Коррозия водогрейных котлов и теплообменного оборудования. Коррозия и эрозия в котлах среднего и низкого давления со стороны топки Причины возникновения электрохимической коррозии в водогрейных котлах

Аварии паровых котлов, связанные с нарушением водного режима, коррозией и эрозией металла

Нормальный водный режим - одно из важнейших условий надежности и экономичности эксплуатации котельной установки. Применение воды с повышенной жесткостью для питания котлов влечет за собой образование накипи, перерасход топлива и увеличение расходов на ремонт и чистку котлов. Известно, что накипеобразование может привести к аварии парового котла вследствие пережога поверхностей нагрева. Поэтому правильный водный режим в котельной следует рассматривать не только с точки зрения повышения экономичности котельной установки, но и как важнейшее профилактическое мероприятие по борьбе с аварийностью.

В настоящее время котельные установки промышленных предприятий оснащены водоподготовительными устройствами, поэтому улучшились условия их эксплуатации и значительно снизилось число аварий, вызванных накипеобразованием и коррозией.

Однако на некоторых предприятиях администрация формально выполнив требование Правил котлонадзора об оснащении котлов водоподготовительными установками, не обеспечивает нормальных условий эксплуатации этих установок, не контролирует качество питательной воды и состояние поверхностей нагрева котлов, допуская загрязнения котлов накипью и шламом. Приведем несколько примеров аварий котлов по этим причинам.

1. В котельной завода сборных железобетонных конструкций из-за нарушений водного режима в котле ДКВР-6, 5-13 произошел разрыв трех экранных труб, часть экранных труб деформирована, на многих трубах образовались отдулины.

В котельной имеется двухступенчатая натрий-катионитовая водоочистка и деаэратор, но нормальной работе водоподготовительного оборудования не уделяли должного внимания. Регенерацию ка-тионитовых фильтров не проводили в установленные инструкцией сроки, качество питательной и котловой воды проверяли редко, сроки периодической продувки котла не соблюдали. Воду в деаэраторе не подогревали до требумой температуры и поэтому обескислороживания воды фактически не происходило.

Установлено также, что в котел часто подавали сырую воду, при этом не соблюдали требования «Правил устройства и безопасной эксплуатации паровых и водогрейных котлов», согласно которым запорные органы на линии сырой воды должны быть опломбированы в закрытом положении, а каждый случай питания сырой водой должен быть записан в журнал водоподготовки. Из отдельных записей в журнале водоподготовки видно, что жесткость питательной воды достигала 2 мг-экв/кг и более, при допустимой по нормам котлонадзора 0,02 мг-экв/кг. Чаще всего в журнал вносили такие записи: «вода грязная, жесткая», без указания результатов химического анализа воды.

При осмотре котла после остановки на внутренних поверхностях экранных труб обнаружены отложения толщиной до 5 мм, отдельные трубы почти полностью забиты накипью и шламом. На внутренней поверхности барабана в нижней части толщина отложений достигла 3 мм, передняя часть барабана на одну треть по высоте завалена шламом.

За 11 мес. до этой аварии аналогичные повреждения («трещины, отдулины, деформация) были выявлены в 13-ти экранных трубах котла. Дефектные трубы были заменены, но администрация пред приятия в нарушение «Инструкции по расследованию аварий, но повлекших за собой несчастных случаев на подконтрольных Госгор технадзору СССР предприятиях и объектах» не провела расследование этого случая и не приняла мер по улучшению условий эксплуатации котлов.

2. На энергопоезде сырую воду для питания однообарабанного водотрубного экранированного парового котла производительностью 10 т/ч с рабочим давлением 41 кгс/см2 обрабатывали методом катионного обмена. Вследствие неудовлетворительной работы катион и тового фильтра остаточная жесткость умягченной воды доходила до

0,7 мг-экв/кг вместо предусмотренной проектом 0,01 мг-экв/кг. Про дувка котла производилась нерегулярно. При остановках на ремонт барабан котла и коллекторы экранов не вскрывали и не осматривали. Из-за отложений накипи произошел разрыв трубы, при этом паром и горящим топливом, выброшенным из топки, был обожжен кочегар.

Несчастного случая могло не быть, если бы топочная дверка котла была закрыта на щеколду, как этого требуют правила безо* пасной эксплуатации котлов.

3. На цементном заводе был введен в эксплуатацию вновь смонтированный одно барабанный водотрубный котел производительностью 35 т/ч с рабочим давлением 43 кгс/см2 без химводоочистки, монтаж которой к этому времени не был закончен. В течение месяца питание котла производилось неочищенной водой. Деаэрация воды более двух месяцев не производилась, так как к дэаэратору не был подключен паропровод.

Нарушения водного режима допускались и после того, как во. доподготовительное оборудование было включено в работу. Котел часто подпитывали сырой водой; режим продувок не соблюдали; химическая лаборатория не контролировала качество питательной воды, так как не была снабжена необходимыми реактивами.

Из-за неудовлетворительного водного режима отложения на внутренних поверхностях экранных труб достигали толщины 8 мм; в результате чего на 36 экранных трубах образовались отдулины» значительная часть труб была деформирована, стенки барабана с внутренней стороны подверглись коррозии.

4. На заводе железобетонных изделий питание котла системы Шухова-Берлина производилось водой, обработанной электромагнитным способом. Известно, что при этом способе обработки воды должно быть обеспечено своевременное эффектное удаление шлама из котла.

Однако при эксплуатации котла это условие не выполнялось. Продувка котла производилась нерегулярно, график остановки котла на промывку и чистку не соблюдался.

В резульате этого внутри котла скопилось большое количество шлама. Задняя часть труб была забита шламом на 70-80% сечения, грязевик - на 70% объема, толщина накипи на поверхностях нагрева достигла 4 мм. Это привело к перегреву и деформа-ции кипятильных труб, трубных рсшсчок и головок трубчатых секций.

При выборе электромагнитного способа обработки йоды в данном случае не учли качество питательной воды и конструктивные особенности котла, при этом не были приняты меры по организации нормального режима продувок, что привело к скоплению шлама и значительным отложениям накипи в котле.

5. Исключительное значение приобрели вопросы организации рационального водного режима для обеспечения надежной и экономичной эксплуатации котлов тепловых электростанций.

Образование отложений на поверхностях нагрева котельных агрегатов происходит в результате сложных физико-химических процессов, в которых участвуют не только накипеобразопатели, но и окислы металлов и легкорастворимые соединения. Диализ отложений показывает, что наряду с солями накипеобразователей в них содержится значительное количество окислов железа, являющихся продуктами коррозионных процессов.

За прошедшие годы в нашей стране достигнуты значительные успехи в организации рационального водного режима котлов тепловых электростанций и химического контроля за водой и паром, а также во внедрении коррозионностойких металлов и защитных покрытий.

Применение современных средств водоподготовки позволило резко повысить надежность и экономичность эксплуатации энергетического оборудования.

Однако на отдельных тепловых электростанциях все ещё допускаются нарушения водного режима.

В июне 1976 г. по этой причине на ТЭЦ целлюлозно-бумажного комбината произошла авария на паровом котле типа БКЗ-220-100 ф паропроизводительностью 220 т/ч с параметрами пара 100 кгс/см2 и 540° С, изготовленном на Барнаульском котлостроительном заводе в 1964 г. Котел однобарабанный с естественной циркуляцией, выполнен по П-образной схеме. Топочная камера призматическая полностью экранирована трубами с наружным диаметром 60 мм, шаг которых 64 мм. Нижняя часть экранной поверхности образует так называемую холодную воронку, по откосам которой частички шлака в твердом виде скатываются вниз, в шлаковый комод. Схема испарения двухступенчатая, промывкой пара питательной водой. Первая ступень испарения включена непосредственно в барабан котла, второй ступенью служат выносные паросепарационные циклоны, включенные в схему циркуляции средних боковых блоков экрана.

Питание котла осуществляется смесью химически очищенной воды (60%) и конденсата, поступающего из турбин и производственных цехов (40%). Вода для питания котла обрабатывается по схеме: известковые - коагуляция - магнезиальное обескремнивание в

Осветлителях - двухступенчатое катионирование.

Котел работает на угле Интинского месторождения с относительно низкой температурой плавления золы. В качестве растопочного топлива используется мазут. До аварии котел отработал 73 300 ч.

В день аварии котел был включен в 00 ч 45 мин и работал без отклонения от нормального режима до 14 ч. Давление в барабане за этот период работы поддерживалось в пределах 84-102 кгс/см2, расход пара составлял 145-180 т/ч, температура перегретого пара-520-535° С.

В 14 ч 10 мин произошел разрыв 11-ти труб фронтового экрана в зоне холодной воронки на отметке 3,7 м с частичным разрушением

обмуровки. Предполагается, что сначала произошел разрыв водной или двух труб, а затем последовал разрыв остальных труб. Уровень воды резко снизился, и котел был остановлен автоматикой защиты.

Осмотр показал, что разрушению подверглись наклонные участки труб холодной воронки вне гибов, при этом от первого фронтового нижнего коллектора оторваны две трубы, от второго-девять. Разрыв носит хрупкий характер, кромки в местах разрыва тупые и не имеют утонения. Длина разорвавшихся участков труб составляет от одного до трех метров. На внутренней поверхности поврежденных труб, а также образцов, вырезанных из неповрежденных труб, обнаружены рыхлые отложения толщиной до 2,5 мм, а также большое число язвин, глубиной до 2 мм, расположенных цепочкой шириной до 10 мм по двум образующим вдоль границы обогрева трубы. Именно в местах коррозионных повреждений произошло разрушение металла.

В ходе расследования аварии выяснилось, что ранее в процессе эксплуатации котла уже были разрывы экранных труб. Так, например, за два месяца до аварии произошел разрыв трубы фронтового экрана на отметке 6,0 м. Через 3 дня котел был вновь остановлен из-за разрыва двух труб фронтового экрана на отметке 7,0 м. И в этих случаях разрушение труб явилось результатом коррозионных повреждений металла.

В соответствии с утвержденным графиком котел должен был быть остановлен на капитальный ремонт в третьем квартале 1976 г. В период ремонта намечалось провести замену труб фронтового экрана в районе холодной воронки. Однако котел не остановили на ремонт, и трубы не были заменены.

Коррозионные повреждения металла явились следствием нарушений водного режима, допускавшихся в течение длительного времени при эксплуатации котлов ТЭЦ. Котлы питали водой с повышенным содержанием железа, меди и кислорода. Общее содержание солей в питательной воде значительно превышало допустимые нормы, в результате чего даже в контурах первой ступени испарения содержание солей доходило до 800 мг/кг. Используемые для питания котлов производственные конденсаты с содержанием железа 400- 600 мг/кг не очищали. По этой причине, а также из-за того, что не было достаточной противокоррозионной защиты водоподготовительного оборудования (защита осуществлена частично), на внутренних поверхностях труб были значительные отложения (до 1000 г/м2), в основном, состоящие из соединений железа. Аминирование и гидра-зинирование питательной воды было введено лишь незадолго до аварии. Предпусковые и эксплуатационные кислотные промывки котлов не производили.

Возникновению аварии способствовали и другие нарушения Правил технической эксплуатации котлов. На ТЭЦ весьма часто растапливают котлы, причем наибольшее число растопок приходилось на котел, с которым произошла авария. Котлы оснащены устройствами для Парового разогрева, однако при растопке их не использовали. При растопках не контролировали перемещения экранных коллекторов.

Для уточнения характера коррозионного процесса и выяснения причин образования язвин преимущественно в первых двух панелях фронтового экрана и расположения этих язвин в виде цепочек материалы расследования аварии были направлены в ЦКТИ. При рассмотрении этих материалов было обращено внимание на то, что

котлы работали с резко переменной нагрузкой, при этом допускалось значительное снижение паропроизводительности (до 90 т/ч), при котором возможно местное нарушение циркуляции. Котлы растапливали следующим способом: в начале растопки включали две форсунки, расположенные встречно (по диагонали). Такой способ приводил к замедлению процесса естественной циркуляции в панелях первого и второго фронтовых экранов. Именно в этих экранах и найден основной очаг язвенных повреждений. В питательной воде эпизодически появлялись нитриты, за концентрацией которых контроль не осуществлялся.

Анализ материалов аварии с учетом перечисленных недостатков дал основание считать, что образование цепочек язвин на боковых образующих внутренних поверхностей труб фронтового экрана на скате холодной воронки является результатом длительного процесса подшламовой электрохимической коррозии. Деполяризаторами этого процесса явились нитриты и растворенный в воде кислород.

Расположение язвин в виде цепочек является, по-видимому, результатом работы котла при растопках с неустановившимся процессом естественной циркуляции. В период начала циркуляции на верхней образующей наклонных труб холодной воронки периодически образуются поровые пузыри, вызывающие эффект местных термопульсаций в металле £ протеканием электрохимических процессов в рбласти временного раздела фаз. Именно эти места явились очагами образования цепочек язвин. Преимущественное образование язвин в первых двук панелях фронтового экрана явилось следствием неправильного режима растопки.

6. На ТЙЦ вб время работы котла ПК-ЮШ-2 паропроизводп-тельностью 230 т/ч с параметрами пара- 100 кгс/см2 и 540° С было замечено парение на отводе от сборного коллектора свежего пара к главному предохранительному клапану. Отвод соединен с помощью сварки с литым тройником, вваренным в сборный коллектор.

Котел был аварийно остановлен. При осмотре обнаружена кольцевая трещина в нижней части трубы (168X13 мм) горизонтального участка отвода в непосредственной близости от места присоединения отвода к литому тройнику. Длина трещины на наружной поверхности- 70 мм и на внутренней поверхности-110 мм. На внутренней поверхности трубы в месте ее повреждения выявлено большое число коррозионных язвин и отдельные трещины, расположенные параллельно основной.

Металлографическим анализом установлено, что трещины начинаются от язвин в обезуглероженном слое металла и далее развиваются транскристаллитно в направлении, перпендикулярном к поверхности трубы. Микроструктура металла трубы - ферритные зерна и тонкие перлитные цепочки по границам зерен. По шкале, приведенной в виде приложения к МРТУ 14-4-21-67, микроструктура может быть оценена баЛлом 8.

Химический состав металла поврежденной трубы соответствует стали 12Х1МФ. Механические свойства удовлетворяют требованиям технических условий поставки. Диаметр трубы на поврежденном участке не выходит за пределы плюсового допуска.

Горизонтальный отвод к предохранительному клапану при неотрегулированной системе крепления можно рассматривать как консольную балку, приваренную к жестко закрепленному в коллекторе тройнику, с максимальными изгибными напряжениями в месте заделки, т. е. в зоне, где труба подверглась повреждениям. При отсутствии

дренажа в отводе и наличии контр уклона, из-за упругого изгиба на участке от предохранительного клапана до сборного коллектора свежего пара, в нижней части трубы перед тройником возможно постоянное скопление небольшого количества конденсата, обогащавшегося во время остановов, консервации и пусков котла в работу, кислородом из воздуха. При этих условиях происходило коррозионное разъедание металла, а совместное воздействие на металл конденсата и растягивающих напряжений вызывало его коррозионное растрескивание. В процессе эксплуатации в местах коррозионных язвин и неглубоких трещин в результате агрессивного воздействия среды и переменных напряжений в металле могут развиваться усталостно-коррозионные трещины, что, по-видимому, и происходило в данном случае.

Для того чтобы конденсат не скапливался, в отводе была сделана обратная циркуляция пара. Для этого труба отвода непосредственно перед главным предохранительным клапаном была соединена линией обогрева (труб диаметром 10 мм) с промежуточной камерой пароперегревателя, по которой подается пар с температурой 430° С. При небольшом перепаде избыточного давления (до 4 кгс/см2) обеспечивается непрерывный расход пара и температура среды в отводе поддерживается не ниже 400° С. Реконструкция отвода осуществлена на всех котлах ПК-ЮШ-2 ТЭЦ.

Для того, чтобы предотвратить повреждения отводов к главным предохранительным клапанам на котлах ПК-ЮШ-2 и подобных им рекомендуется:

Проверить ультразвуком нижние полупериметры труб отводов в местах приварки к тройникам;

Проверить, соблюдены ли требуемые уклоны и при необходимости отрегулировать системы крепления паропроводов к главным предохранительным клапанам с учетом фактического состояния паропроводов (веса изоляции, фактического веса труб, ранее проведенных реконструкций);

Сделать в отводах к главным предохранительным клапанам обратную циркуляцию пара; конструкцию и внутренний диаметр паропровода обогрева в каждом отдельном случае необходимо согласовать с изготовителем оборудования;

Все тупиковые отводы на предохранительные клапаны тщательно заизолировать.

(Из экспресс - информации СЦНТИ ОРГРЭС- 1975 г.)

Эта коррозия по размеру и интенсивности часто бывает более значительной и опасной, чем коррозия котлов во время их работы.

При оставлении воды в системах в зависимости от ее температуры и доступа воздуха могут встречаться самые разнообразные случаи проявления стояночной коррозии. Следует прежде всего отметить крайнюю нежелательность наличия воды в трубах агрегатов при нахождении их в резерве.

Если вода по тем или иным причинам остается в системе, то может наблюдаться сильная стояночная коррозия в паровом и особенно в водяном пространстве емкости (преимущественно по ватерлинии) при температуре воды 60—70°С. Поэтому на практике довольно часто наблюдается различная по интенсивности стояночная коррозия, несмотря на одинаковые режимы останова системы и качество содержащейся в них воды; аппараты со значительной тепловой аккумуляцией подвергаются более сильной коррозии, чем аппараты, имеющие размеры топки и поверхность нагрева, так как котловая вода в них быстрее охлаждается; температура ее становится ниже 60—70°С.

При температуре воды выше 85—90°С (например, при кратковременных остановах аппаратов) общая коррозия снижается, причем коррозия металла парового пространства, в котором наблюдается в этом случае повышенная конденсация паров, может превышать коррозию металла водяного пространства. Стояночная коррозия в паровом пространстве во всех случаях более равномерная, чем в водяном пространстве котла.

Развитию стояночной коррозии сильно способствует скапливающийся на поверхностях котла шлам, который обычно удерживает влагу. В связи с этим значительные коррозионные раковины часто обнаруживаются в агрегатах и трубах вдоль нижней образующей и на их концах, т. е. на участках наибольшего скопления шлама.

Способы консервации оборудования, находящегося в резерве

Для консервации оборудования могут быть применены следующие способы:

а) высушивание — удаление из агрегатов воды и влаги;

б) заполнение их растворами едкого натра, фосфата, силиката, нитрита натрия, гидразина;

в) заполнение технологической системы азотом.

Способ консервации следует выбирать в зависимости от характера и длительности простоя, а также от типа и конструктивных особенностей оборудования.

Простои оборудования по продолжительности можно разделить на две группы: кратковременные—не более 3 сут и длительные — более 3 сут.

Различают два вида кратковременных простоев:

а) плановые, связанные с выводом в резерв на выходные дни в связи с падением нагрузки или выводом в резерв на ночное время;

б) вынужденные — из-за выхода из строя труб или повреждений других узлов оборудования, для устранения которых не требуется более длительный останов.

В зависимости от цели длительные простои можно разделить на следующие группы: а) вывод оборудования в резерв; б) текущие ремонты; в) капитальные ремонты.

При кратковременных простоях оборудования необходимо использовать консервацию путем заполнения деаэрированной водой с поддержанием избыточного давления или газовый (азотный) способ. Если необходим аварийный останов, то единственно приемлемый способ — консервация азотом.

При выводе системы в резерв или длительном простое без выполнения ремонтных работ консервацию целесообразно вести путем заполнения раствором нитрита или силиката натрия. В этих случаях можно использовать и азотную консервацию, обязательно принимая меры для создания плотности системы с целью предотвращения чрезмерного расхода газа и непроизводительной работы азотной установки, а также создания безопасных условий при обслуживании оборудования.

Способы консервации путем создания избыточного давления, заполнения азотом можно использовать независимо от конструктивных особенностей поверхностей нагрева оборудования.

Для предотвращения стояночной коррозии металла во время капитального и текущего ремонтов применимы только способы консервации, позволяющие создать на поверхности металла защитную пленку, сохраняющую свойства в течение не менее 1—2 мес после слива консервирующего раствора, поскольку опорожнение и разгерметизация системы неизбежны. Срок действия защитной пленки на поверхности металла после обработки ее нитритом натрия может достигать 3 мес.

Способы консервации с использованием воды и растворов реагентов практически неприемлемы для защиты от стояночной коррозии промежуточных пароперегревателей котлов из-за трудностей, связанных с их заполнением и последующей отмывкой.

Способы консервации водогрейных и паровых котлов низкого давления, а также другого оборудования замкнутых технологических контуров тепло- и водоснабжения во многом отличаются от применяемых в настоящее время методов предупреждения стояночной коррозии на ТЭС. Ниже описываются основные способы предупреждения коррозии в режиме простаивания оборудования аппаратов подобных циркуляционных систем с учетом специфики их работы.

Упрощенные способы консервации

Эти способы целесообразно применять для мелких котлов. Они заключаются в полном удалении воды из котлов и размещении в них влагопоглотителей: прокаленного хлористого кальция, негашеной извести, силикагеля из расчета 1—2 кг на 1 м 3 объема.

Этот способ консервации пригоден при температурах помещения ниже и выше нуля. В помещениях, отапливаемых в зимнее время, может быть реализован один из контактных способов консервации. Он сводится к заполнению всего внутреннего объема агрегата щелочным раствором (NaOH, Na 3 P0 4 и др.), обеспечивающим полную устойчивость защитной пленки на поверхности металла даже при насыщении жидкости кислородом.

Обычно применяют растворы, содержащие от 1,5— 2 до 10 кг/м 3 NaOH или 5—20 кг/м 3 Na 3 P0 4 в зависимости от содержания нейтральный солей в исходной воде. Меньшие значения относятся к конденсату, большие — к воде, содержащей до 3000 мг/л нейтральных солей.

Коррозию можно предупредить также способом избыточного давления, при котором давление пара в остановленном агрегате постоянно поддерживается на уровне выше атмосферного давления, а температура воды остается выше 100°С, чем предотвращается доступ основного коррозионного агента — кислорода.

Важное условие эффективности и экономичности любого способа защиты — максимально возможная герметичность паро-водяной арматуры во избежание слишком быстрого снижения давления, потерь защитного раствора (или газа) или попадания влаги. Кроме того, во многих случаях полезна предварительная очистка поверхностей от различных отложений (солей, шлама, накипи).

При осуществлении различных способов защиты от стояночной коррозии необходимо иметь в виду следующее.

1. При всех видах консервации необходимо предварительное удаление (промывка) отложений легкорастворимых солей (см. выше) во избежание усиления стояночной коррозии на отдельных участках защищаемого агрегата. Обязательным является осуществление этого мероприятия при контактной консервации, иначе возможна интенсивная местная коррозия.

2. По аналогичным соображениям желательно удаление перед длительной консервацией всех видов нерастворимых отложений (шлама, накипи, оксидов железа).

3. При ненадежности арматуры необходимо отключение резервного оборудования от работающих агрегатов с помощью заглушек.

Просачивание пара и воды менее опасно при контактной консервации, но недопустимо при сухом и газовом методах защиты.

Выбор влагопоглотителей определяется сравнительной доступностью реагента и желательностью получения максимально возможной удельной влагоемкости. Наилучший влагопоглотитель — зерненый хлористый кальций. Негашеная известь значительно хуже хлористого кальция не только вследствие меньшей влагоемкости, но и быстрой потери ее активности. Известь поглощает из воздуха не только влагу, но и углекислоту, в результате чего она покрывается слоем углекислого кальция, препятствующего дальнейшему поглощению влаги.

В судовых паровых котлах коррозия может протекать как со стороны пароводяного контура, так и со стороны продуктов сгорания топлива.

Внутренние поверхности пароводяного контура могут подвергаться следующим видам коррозии;

Кислородная коррозия - является наиболее опасным видом коррозии. Характерной особенностью кислородной коррозии является образование местных точечных очагов коррозии, доходящих до глубоких язвин и сквозных дыр; Наиболее подвержены кислородной коррозии входные участки экономайзеров, коллекторы и опускные трубы циркуляционных контуров.

Нитритная коррозия - в отличие от кислородной поражает внутренние поверхности теплонапряженных подъемных трубок и вызывает образование более глубоких язвин диаметром 15 ^ 20 мм.

Межкристаллитная коррозия является особым видом коррозии и возникает в местах наибольших напряжений металла (сварные швы, вальцовочные и фланцевые соединения) в результате взаимодействия котельного металла с высококонцентрированной щелочью. Характерной особенностью является появление на поверхности металла сетки из мелких трещин, постепенно развивающихся в сквозные трещины;

Подшламоеая коррозия возникает в местах отложения шлама и в застойных зонах циркуляционных контуров котлов. Процесс протекания носит электрохимический характер при контакте окислов железа с металлом.

Со стороны продуктов сгорания топлива могут наблюдаться следующие виды коррозии;

Газовая коррозия поражает испарительные, перегревательные и экономайзерные поверхности нагрева, обшивку кожуха,

Газонаправляющие щиты и другие элементы котла, подвергающиеся воздействию высоких температур газов.. При повышении температуры металла котельных труб свыше 530 0С (для углеродистой стали) начинается разрушение защитной оксидной пленки на поверхности труб, обеспечивая беспрепятственный доступ кислорода к чистому металлу. При этом на поверхности труб происходит коррозия с образованием окалины.

Непосредственной причиной этого вида коррозии является нарушение режима охлаждения указанных элементов и повышение их температуры выше допустимой. Для труб поверхностей нагрева причинами повЫш Ения температуры стенок могут быть; образование значительного слоя накипи, нарушения режима циркуляции (застой, опрокидывание, образование паровых пробок), упуск воды из котла, неравномерность раздачи воды и отбора пара по длине парового коллектора.

Высокотемпературная (ванадиевая) коррозия поражает поверхности нагрева пароперегревателей, расположенные в зоне высоких температур газов. При сжигании топлива происходит образование окислов ванадия. При этом при недостатке кислорода образуется трехокись ванадия, а при его избытке - пятиокись ванадия. Коррозионно-опасной является пятиокись ванадия У205, имеющая температуру плавления 675 0С. Пятиокись ванадия, выделяющаяся при сжигании мазутов, налипает на поверхности нагрева, имеющие высокую температуру, и вызывает активное разрушение металла. Опыты показали, что даже такие содержания ванадия, как 0,005 % по весовому составу могут вызвать опасную коррозию.

Ванадиевую коррозию можно предотвратить снижением допустимой температуры металла элементов котла и организацией горения с минимальными коэффициентами избытка воздуха а = 1,03 + 1,04.

Низкотемпературная (кислотная) коррозия поражает в основном хвостовые поверхности нагрева. В продуктах сгорания сернистых мазутов всегда присутствуют пары воды и соединения серы, образующие при соединении друг с другом серную кислоту. При омывании газами относительно холодных хвостовых поверхностей нагрева пары серной кислоты конденсируется на них и вызывают коррозию металла. Интенсивность низкотемпературной коррозии зависит от концентрации серной кислоты в пленке влаги, оседающей на поверхностях нагрева. При этом концентрация Б03 в продуктах сгорания определяется не только содержанием серы в топливе. Основными факторами, влияющими на скорость протекания низкотемпературной коррозии, являются;

Условия протекания реакции горения в топке. При повышении коэффициента избытка воздуха увеличивается процентное содержание газа Б03 (при а = 1,15 окисляется 3,6 % серы, содержащейся в топливе; при а = 1,7 окисляется около 7 % серы). При коэффициентах избытка воздуха а = 1,03 - 1,04 серного ангидрида Б03 практически не образуется;

Состояние поверхностей нагрева;

Питание котла слишком холодной водой, вызывающей понижение температуры стенок труб экономайзера ниже тоски росы для серной кислоты;

Концентрация воды в топливе; при сжигании обводненных топлив точка росы повышается вследствие повышения парциального давления водяных паров в продуктах сгорания.

Стояночная коррозия поражает внешние поверхности труб и коллекторов, обшивку, топочные устройства, арматуру и другие элементы газовоздушного тракта котла. Сажа, образующаяся при сжигании топлива, покрывает поверхности нагрева и внутренние части газовоздушного тракта котла. Сажа гигроскопична, и при остывании котла легко впитывает влагу, вызывающую коррозию. Коррозия носит язвенный характер при образовании на поверхности металла пленки раствора серной кислоты при остывании котла и снижении температуры его элементов ниже точки росы для серной кислоты.

Борьба со стояночной коррозией основана на создании условий, исключающих попадание влаги на поверхности котельного металла, а также нанесением антикоррозионных покрытий на поверхности элементов котлов.

При кратковременном бездействии котлов после осмотра и чистки поверхностей нагрева с целью предотвращения попадания атмосферных осадков в газоходы котлов на дымовую трубу необходимо одевать чехол, закрывать воздушные регистры, смотровые отверстия. Необходимо постоянно контролировать влажность и температуру в МКО.

Для предотвращения коррозии котлов во время бездействия используются различные способы хранения котлов. Различают два способа хранения; мокрое и сухое.

Основным способом хранения котлов является мокрое хранение. Оно предусматривает полное заполнение котла питательной водой, пропущенной через электроно-ионообменные и обескислораживающие фильтры, включая пароперегреватель и экономайзер. Держать котлы на мокром хранении можно не более 30 суток. В случае более длительного бездействия котлов применяется сухое хранение котла.

Сухое хранение предусматривает полное осушение котла от воды с размещением в коллекторах котла бязевых мешочков с селикагелем, поглощающим влагу. Периодически производится вскрытие коллекторов, контрольный замер массы селикагеля с целью определения массы поглощенной влаги, и выпаривание поглощенной влаги из селикагеля.

Ряд котельных использует для подпитки тепловых сетей речные и водопроводные воды с низким значением рН и малой жесткостью. Дополнительная обработка речной воды на водопроводной станции обычно приводит к снижению pН, уменьшению щелочности и повышению содержания агрессивной углекислоты. Появление агрессивной углекислоты возможно также в схемах подключения, применяемых для крупных систем теплоснабжения с непосредственным водоразбором горячей воды (2000ч3000 т/ч). Умягчение воды по схеме Na-катионирования повышает ее агрессивность вследствие удаления природных ингибиторов коррозии - солей жесткости.

При плохо налаженной деаэрации воды и возможных повышениях концентраций кислорода и углекислоты из-за отсутствия дополнительных защитных мероприятий в системах теплоснабжения внутренней коррозии подвержено теплосиловое оборудование ТЭЦ.

При обследовании подпиточного тракта одной из ТЭЦ г. Ленинграда были получены следующие данные по скорости коррозии, г/(м2 · 4):

Место установки индикаторов коррозии

В трубопроводе подпиточной воды после подогревателей теплосети перед деаэраторами трубы толщиной 7 мм утонились за год эксплуатации местами до 1 мм на отдельных участках образовались сквозные свищи.

Причины язвенной коррозии труб водогрейных котлов следующие:

недостаточное удаление кислорода из подпиточной воды;

низкое значение рН обусловленное присутствием агрессивной углекислоты

(до 10ч15 мг/л);

накопление продуктов кислородной коррозии железа (Fe2O3;) на теплопередающих поверхностях.

Эксплуатация оборудования на сетевой воде с концентрацией железа свыше 600 мкг/л обычно приводит к тому, что на несколько тысяч часов работы водогрейных котлов наблюдается интенсивный (свыше 1000 г/м2) занос железоокисидными отложениями их поверхностей нагрева. При этом отмечаются часто появляющиеся течи в трубах конвективной части. В составе отложений содержание окислов железа обычно достигает 80ч90%.

Особенно важными для эксплуатации водогрейных котлов являются пусковые периоды. В первоначальный период эксплуатации на одной ТЭЦ не обеспечивалось удаление кислорода до норм, установленных ПТЭ. Содержание кислорода в подпиточной воде превышало эти нормы в 10 раз.

Концентрация железа в подпиточной воде достигала - 1000 мкг/л, а в обратной воде теплосети - 3500 мкг/л. После первого года эксплуатации были сделаны вырезки из трубопроводов сетевой воды, оказалось, что загрязнение их поверхности продуктами коррозии составляло свыше 2000 г/м2.

Необходимо отметить, что на этой ТЭЦ перед включением котла в работу внутренние поверхности экранных труб и труб конвективного пучка подверглись химической очистке. К моменту вырезки образцов экранных труб котел проработал 5300 ч. Образец экранной трубы имел неровный слой желзоокисидных отложений черно-бурого цвета, прочно связаный с металлом; высота бугорков 10ч12 мм; удельная загрязненность 2303 г/м2.

Состав отложений, %

Поверхность металла под слоем отложений была поражена язвами глубиной до 1 мм. Трубки конвективного пучка с внутренней стороны были занесены отложениями железооксидного типа черно-бурого цвета с высотой бугорков до 3ч4 мм. Поверхность металла под отложениями покрыта язвами различных размеров глубиной 0,3ч1,2 и диаметром 0,35ч0,5 мм. Отдельные трубки имели сквозные отверстия (свищи).

Когда водогрейные котлы устанавливают в старых системах централизованного теплоснабжении, в которых накопилось значительное количество окислов железа, наблюдаются случаи отложения этих окислов в обогреваемых трубах котла. Перед включением котлов необходимо производить тщательную промывку всей системы.

Ряд исследователей признает важную роль в возникновении подшламовой коррозии процесса ржавления труб водогрейных котлов при их простоях, когда не принято должных мер для предупреждения стояночной коррозии. Очаги коррозии, возникающие под воздействием атмосферного воздуха на влажные поверхности котлов, продолжают функционировать при работе котлов.

Низкотемпературной коррозии подвергаются поверхности нагрева трубчатых и регенеративных воздухоподогревателей, низкотемпературных экономайзеров, а также металлические газоходы и дымовые трубы при температурах металла ниже точки росы дымовых газов. Источником низкотемпературной коррозии является серный ангидрид SO 3 , образующий в дымовых газах пары серной кислоты, которая конденсируется при температурах точки росы дымовых газов. Нескольких тысячных долей процента SO 3 в газах достаточно для того, чтобы вызвать коррозию металла со скоростью, превышающей 1 мм/год. Низкотемпературная коррозия замедляется при организации топочного процесса с малыми избытками воздуха, а также при применении присадок к топливу и повышении коррозионной стойкости металла.

Высокотемпературной коррозии подвергаются топочные экраны барабанных и прямоточных котлов при сжигании твердого топлива, пароперегреватели и их крепления, а также экраны нижней радиационной части котлов сверхкритического давления при сжигании сернистого мазута.

Коррозия внутренней поверхности труб является следствием взаимодействия с металлом труб газов кислорода и углекислоты) или солей (хлоридов и сульфатов), содержащихся в котловой воде. В современных котлах сверхкритического давления пара содержание газов и коррозионноактивных солей в результате глубокого обессоливания питательной воды и термической деаэрации незначительно и основной причиной коррозии является взаимодействие металла с водой и паром. Коррозия внутренней поверхности труб проявляется в образовании оспин, язвин, раковин и трещин; наружная поверхность поврежденных труб может ничем не отличаться от здоровых.

К повреждениям в результате внутренней коррозии труб также относятся:
кислородная стояночная коррозия, поражающая любые участки внутренней поверхности труб. Наиболее интенсивно поражаются участки, покрытые водорастворимыми отложениями (трубы пароперегревателей и переходной зоны прямоточных котлов);
подшламовая щелочная коррозия кипятильных и экранных труб, возникающая под действием концентрированной щелочи вследствие упаривания воды под слоем шлама;
коррозионная усталость, проявляющаяся в виде трещин в кипятильных и экранных трубах в результате одновременного воздействия коррозионной среды и переменных термических напряжений.

Окалина образуется на трубах вследствие перегрева их до температур, значительно превышающих расчетные. В связи с ростом производительности котлоагрегатов в последнее время участились случаи выхода из строя труб пароперегревателей из-за недостаточной окалиностойкости к топочным газам. Интенсивное окалинообразование наиболее часто наблюдается при сжигании мазута.

Износ стенок труб происходит в результате истирающего действия угольной и сланцевой пыли и золы, а также струй пара, выходящих из поврежденных соседних труб или сопел обдувочных аппаратов. Иногда причиной износа и наклепа стенок труб служит дробь, применяемая для очистки поверхностей нагрева. Места и степень износа труб определяют наружным осмотром и измерением их диаметра. Фактическую толщину стенки трубы измеряют ультразвуковым толщиномером.

Коробление экранных и кипятильных труб, а также отдельных труб и участков настенных панелей радиационной части прямоточных котлов возникает при установке труб с неравномерным натягом, обрыве креплений труб, упуске воды и из-за отсутствия свободы для их тепловых перемещений. Коробление змеевиков и ширм пароперегревателя происходит главным образом вследствие обгорания подвесок и креплений, чрезмерного и неравномерного натяга, допущенного при установке или замене отдельных элементов. Коробление змеевиков водяного экономайзера происходит вследствие перегорания и смещения опор и подвесок.

Свищи, отдулины, трещины и разрывы могут появиться также в результате: отложения в трубах накипи, продуктов коррозии, технологической окалины, сварочного грата и других посторонних предметов, замедляющих циркуляцию воды и способствующих перегреву металла труб; наклепа дробью; несоответствия марки стали параметрам пара и температуре газов; внешних механических повреждений; нарушения режимов эксплуатации.

gastroguru © 2017