Какой физический смысл имеет коэффициент жесткости пружины. Как найти коэффициент жёсткости пружины: формула, определение

Вы хорошо учили физику в школе? Знаете основные физические законы и смогли бы вот так просто взять и рассчитать, к примеру, жесткость пружины? Начнём с теоретических знаний. Жесткость пружины – это коэффициент, связывающий удлинение упругого тела и возникающую вследствие этого удлинения силу упругости. Жесткость пружины ещё называют коэффициентом упругости или коэффициентом Гука, так как относится жесткость пружины именно к закону Гука. Что же такое сила упругости, которая упоминается в данном законе? Сила упругости – это сила, которая возникает при деформации тела и противодействующая этой деформации.

Математический метод

Как определить жесткость пружины или же, по терминологии такой науки, как физика, коэффициент жесткости пружины? Для этого нужно знать простую формулу, по которой и высчитывается жесткость пружины. Эта формула, а точнее закон Гука, выглядит так: F=|kx|, где k – это коэффициент упругости пружины, x – это удлинение пружины или же, как её ещё называют, величина деформации пружины. А величина, обозначенная буквой F, соответственно, сила упругости, которую мы и высчитываем. Чтобы узнать, какова жесткость пружины необходимо измерить две другие величины, обозначенные в формуле, пользуясь стандартными математическими законами. Далее следует просто решить уравнение с одним неизвестным.

Опытный метод

Чтобы понять, как найти жесткость пружины, а точнее, определить коэффициент жесткости пружины опытным путем, следует произвести следующие манипуляции. Вам необходимо деформировать тело, прилагая к нему силу. Самый простой вид деформации – это сжатие или растяжение. Коэффициент жесткости показывает именно то, какую силу необходимо приложить к телу, чтобы упруго деформировать его на единицу длины. Мы сейчас говорим об упругой деформации, когда тело принимает свою первоначальную форму после совершения воздействия на него. Для того чтобы провести этот наглядный эксперимент вам потребуются следующие вещи:

  • калькулятор,
  • ручка,
  • тетрадь,
  • пружина,
  • линейка,
  • груз.

Итак, один конец пружины закрепите вертикально, а второй оставьте свободным. Измерьте длину пружины и запишите результат в тетрадь (это будет значение x1). Подвесьте к свободному концу пружины груз весом в сто граммов и опять измерьте длину пружины, запишите значение (x2). Рассчитайте абсолютное удлинение пружины (разница значений x1 и x2). При небольших сжатиях и растяжениях сила упругости пропорциональна деформации. Здесь уже применяем Закон Гука, согласно которому Fупр = |kx|, где k и является коэффициентом жесткости. Для того чтобы найти нужный нам коэффициент жесткости надо силу растяжения разделить на удлинение пружины. Силу растяжения находим следующим образом: Fупр = - N = -mg. Отсюда следует, что mg = kx. А значит, k = mg/x. Дальше все просто: подставьте известные вам значения в формулу и найдите, чему равна жёсткость пружины.

Формула жесткости пружины - едва ли не самый важный момент в теме об этих упругих элементах. Ведь именно жесткость играет очень важную роль в том, благодаря чему эти комплектующие используются так широко.

Сегодня без пружин не обходится практически ни одна отрасль промышленности, они используются в приборо- и станкостроении, сельском хозяйстве, производстве горно-шахтного и железнодорожного оборудования, энергетике, других отраслях. Они верой и правдой служат в самых ответственных и критических местах различных агрегатов, где требуются присущие им характеристики, в первую очередь жесткость пружины, формула которой в общем виде очень проста и знакома детям еще со школы.

Особенности работы

Любая пружина представляет собой упругое изделие, которое в процессе эксплуатации подвергается статическим, динамическим и циклическим нагрузкам. Основная особенность этой детали - она деформируется под приложенным извне усилием, а когда воздействие прекращается - восстанавливает свою первоначальную форму и геометрические размеры. В период деформации происходит накопление энергии, при восстановлении - ее передача.

Именно это свойство возвращаться к исходному виду и принесло широкое распространение этим деталям: они отличные амортизаторы, элементы клапанов, предупреждающие превышение давления, комплектующие для измерительных приборов. В этих и других ситуациях, благодаря умению упруго деформироваться, они выполняют важную работу, поэтому от них требуется высокое качество и надежность.

Виды пружин

Видов этих деталей существует много, самыми распространенными являются пружины растяжения и сжатия.

  • Первые из них без нагрузки имеют нулевой шаг, то есть виток соприкасается с витком. В процессе деформации они растягиваются, их длина увеличивается. Прекращение нагрузки сопровождается возвращением в первоначальную форму - опять витком к витку.
  • Вторые - наоборот, изначально навиваются с определенным шагом между витками, под нагрузкой сжимаются. Соприкосновение витков является естественным ограничителем для продолжения воздействия.

Изначально именно для пружины растяжения было найдено соотношение массы подвешенного на ней груза и изменения ее геометрического размера, которое и стало основой для формулы жесткости пружины через массу и длину.

Какие еще бывают виды пружин

Зависимость деформации от прилагаемой внешней силы справедлива и для других видов упругих деталей: кручения, изгиба, тарельчатых, других. Не важно, в какой плоскости к ним прилагаются усилия: в той, где расположена осевая линия, или перпендикулярной к ней, производимая деформация пропорциональна усилию, под воздействием которого она произошла.

Основные характеристики

Независимо от вида пружин, особенности их работы, связанные с постоянно деформацией, требуют наличия таких параметров:

  • Способности сохранять постоянное значение упругости в течение заданного срока.
  • Пластичности.
  • Релаксационной стойкости, благодаря которой деформации не становятся необратимыми.
  • Прочности, то есть способности выдерживать различные виды нагрузок: статические, динамические, ударные.

Каждая из этих характеристик важна, однако при выборе упругой комплектующей для конкретной работы в первую очередь интересуются ее жесткостью как важным показателем того, подойдет ли она для этого дела и насколько долго будет работать.

Что такое жесткость

Жесткость - это характеристика детали, которая показывает, просто или легко будет ее сжать, насколько большую силу нужно для этого приложить. Оказывается, что возникающая под нагрузкой деформация тем больше, чем больше прилагаемая сила (ведь возникающая в противовес ей сила упругости по модулю имеет то же значение). Потому определить степень деформации можно, зная силу упругости (прилагаемое усилие) и наоборот, зная необходимую деформацию, можно вычислить, какое требуется усилие.

Физические основы понятия жесткость/упругость

Сила, воздействуя на пружину, изменяет ее форму. Например, пружины растяжения/сжатия под влиянием внешнего воздействия укорачиваются или удлиняются. Согласно закону Гука (так называется позволяющая рассчитать коэффициент жесткости пружины формула), сила и деформация между собой пропорциональны в пределах упругости конкретного вещества. В противодействие приложенной извне нагрузке возникает сила, такая же по величине и противоположная по знаку, которая направлена на восстановление исходных размеров детали и ее форму.

Природа этой силы упругости - электромагнитная, возникает она как следствие особого взаимодействии между структурными элементами (молекулами и атомами) материала, из которого изготовлена данная деталь. Таким образом, чем жесткость больше, то есть чем труднее упругую деталь растянуть/сжать, тем больше коэффициент упругости. Этот показатель используется, в частности, при выборе определенного материала для изготовления пружин для использования в различных ситуациях.

Как появился первый вариант формулы

Формула для расчета жесткости пружины, которая получила название закона Гука, была установлена экспериментально. В процессе опытов с подвешенными на упругом элементе грузами разной массы замерялась величина его растяжения. Так и выяснилось, что одна и та же испытуемая деталь под разными нагрузками претерпевает различные деформации. Причем подвешивание определенного количества гирек, одинаковых по массе, показало, что каждая добавленная/снятая гирька увеличивает/уменьшает длину упругого элемента на одинаковую величину.

В итоге этих экспериментов появилась такая формула: kx=mg, где k - некий постоянный для данной пружины коэффициент, x - изменение длины пружины, m - ее масса, а g - ускорение свободного падения (примерное значение - 9,8 м/с²).

Так было открыто свойство жесткости, которое, как и формула для определения коэффициента упругости, находит самое широкое применение в любой отрасли промышленности.

Формула определения жесткости

Изучаемая современными школьниками формула, как найти коэффициент жесткости пружины, представляет собой соотношение силы и величины, показывающей изменение длины пружины в зависимости от величины данного воздействия (или

равной ему по модулю силы упругости). Выглядит эта формула так: F = -kx. Из этой формулы коэффициент жесткости упругого элемента равен отношению силы упругости к изменению его длины. В международной системе единиц физических величин СИ он измеряется в ньютонах на метр (Н/м).

Другой вариант записи формулы: коэффициент Юнга

Деформация растяжения/сжатия в физике также может описываться несколько видоизмененным законом Гука. Формула включает значения относительной деформации (отношения изменения длины к ее начальному значению) и напряжения (отношения силы к площади поперечного сечения детали). Относительная деформация и напряжение по этой формуле пропорциональны, а коэффициент пропорциональности - величина, обратная модулю Юнга.

Модуль Юнга интересен тем, что определяется исключительно свойствами материала, и никак не зависит ни от формы детали, ни от ее размеров.

К примеру, модуль Юнга для ста

ли примерно равен единице с одиннадцатью нулями (единица измерения - Н/кв. м).

Смысл понятия коэффициент жесткости

Коэффициент жесткости - коэффициент пропорциональности из закона Гука. Еще он с полным правом называется коэффициентом упругости.

Фактически он показывает величину силы, которая должна быть приложена к упругому элементу, чтобы изменить его длину на единицу (в используемой системе измерений).

Значение этого параметра зависит от нескольких факторов, которыми характеризуется пружина:

  • Материала, используемого при ее изготовлении.
  • Формы и конструктивных особенностей.
  • Геометрических размеров.

По этому показателю можно сд

елать вывод, насколько изделие устойчиво к воздействию нагрузок, то есть каким будет его сопротивление при приложении внешнего воздействия.

Особенности расчета пружин

Показывающая, как найти жесткость пружины, формула, наверное, одна из наиболее используемых современными конструкторами. Ведь применение эти упругие детали находят практически везде, то есть требуется просчитывать их поведение и выбирать те из них, которые будут идеально справляться с возложенными обязанностями.

Закон Гука весьма упрощенно показывает зависимость деформации упругой детали от прилагаемого усилия, инженерами используются более точные формулы расчета коэффициента жесткости, учитывающие все особенности происходящего процесса.

Например:

  • Цилиндрическую витую пружину современная инженерия рассматривает как спираль из проволоки с круглым сечением, а ее деформация под воздействием существующих в системе сил представляется совокупностью элементарных сдвигов.
  • При деформации изгиба в качестве деформации рассматривается прогиб стержня, расположенного концами на опорах.

Особенности расчета жесткости соединений пружин

Важный моментом является расчет нескольких упругих элементов, соединенных последовательно или параллельно.

При параллельном расположении нескольких деталей общая жесткость этой системы определяется простой суммой коэффициентов отдельных комплектующих. Как нетрудно заметить, жесткость системы больше, чем отдельной детали.

При последовательном расположении формула более сложная: величина, обратная суммарной жесткости, равна сумме величин, обратных к жесткости каждой комплектующей. В этом варианте сумма меньше слагаемых.

Используя эти зависимости, легко определиться с правильным выбором упругих комплектующих для конкретного случая.

Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?

Для начала определим основные термины , которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация - это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д.), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

где F - сила упругости, x - расстояние, на которое изменилась длина тела в результате растяжения, k - необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ - на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ - Н/м.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости . В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k - общая жесткость системы, k1, k2, …, ki - отдельные жесткости каждого элемента, i - общее количество всех пружин, задействованных в системе.

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно , величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

k = k1 + k2 + … + ki.

Измерение жесткости пружины опытным путем — в этом видео.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука . Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, - это сила тяжести тела. Формула для ее расчета - F = mg, где m - это масса используемого в эксперименте груза (переводится в кг), а g - величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14-10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.

Для определения устойчивости и сопротивления к внешним нагрузкам используется такой параметр, как жесткость пружины. Также он называется коэффициентом Гука или упругости. По сути, характеристика жесткости пружины определяет степень ее надежности и зависит от используемого материала при производстве.

Измерению коэффициента жесткости подлежат следующие типы пружин:

  • Сжатия;
  • Растяжения;
  • Изгиба;
  • Кручения.

Изготовление пружин любого типа вы .

Какую жесткость имеет пружина

При выборе готовых пружин, например для подвески автомобиля, определить, какую жесткость она имеет, можно по коду продукта либо по маркировке, которая наносится краской. В остальных случаях расчет жесткости производится исключительно экспериментальными методами.

Жесткость пружины по отношению к деформации бывает величиной переменной или постоянной. Изделия, жесткость которых при деформации остается неизменной называются линейными. А те, у которых есть зависимость коэффициента жесткости от изменения положения витков, получили название «прогрессивные».

В автомобилестроении в отношении подвески существует следующая классификация жесткости пружин:

  • Возрастающая (прогрессирующая). Характерна для более жесткого хода автомобиля.
  • Уменьшающаяся (регрессирующая) жесткость. Напротив, обеспечивает, «мягкость» подвески.

Определение величины жесткости зависит от следующих исходных данных:

  • Тип сырья, используемый при изготовлении;
  • Диаметр витков металлической проволоки (Dw);
  • Диаметр пружины (в расчет берется средняя величина) (Dm);
  • Число витков пружины (Na).

Как рассчитать жесткость пружины

Для расчета коэффициента жесткости применяется формула:

k = G * (Dw)^4 / 8 * Na * (Dm)^3,

где G – модуль сдвига. Данную величину можно не рассчитывать, так как она приведена в таблицах к различным материалам. Например, для обыкновенной стали она равна 80 ГПа, для пружинной – 78,5 ГПа. Из формулы понятно, что наибольшее влияние на коэффициент жесткости пружины оказывают оставшиеся три величины: диаметр и число витков, а также диаметр самой пружины. Для достижения необходимых показателей жесткости изменению подлежат именно эти характеристики.

Вычислить коэффициент жесткости экспериментальным путем можно при помощи простейших инструментов: самой пружины, линейки и груза, который будет воздействовать на опытный образец.

Определение коэффициента жесткости растяжения

Для определения коэффициента жесткости растяжения производятся следующие расчеты.

  • Измеряется длина пружины в вертикальном подвесе с одной свободной стороной изделия – L1;
  • Измеряется длина пружины с подвешенным грузом – L2.Если взять груз массой 100гр., то он будет воздействовать силой в 1Н (Ньютон) – величина F;
  • Вычисляется разница между последним и первым показателем длины – L;
  • Рассчитывается коэффициент упругости по формуле: k = F/L.

Определение коэффициента жесткости сжатия производится по этой же формуле. Только вместо подвешивания груз устанавливается на верхнюю часть вертикально установленной пружины.

Подводя итог, делаем вывод, что показатель жесткости пружины является одной из существенных характеристик изделия, которая указывает на качество исходного материала и определяет долговечность использования конечного изделия.

Инструкция

Обратите внимание

Линейка измеряет удлинение в сантиметрах, если применить найденное значение без перевода в метры, получится ошибочный расчет жесткости пружины.

Полезный совет

1см =0,01м.
4 см= 4*0,01 = 0,04 м.

Научиться определять жесткость воды стоит каждой домохозяйке, чтобы предотвратить поломку бытовой техники, порчу белья, а так же постараться уберечь свой организм от нежелательных последствий в виде сухой кожи и камней в почках. Существует несколько простых способов узнать, какова жесткость воды из вашего крана.

Инструкция

В общих чертах составить впечатление о том, насколько жестка ваша вода, можно, проследив наличие на бытовых приборах и . Если жесткость воды повышена, то спираль чайника, краны, металлические поверхности покроются немалым слоем накипи. Она имеет желтовато-серый цвет и несколько сыплющуюся текстуру при воздействии.

Вода, в которой превышено количество солей, разительно отличается на вкус от воды, в которой этих солей меньше. Некоторые люди способны определить жесткость воды, попробовав ее, поскольку она не очень вкусная.

В очень жесткой воде вещества на мыльной основе полностью отказываются мылиться, поэтому, если мыло в ваших руках не мылится, а шампунь только лишь стекает по вашим волосам, это означает, что жесткость воды в вашем доме превышена. В случае же, если мыльная пена трудно смывается с ваших рук, это говорит о том, что вода из вашего крана очень мягкая.

Но все эти определения жесткости говорят лишь о приблизительном состоянии воды, а для точных показателей необходимо воспользоваться специальными приборами и технологиями. Например, аквариумисты так называемый -тест определения жесткости воды, который вы можете отыскать в специализированных магазинах.

Существуют TDS-метры, которые измеряют уровень минеральных веществ и солей, а также электропроводность и жесткость воды. Прибор стоит немалых денег, но, именно благодаря ему, вы узнаете уровень солей, содержащихся в вашей воде и, если количество их превышает норму, сможете своевременно начать с жесткостью воды с помощью защитных средств.

Видео по теме

Источники:

В наше время найти необходимый нормативный акт не составляет особого труда. Любой закон , начиная федеральными и заканчивая региональными, можно найти с помощью интернета. Однако не всякая обнаруженная в сети редакция закон а может быть актуальной. Предпочтительны для таких целей сайты проверенных, постоянно обновляемых правовых систем.

Вам понадобится

  • - компьютер;
  • - доступ в интернет;
  • - как минимум общий смысл названия закона, но чем более точная информация, тем лучше.

Инструкция

Самым простым вариантом представляется вбить примерное название а в соответствующую строку того или иного поисковика.
Вариантов при этом наберется немало, но нет стопроцентной , что первые строчки с результатами откроют вам путь в действующую редакцию закон а.Поэтому предпочтительнее сразу обратиться к услугам сайтов справочных систем, наиболее авторитетными из которых считаются «Консультант Плюс» и «Гарант». Кстати, и в числе первых в выдаче при поиске того или иного закон а они, скорее всего, будут присутствовать.

На главой странице сайта каждой из названных систем имеется функция поиска. Введите в нее хотя бы приблизительное название интересующего нормативного акта и смело жмите на кнопку поиска.
В ответ обычно будет выдано несколько вариантов, из которых не представит особой сложности выбрать именно нужный.Если же вы попадете в устаревшую версию закон а, система проинформирует об этом и предложит перейти в действующую редакцию.
Удобство с такими системами еще и в том, что, если текст закон а отсылает к другим , в тексте присутствует гиперссылка и на них.
Наряду с федеральными обе системы могут помочь и в поиске многих закон ов регионального уровня.

Наряду с «Консультантом» и «Гарантом» закон ы можно искать на Государственной думы РФ (на нем оперативно отражается ситуация с изменением статуса каждого , начиная от вынесения на рассмотрение в первом чтении и заканчивая подписанием президентом РФ), и ведомств (касающиеся компетенции каждого из них), региональных закон одательной и исполнительной . Местные властные структуры могут быть полезны при поиске региональных закон ов и других актов.
Все вступающие в силу федеральные акты обязательно публикуются в "Российской газете" и вывешиваются на ее официальном сайте.

Пружины - это компонент подвески автомобиля, которые ограждают автомобиль не только от неровностей дороги, но и обеспечивают нужную высоту кузова над дорогой, что в значительной степени влияет на управляемость транспортного средства, комфорт и его грузоподъемность. В результате тестов для каждого автомобиля подбирается оптимальная жесткость пружин подвески под определенные условия движения.

Инструкция

При возникновении «пробоев» подвески считается слишком мягкой. В таких ситуациях автолюбители становятся нестабильными в . В идеале усилие пружины должно быть равно величине, предотвращающей излишний крен кузова.
Более жестких пружин требуют автомобили, которые подготовлены для гонок. В разных типах гонок одного и того же автомобиля предполагает установки пружин с разной жесткость ю. Обращайте внимание при прохождении любых поворотов на крен кузова, который при правильно подобранных пружинах должен быть не более двух-трех градусов.

Для передней и задней подвески подбирайте пружины по жесткости парами. Однако не сразу можно добиться желаемой высоты подвески, потому что пружина усаживается и в момент может «теряться», что совсем плохо. Это происходит из-за недостатка несущей способности даже при полном сжатии, но с жесткость ю, обеспечивающей нужную высоту подвески. Определяется это всегда легко: между витками пружины должен быть зазор менее 4 мм.

Выбирайте пружины так, чтобы при заправленном зазор между витками пружин был чуть больше 6,5 мм. Желательно устанавливать самые мягкие пружины, хоть они и будут давать крен машины в допустимых пределах. Применять жесткие пружины, опираясь на , что они снижают крен автомобиля, улучшая управляемость, как правило, некорректно.

Проверяйте жесткость пружины по коду изделия или по нанесенным меткам (штамповкой или краской). Также определять жесткость пружин можно с помощью ручного , напольных весов и мерительной линейки в килограммах на сантиметр.
На бытовые напольные весы укладывается брусок дерева (толщина не менее 12 мм) большей площади торца пружины, а сверху устанавливается пружина. Затем на верхний пружины кладется второй брусок дерева и длина пружины. С помощью пресса пружину сжимают до определенной величины (например, 30 мм) и снимают показания весов, вычисляя тем самым жесткость .

Обратите внимание

Усилие нажатия на пружину измеряется по показаниям весов, но такой способ определения жесткости пружин опасен, так как пружина может отлететь на достаточно большое расстояние.

Обрезка винтовых пружин сжатия, используемых в современных легковых автомобилях, является самым распространенным способом понизить дорожный просвет или увеличить жесткость пружин для придания езде большей комфортности.

Инструкция

Работы по пружин двигательных характеристик лучше проводить в автосервисе у квалифицированного специалиста. Данная операция сильно влияет на качество хода , и если вы не уверены в своих силах, лучше не пробовать выполнять такую работу самостоятельно.

Если вы решили проводить обрезку , снимите , ведь чтобы отрезать пружины, их сначала нужно освободить. Сделайте это следующим образом: поднимите нужную часть машины , снимите колесо и очистите болты, крепящие низ стойки. Как , они очень грязные, поэтому вам придется залить их маслом и оставить отмокать на некоторое время. Отверните болты и сбейте аккуратно, чтобы случайно не повредить тормозной диск. Отверните последнее верхнее крепление и выньте стойку в сборе. Теперь можно отсоединить пружины.

Определите, насколько вы хотите укоротить пружину. Для незначительного уменьшения высоты дорожного просвета достаточно будет срезать всего 1,5 витка. У каждого автомобиля свои особенности, но обычно срезают 2 витка с передних пружин, а задние срезают максимум на 3. Лучше заранее проконсультироваться у специалиста, чтобы не отрезать лишнего.

Укорачивать пружины лучше всего с помощью болгарки, но можно обойтись и обычной ножовкой по , хотя это займет больше времени. Сделайте в нужном месте отметку с помощью маркера и отрежьте или отпилите лишнюю длину. Резать нужно в верхней части, а собирать стойку отрезанным концом вверх. В том месте, где вы укорачивали пружину, она имеет слишком большой угол. Это нужно устранить газовым ключом или большим куском с помощью большого физического усилия.

Установите пружину на место и произведите сборку всех деталей автомобиля в обратном порядке.

Видео по теме

На что только ни идут автолюбители, чтобы улучшить качество езды. Среди многочисленных хитроумных приемов есть и изменение заложенного в конструкции машины дорожного просвета. Сделать это можно, внеся изменения в размер винтовой пружины амортизатора, то есть, попросту говоря, подрезав ее. Осуществить подобное «хирургическое вмешательство» можно самостоятельно. Главное – хорошо продумать последствия такой операции.

Вам понадобится

  • - углошлифовальная машина («болгарка»);
  • - ножовка по металлу;
  • - набор автомобильных гаечных ключей.

Инструкция

Решив выполнить подрезку силами, вначале освободите пружины , сняв стойку. Подоприте поочередно каждую из сторон автомобиля при помощи домкрата. Отсоедините колеса. Открутите болты, посредством которых крепится нижняя часть стойки. После этого отсоедините пружины . Все крепежные элементы аккуратно сложите в одно место, предварительно очистив от грязи.

Решите, на величину вам потребуется подрезать пружины . Проконсультируйтесь для этого у специалистов автосервиса. Для существенного изменения просвета понадобится срезать полтора-два витка. Если вы сомневаетесь, вначале укоротите пружины на один виток и опробуйте их . При необходимости процедуру можно будет повторить. Срезав пружины на большее витков сразу, вы, естественно, впоследствии не сможете их восстановить до требуемого уровня, поэтому хорошенько подумайте, прежде чем браться за инструмент.

Непосредственную обрезку металлической пружины производите при помощи углошлифовальной («болгарки»). При ее отсутствии используйте ножовку по . Предварительно выполните разметку в нужном месте. Подрезку следует наметить в верхней части изделия. Это позволит снизить негативные последствия деформации обновленной пружины .

Повторите те же операции для всех пружин, стараясь, чтобы в итоге все они оказались одного размера. Особенно важно, чтобы размер подрезанных пружин совпадал по осям автомобиля, чтобы предотвратить снижение управляемости вследствие даже минимального перекоса конструкции.

Во избежание грубых ошибок используйте для подрезки пружин возможности автомобильной сервисной службы. Квалифицированный позволит оценить, насколько желательна для вашего транспортного средства, да и выполнит ее на самом высоком профессиональном уровне. Неумелая подрезка пружин может в дальнейшем потребовать полной их замены, а, следовательно, и непредвиденных финансовых затрат.

  • - домкрат;
  • - набор ключей;
  • - съемник шаровых опор;
  • - съемник наконечников рулевых тяг;
  • - устройство для сжимания пружины;
  • - противооткатные упоры;
  • - страховочные опоры.

Инструкция

Установите автомобиль на ровную поверхность, под задние колеса подставьте противооткатные упоры. Автомобиль ВАЗ-2106 заднеприводный, поэтому можно для надежности включить скорость. Сорвите, но не откручивайте, болты крепления переднего колеса к ступице. Теперь поднимите сторону автомобиля на домкрате и выкрутите ступичные болты полностью. Установите под автомобиль страховочную опору и опустите на нее сторону машины. В роли опоры может быть и подходящих размеров прочный пенек, и несколько деревянных брусков, сложенных вместе.

Извлеките из рулевой тяги штифт и ключом на 22 выкрутите гайку, которая фиксирует палец тяги. После этого необходимо аккуратно надеть съемник рулевых тяг, чтобы не повредить пыльник. Если в процессе разборки пыльник был поврежден, то его необходимо заменить. Вкручивайте болт съемника, время от времени слегка постукивайте молотком по нему. Только так наконечник рулевой тяги сойдет с конуса. Когда снимите тягу, оттяните ее в сторону, чтобы она не мешала. Теперь ступица свободно вращается на шаровых опорах. Для снятия пружины необходимо разобрать нижний рычаг, так как она упирается в него.

Выкрутите гайку, которой крепится шток амортизатора к кузову. После выкрутите две гайки, которыми прикручен кронштейн амортизатора к нижнему рычагу. Амортизатор вытягивается снизу, для удобства шток его следует вдвинуть в корпус. Теперь можно надеть на пружину съемник и сжать ее. Старайтесь съемник надевать так, чтобы две стороны пружины сжимались равномерно. Обе части съемника должны находиться друг напротив друга. А вот после сжимания пружины можно проводить дальнейший демонтаж. Сначала нужно выкрутить крепление стабилизатора поперечной устойчивости. Затем потребуется снять нижнюю шаровую опору. Сделать это можно двумя различными способами.

Выкрутите ключом на 22 гайку, которой крепится палец шаровой к ступице. Но придется использовать съемник для шаровых опор. Использовать его необходимо так же, как и съемник рулевых. Старайтесь не повредить пыльник шаровой, а если он уже поврежденный, обязательно замените. Но проще будет выкрутить три болта, которыми крепится корпус шаровой к рычагу. Сделать это можно накидным и торцовым ключами на 13. После того, как ступица отделена от рычага, последний необходимо опустить вниз, чтобы извлечь пружину. Если пружина не выходит, придется снимать рычаг полностью. Для этого нужно выкрутить две гайки, которыми крепится рычаг к кузову. Только учтите, что под прямоугольным болтом находятся металлические шайбы, которыми регулируется развал колес. Пружина на второй стороне снимается аналогично.

Понятие торсионная жесткость , то получится, что это способность тела сопротивляться скручиванию. Эта характеристика часто употребляется применительно к велосипедным вилкам. Там этот момент категорически важен.

Ведь получается, что в случае низкой торсионной жесткости (или торсионки) велосипедная вилка при воздействии нагрузки с одной стороны приведет к тому, что вилка сломается и вывернется.

Для понимания ситуации представьте себе велосипедную вилку. Вилка закрепляет так называемую втулку. Пока втулка закреплена равномерно, все силы распределяются равномерно. Теперь представим, что колесо попало в грязь или ямку, а велосипедист выкручивает руль в противоположную сторону. Появившийся момент силы на втулке распределяется по штанам вилки. Эти штаны начинают скручиваться в восьмерку.

Если торсионной жесткости достаточно, то вилка превосходно справится с таким нагружением. Если же нарушен баланс между прочностью материала и моментом скручивания, т.е. вилка выварачивается на такой угол, что плечо, на которое воздействует сила, увеличивается, то произойдет излом. Соответственно, если это произойдет на большой скорости, то велосипедист скорее всего упадет.

Именно способность тела не скручиваться определяется понятием торсионная жесткость. Эта характеристика применительна как к раме велосипеда, так и к другим твердым телам.

gastroguru © 2017