Когда надо писать одз. Находить ли ОДЗ? Тригонометрическое уравнение с ОДЗ

Решая различные задачи, нам очень часто приходится проводить тождественные преобразования выражений . Но бывает, что какое-то преобразование в одних случаях допустимо, а в других – нет. Существенную помощь в плане контроля допустимости проводимых преобразований оказывает ОДЗ. Остановимся на этом подробнее.

Суть подхода состоит в следующем: сравниваются ОДЗ переменных для исходного выражения с ОДЗ переменных для выражения, полученного в результате выполнения тождественных преобразований, и на основании результатов сравнения делаются соответствующие выводы.

Вообще, тождественные преобразования могут

  • не влиять на ОДЗ;
  • приводить к расширению ОДЗ;
  • приводить к сужению ОДЗ.

Давайте поясним каждый случай примером.

Рассмотрим выражение x 2 +x+3·x , ОДЗ переменной x для этого выражения есть множество R . Теперь проделаем с этим выражением следующее тождественное преобразование – приведем подобные слагаемые , в результате оно примет вид x 2 +4·x . Очевидно, ОДЗ переменной x этого выражения тоже является множество R . Таким образом, проведенное преобразование не изменило ОДЗ.

Переходим дальше. Возьмем выражение x+3/x−3/x . В этом случае ОДЗ определяется условием x≠0 , которое отвечает множеству (−∞, 0)∪(0, +∞) . Это выражение тоже содержит подобные слагаемые, после приведения которых приходим к выражению x , для которого ОДЗ есть R . Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

Осталось рассмотреть пример сужения области допустимых значений после проведения преобразований. Возьмем выражение . ОДЗ переменной x определяется неравенством (x−1)·(x−3)≥0 , для его решения подходит, например, в результате имеем (−∞, 1]∪∪; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.

  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М. : Просвещение, 2010.- 368 с. : ил.- ISBN 978-5-09-022771-1.
  • В уравнениях и неравенствах вида , , , , пересечение областей определения функций и называют областью допустимых значений (ОДЗ) переменной, а также ОДЗ уравнения или неравенства соответственно.

    При решении уравнений (неравенств) с одной переменной, когда встает вопрос – находить ли ОДЗ, часто можно услышать категоричное «да» и не менее категоричное «нет». «Сначала нужно найти ОДЗ, а затем приступать к решению уравнения (неравенства)», - утверждают одни. «Незачем тратить время на ОДЗ, по ходу решения будем переходить к равносильному уравнению (неравенству) или к равносильной системе уравнений и неравенств или только неравенств. В конце концов, если это уравнение, то можно сделать проверку», - утверждают другие.

    Так находить ли ОДЗ?

    Конечно, однозначного ответа на этот вопрос не существует. Нахождение ОДЗ уравнения или неравенства не является обязательным элементом решения. В каждом конкретном примере этот вопрос решается индивидуально.

    В одних случаях нахождение ОДЗ упрощает решение уравнения или неравенства (примеры 1-5), а в ряде случаев даже является необходимым этапом решения (примеры 1, 2, 4).

    В других случаях (примеры 6, 7) от предварительного нахождения ОДЗ стоит отказаться, так как оно делает решение более громоздким.

    Пример 1. Решить уравнение .

    Возведение обеих частей уравнения в квадрат не упростит, а усложнит его и не позволит избавиться от радикалов. Нужно искать другой способ решения.

    Найдем ОДЗ уравнения:

    Таким образом, ОДЗ содержит только одно значение , а, следовательно, корнем исходного уравнения может служить только число 4. Непосредственной подстановкой убеждаемся, что – единственный корень уравнения.

    Пример 2. Решить уравнение .

    Наличие в уравнении радикалов различных степеней – второй, третьей и шестой – делает решение сложным. Поэтому, прежде всего, найдем ОДЗ уравнения:

    Непосредственной подстановкой убеждаемся, что является корнем исходного уравнения.

    Пример 3. Решить неравенство .

    Конечно, можно решать это неравенство, рассматривая случаи: , , но нахождение ОДЗ сразу же упрощает это решение.

    ОДЗ:

    Подставляя это единственное значение в исходное неравенство, получим ложное числовое неравенство . Следовательно, исходное неравенство не имеет решения.

    Ответ: нет решения.

    Пример 4. Решить уравнение .

    Запишем уравнение в виде .

    Уравнение вида равносильно смешанной системе т.е.

    Конечно, здесь нахождение ОДЗ излишне.

    В нашем случае получим равносильную систему т.е.

    Уравнение равносильно совокупности Уравнение рациональных корней не имеет, но оно может иметь иррациональные корни, нахождение которых вызовет у учащихся затруднения. Поэтому поищем другой способ решения.

    Вернемся к первоначальному уравнению, запишем его в виде .

    Найдем ОДЗ: .

    При правая часть уравнения , а левая часть . Следовательно, исходное уравнение в области допустимых значений переменной х равносильно системе уравнений решением которой является только одно значение .

    Таким образом, в данном примере именно нахождение ОДЗ позволило решить исходное уравнение.

    Пример 5. Решить уравнение .

    Так как , а , то при решении исходного уравнения нужно будет избавляться от модулей (раскрывать их).

    Поэтому, сначала имеет смысл найти ОДЗ уравнения:

    Итак, ОДЗ:

    Упростим исходное уравнение, воспользовавшись свойствами логарифмов.

    Так как в области допустимых значений переменной х и , то , а , тогда получим равносильное уравнение:

    Учитывая, что в ОДЗ , перейдем к равносильному уравнению и решим его, разделив обе части на 3.

    Ответ: − 4,75.

    Замечание.

    Если не находить ОДЗ, то при решении уравнения необходимо было бы рассмотреть четыре случая: , , , . На каждом из этих промежутков знакопостоянства выражений, стоящих под знаком модуля, нужно было бы раскрыть модули и решить полученное уравнение. Кроме того еще и выполнить проверку. Мы видим, что нахождение ОДЗ исходного уравнения значительно упрощает его решение.

    Пример 7. Решить неравенство .

    Так как переменная х входит и в основание логарифма, то при решении этого неравенства необходимо будет рассмотреть два случая: и . Поэтому отдельно находить ОДЗ нецелесообразно.

    Итак, представим исходное неравенство в виде и оно будет равносильно совокупности двух систем:

    Ответ: .

    Как ?
    Примеры решений

    Если где-то нет чего-то, значит, где-то что-то есть

    Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – . Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

    Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на (множестве всех действительных чисел) . За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.

    Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

    Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

    Область определения данной функции представляет собой объединение промежутков:
    (для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

    Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения и графика там нет.

    Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:

    Область определения функции, в которой есть дробь

    Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции .

    Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби:

    Пример 1

    Найти область определения функции

    Решение : в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:

    Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции . Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.

    Ответ : область определения:

    Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Напоминаю, что значок обратного слеша в математике обозначает логическое вычитание , а фигурные скобки – множество . Ответ можно равносильно записать в виде объединения трёх интервалов:

    Кому как нравится.

    В точках функция терпит бесконечные разрывы , а прямые, заданные уравнениями являются вертикальными асимптотами для графика данной функции. Впрочем, это уже немного другая тема, и далее я на этом не буду особо заострять внимание.

    Пример 2

    Найти область определения функции

    Задание, по существу, устное и многие из вас практически сразу найдут область определения. Ответ в конце урока.

    Всегда ли дробь будет «нехорошей»? Нет. Например, функция определена на всей числовой оси. Какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен: . Таким образом, область определения данной функции: .

    Все функции наподобие определены и непрерывны на .

    Чуть более сложнА ситуация, когда знаменатель оккупировал квадратный трёхчлен:

    Пример 3

    Найти область определения функции

    Решение : попытаемся найти точки, в которых знаменатель обращается в ноль. Для этого решим квадратное уравнение :

    Дискриминант получился отрицательным, а значит, действительных корней нет, и наша функция определена на всей числовой оси.

    Ответ : область определения:

    Пример 4

    Найти область определения функции

    Это пример для самостоятельного решения. Решение и ответ в конце урока. Советую не лениться с простыми задачками, поскольку к дальнейшим примерам накопится недопонимание.

    Область определения функции с корнем

    Функция с квадратным корнем определена только при тех значениях «икс», когда подкоренное выражение неотрицательно : . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-й степени в исследованиях функций не припоминаю.

    Пример 5

    Найти область определения функции

    Решение : подкоренное выражение должно быть неотрицательным:

    Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

    Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте с неравенствами двух переменных , где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

    1) Слагаемые можно переносить из части в часть, меняя у них (слагаемых) знаки.

    2) Обе части неравенства можно умножить на положительное число.

    3) Если обе части неравенства умножить на отрицательное число, то необходимо сменить знак самого неравенства . Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

    В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

    Умножим обе части неравенства на –1 (правило №3):

    Умножим обе части неравенства на (правило №2):

    Ответ : область определения:

    Ответ также можно записать эквивалентной фразой: «функция определена при ».
    Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

    Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

    В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

    Пример 6

    Найти область определения функции

    Это пример для самостоятельного решения.

    Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

    Пример 7

    Найти область определения функции

    Решение : подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

    Дискриминант положителен, ищем корни:

    Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

    Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

    ! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье и методичке Горячие формулы школьного курса математики .

    Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

    Ответ : область определения:

    Вообще, многие неравенства (в том числе рассмотренное) решаются универсальным методом интервалов , известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства .

    Пример 8

    Найти область определения функции

    Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

    Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .

    А вот менее очевидный пример: . Здесь дискриминант отрицателен (парабола не пересекает ось абсцисс), при этом ветви параболы направлены вверх, следовательно, и область определения: .

    Вопрос противоположный: может ли область определения функции быть пустой ? Да, и сразу напрашивается примитивный пример , где подкоренное выражение отрицательно при любом значении «икс», и область определения: (значок пустого множества). Такая функция не определена вообще (разумеется, график тоже иллюзорен).

    С нечётными корнями и т.д. всё обстоит гораздо лучше – тут подкоренное выражение может быть и отрицательным . Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

    Область определения функции с логарифмом

    Третья распространённая функция – логарифм. В качестве образца я буду рисовать натуральный логарифм, который попадается примерно в 99 примерах из 100. Если некоторая функция содержит логарифм , то в её область определения должны входить только те значения «икс», которые удовлетворяют неравенству . Если логарифм находится в знаменателе: , то дополнительно накладывается условие (так как ).

    Пример 9

    Найти область определения функции

    Решение : в соответствии с вышесказанным составим и решим систему:

    Графическое решение для чайников:

    Ответ : область определения:

    Остановлюсь ещё на одном техническом моменте – у меня ведь не указан масштаб и не проставлены деления по оси. Возникает вопрос: как выполнять подобные чертежи в тетради на клетчатой бумаге? Отмерять ли расстояние между точками по клеточкам строго по масштабу? Каноничнее и строже, конечно, масштабировать, но вполне допустим и схематический чертёж, принципиально отражающий ситуацию.

    Пример 10

    Найти область определения функции

    Для решения задачи можно использовать метод предыдущего параграфа – проанализировать, как парабола расположена относительно оси абсцисс. Ответ в конце урока.

    Как видите, в царстве логарифмов всё очень похоже на ситуацию с квадратным корнем: функция (квадратный трёхчлен из Примера №7) определена на интервалах , а функция (квадратный двучлен из Примера №6) на интервале . Неловко уже и говорить, функции типа определены на всей числовой прямой.

    Полезная информация : интересна типовая функция , она определена на всей числовой прямой кроме точки . Согласно свойству логарифма , «двойку» можно вынести множителем за пределы логарифма, но, чтобы функция не изменилась, «икс» необходимо заключить под знак модуля: . Вот вам и ещё одно «практическое применение» модуля =). Так необходимо поступать в большинстве случаев, когда вы снОсите чётную степень, например: . Если же основание степени заведомо положительно, например, , то в знаке модуля отпадает необходимость и достаточно обойтись круглыми скобками: .

    Чтобы не повторяться, давайте усложним задание:

    Пример 11

    Найти область определения функции

    Решение : в данной функции у нас присутствует и корень и логарифм.

    Подкоренное выражение должно быть неотрицательным: , а выражение под знаком логарифма – строго положительным: . Таким образом, необходимо решить систему:

    Многие из вас прекрасно знают или интуитивно догадываются, что решение системы должно удовлетворять каждому условию.

    Исследуя расположение параболы относительно оси , приходим к выводу, что неравенству удовлетворяет интервал (синяя штриховка):

    Неравенству , очевидно, соответствует «красный» полуинтервал .

    Поскольку оба условия должны выполняться одновременно , то решением системы является пересечение данных интервалов. «Общие интересы» соблюдены на полуинтервале .

    Ответ : область определения:

    Типовое неравенство , как демонстрировалось в Примере №8, нетрудно разрешить и аналитически.

    Найденная область определения не изменится для «похожих функций», например, для или . Также можно добавить какие-нибудь непрерывные на функции, например: , или так: , или даже так: . Как говорится, корень и логарифм – вещь упрямая. Единственное, если одну из функций «сбросить» в знаменатель, то область определения изменится (хотя в общем случае это не всегда справедливо). Ну а в теории матана по поводу этого словесного… ой… существуют теоремы.

    Пример 12

    Найти область определения функции

    Это пример для самостоятельного решения. Использование чертежа вполне уместно, так как функция не самая простая.

    Ещё пару примеров для закрепления материала:

    Пример 13

    Найти область определения функции

    Решение : составим и решим систему:

    Все действия уже разобраны по ходу статьи. Изобразим на числовой прямой интервал, соответствующий неравенству и, согласно второму условию, исключим две точки:

    Значение оказалось вообще не при делах.

    Ответ : область определения

    Небольшой математический каламбур на вариацию 13-го примера:

    Пример 14

    Найти область определения функции

    Это пример для самостоятельного решения. Кто пропустил, тот в пролёте;-)

    Завершающий раздел урока посвящен более редким, но тоже «рабочим» функциям:

    Области определения функций
    с тангенсами, котангенсами, арксинусами, арккосинусами

    Если в некоторую функцию входит , то из её области определения исключаются точки , где Z – множество целых чисел . В частности, как отмечалось в статье Графики и свойства элементарных функций , у функции выколоты следующие значения:

    То есть, область определения тангенса: .

    Убиваться сильно не будем:

    Пример 15

    Найти область определения функции

    Решение : в данном случае и в область определения не войдут следующие точки:

    Скинем «двойку» левой части в знаменатель правой части:

    В результате :

    Ответ : область определения: .

    В принципе, ответ можно записать и в виде объединения бесконечного количества интервалов, но конструкция получится весьма громоздкой:

    Аналитическое решение полностью согласуется с геометрическим преобразованием графика : если аргумент функции умножить на 2, то её график сожмётся к оси в два раза. Заметьте, как у функции уполовинился период, и точки разрыва участились в два раза. Тахикардия.

    Похожая история с котангенсом. Если в некоторую функцию входит , то из её области определения исключаются точки . В частности, для функции автоматной очередью расстреливаем следующие значения:

    Иными словами:

    Область допустимых значений квадратного корня. Квадратный корень из четной степени. Подкоренное выражение должно быть _____________________. ? 0. Извлечение квадратного корня из отрицательного числа ______________________________. ? 0. ? 0. При извлечении квадратного корня из четной степени не забывать ________________. Так как корень арифметический, то его значение должно быть _______, следовательно, значение корня должно быть __________________ .

    Картинка 3 из презентации «Квадратный корень из числа» к урокам алгебры на тему «Корень»

    Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока алгебры, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Квадратный корень из числа.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 254 КБ.

    Скачать презентацию

    Корень

    «Арифметический корень натуральной степени» - Сравните. Повторение. Решите уравнения. Точка. Вычислить. Решите уравнение. Самостоятельная работа. Неотрицательное число. Арифметический корень натуральной степени. Арифметический корень.

    «Квадратный корень из числа» - Таблица основных степеней. Корень из дроби. Арифметический квадратный корень. Вычисление квадратных корней. Корень квадратный. Запомни. Вычисление корня. Извлечение квадратных корней путем разложения на множители. Область допустимых значений квадратного корня. Свойства квадратных корней. Извлечение корня из четной степени.

    «Квадратный корень урок» - Самостоятельная работа. Повторить определение арифметического квадратного корня. Оцени себя сам: Здравствуйте, ребята! Мы рассмотрели доказательство теоремы об извлечении квадратного корня из произведения. Выражение. 1. Как называется выражение. 5. Итак, Повторим: 4. Вывод: Затем Вам будут предложены задания для самопроверки.

    «Арифметический квадратный корень» - 1.Сформулируйте определение арифметического квадратного корня. Новые понятия. Решаем вместе. Тема: Квадратный корень.Арифметический квадратный корень. Помощь учебника. При каком а не имеет смысла Найди формулу. Подведение итогов. Решение. Как называют а? Примеры разберите в учебнике и приведите свой пример.

    «Арифметический корень» - Величина корня не изменится, если показатель корня и показатель подкоренного выражения умножить на одно и тоже число. Определения. Таллинн Ласнамяэская гимназия. Свойства арифметических корней. Арифметическим корнем называется неотрицательное значение корня из неотрицательного числа. Корень чётной степени считают арифметическим (неотрицательным).

    «Свойства арифметического квадратного корня» - Несколько значений х. Упростите выражение. Загадка. Проблемные ситуации. Свойства арифметического квадратного корня. Теоретический опрос. Теоретический устный опрос. Расшифруйте поговорку. Исключите ненужное словосочетание. Найди ошибку. Преобразуйте выражение.

    Всего в теме 14 презентаций

    Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

    В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

    Yandex.RTB R-A-339285-1

    Допустимые и недопустимые значения переменных

    Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

    Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

    Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1: а, если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

    Определение 1

    Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

    Определение 2

    Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

    То есть отсюда следует полное определение

    Определение 3

    Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

    Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

    Пример 1

    Для примера рассмотрим выражение вида 1 x - y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид (0 , 1 , 2) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 - 1 + 2 = 1 1 = 1 . Отсюда видим, что (1 , 1 , 2) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 - 2 + 1 = 1 0 .

    Что такое ОДЗ?

    Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

    Определение 4

    Область ОДЗ – это множество значений, допустимых для данного выражения.

    Рассмотрим на примере выражения.

    Пример 2

    Если имеем выражение вида 5 z - 3 , тогда ОДЗ имеет вид (− ∞ , 3) ∪ (3 , + ∞) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

    Если имеется выражения вида z x - y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

    Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f (x) .

    Как найти ОДЗ? Примеры, решения

    Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

    Существуют выражения, где их вычисление невозможно:

    • если имеется деление на ноль;
    • извлечение корня из отрицательного числа;
    • наличие отрицательного целого показателя – только для положительных чисел;
    • вычисление логарифма отрицательного числа;
    • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
    • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ - 1 ; 1 ] .

    Все это говорит о том, как важно наличие ОДЗ.

    Пример 3

    Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

    Решение

    В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

    Ответ: x и y – любые значения.

    Пример 4

    Найти ОДЗ выражения 1 3 - x + 1 0 .

    Решение

    Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

    Ответ: ∅ .

    Пример 5

    Найти ОДЗ заданного выражения x + 2 · y + 3 - 5 · x .

    Решение

    Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

    Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

    Пример 6

    Определить ОДЗ выражения вида 1 x + 1 - 1 + log x + 8 (x 2 + 3) .

    Решение

    По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 - 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

    x + 1 - 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

    Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0) ∪ (0 , + ∞) .

    Ответ: [ − 1 , 0) ∪ (0 , + ∞)

    Почему важно учитывать ОДЗ при проведении преобразований?

    При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

    Тождественные преобразования:

    • могут не влиять на ОДЗ;
    • могут привести в расширению или дополнению ОДЗ;
    • могут сузить ОДЗ.

    Рассмотрим на примере.

    Пример 7

    Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

    Пример 8

    Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид (− ∞ , 0) ∪ (0 , + ∞) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

    Рассмотрим пример с наличием подкоренного выражения.

    Пример 9

    Если имеется x - 1 · x - 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства (x − 1) · (x − 3) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид (− ∞ , 1 ] ∪ [ 3 , + ∞) . После преобразования x - 1 · x - 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x - 1 ≥ 0 , x - 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞) . Значит, ОДЗ полностью записывается так: (− ∞ , 1 ] ∪ [ 3 , + ∞) .

    Нужно избегать преобразований, которые сужают ОДЗ.

    Пример 10

    Рассмотрим пример выражения x - 1 · x - 3 , когда х = - 1 . При подстановке получим, что - 1 - 1 · - 1 - 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x - 1 · x - 3 , тогда при вычислении получим, что 2 - 1 · 2 - 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

    Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

    Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

    Пример 11

    Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится (− ∞ 0) ∪ (0 , + ∞) . Причем при вычислении уже работаем со второй упрощенной дробью.

    При наличии логарифмов дело обстоит немного иначе.

    Пример 12

    Если имеется выражение вида ln x + ln (x + 3) , его заменяют на ln (x · (x + 3)) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с (0 , + ∞) до (− ∞ , − 3) ∪ (0 , + ∞) . Поэтому для определения ОДЗ ln (x · (x + 3)) необходимо производить вычисления на ОДЗ, то есть (0 , + ∞) множества.

    При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    gastroguru © 2017