокая скорость роста кристалла, стабильность, повторяемость результата выращивания, возможность управления и автоматизация процесса).

Минусы: Особые требования к кристаллическим веществам (например, температурная стабильность), следовательно, неоднородности в строении кристалла в виде включений, зерен, дислокаций, блочных структур.

Из расплава выращивают металлы, оксиды (Al2O3, Cd2O3), полупроводники (Si, Ge), галогениды (KF, NaF, LiF, RbF, LiBr, KBr), простые соединения.

Повышенные требования предъявляют и к тиглям, в которых осуществляется плавление вещества (например, органические материалы надо выращивать в тиглях из диэлектриков, а диэлектрические материалы – из металлических тиглей). В противном случае возможно растворение материалов, нарушение состава и структуры.

Частицы атмосферы способны активно взаимодействовать с частицами кристалла. Из-за влияния атмосферы иногда синтез осуществляется в вакууме, азотной атмосфере и т.д. В вакууме при температуре больше 800оС возможно испарение материала, а если вакуум ниже 4 мм ртутного столба, то присутствует кислород О2.

Для уменьшения испарения в состав расплава вводят летучие компоненты кристаллического вещества, например, для синтеза фторидов используют фтор содержащую атмосферу, для оксидов – кислород содержащую атмосферу, сульфидов – серосодержащую атмосферу и т.д.

Выращивание некоторых составов осуществляется в восстановительной атмосфере для термического восстановления расплава. Например, синтез CaF2 ведут в атмосфере фтористого водорода, что препятствует развитию гидратации.

Синтез металла реализуют в водородной среде.

В ряде случаев в качестве атмосферы выбирают окислительную среду (воздух, кислород).

В промышленных установках для улучшения качества кристаллов производится очистка атмосферы от загрязнений (кислорода и влаги).

При синтезе кристалла LiH для очистки H используется титановая губка.

Существует множество классификаций методов выращивания кристаллов.

Различают методы с неограниченным объемом жидкой фазы – Кирропулоса, Чохральского, Гарниссажа, Добржанского, Степанова, Бриджмена-Стокбаргера; и ограниченным объемом жидкой фазы: Вернеля, зонной плавки, плавающей зоны.

gastroguru © 2017