Дифференциальное уравнение первого порядка решается с помощью. Решением дифференциального уравнения - решение

Дифференциальные уравнения первого порядка. Примеры решений.
Дифференциальные уравнения с разделяющимися переменными

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. Уууууу… дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому что на самом деле ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО . Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной и Неопределенный интеграл , тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Также настоятельно рекомендую научиться находить .

В 95% случаев в контрольных работах встречаются 3 типа дифференциальных уравнений первого порядка: уравнения с разделяющимися переменными , которые мы рассмотрим на этом уроке; однородные уравнения и линейные неоднородные уравнения . Начинающим изучать диффуры советую ознакомиться с уроками именно в такой последовательности, причём после изучения первых двух статей не помешает закрепить свои навыки на дополнительном практикуме – уравнения, сводящихся к однородным .

Есть еще более редкие типы дифференциальных уравнений: уравнения в полных дифференциалах , уравнения Бернулли и некоторые другие. Наиболее важными из двух последних видов являются уравнения в полных дифференциалах, поскольку помимо данного ДУ я рассматриваю новый материалчастное интегрирование .

Если у вас в запасе всего день-два , то для сверхбыстрой подготовки есть блиц-курс в pdf-формате.

Итак, ориентиры расставлены – поехали:

Сначала вспомним обычные алгебраические уравнения . Они содержат переменные и числа. Простейший пример: . Что значит решить обычное уравнение? Это значит, найти множество чисел , которые удовлетворяют данному уравнению. Легко заметить, что детское уравнение имеет единственный корень: . Для прикола сделаем проверку, подставим найденный корень в наше уравнение:

– получено верное равенство, значит, решение найдено правильно.

Диффуры устроены примерно так же!

Дифференциальное уравнение первого порядка в общем случае содержит :
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую производную функции: .

В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная , и не было производных высших порядков – , и т.д.

Что значит ? Решить дифференциальное уравнение – это значит, найти множество всех функций , которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид (– произвольная постоянная), который называется общим решением дифференциального уравнения .

Пример 1

Решить дифференциальное уравнение

Полный боекомплект. С чего начать решение ?

В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно!

На втором шагесмотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки» , а в правой части организовать только «иксы» . Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п.

Дифференциалы и – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».

Следующий этап – интегрирование дифференциального уравнения . Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу достаточно записать один раз (т.к. константа + константа всё равно равна другой константе) . В большинстве случаев её помещают в правую часть.

Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения . То есть, – это общий интеграл.

Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение .

Пожалуйста, запомните первый технический приём , он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) тоже целесообразно записать под логарифмом .

То есть, ВМЕСТО записи обычно пишут .

Зачем это нужно? А для того, чтобы легче было выразить «игрек». Используем свойство логарифмов . В данном случае:

Теперь логарифмы и модули можно убрать:

Функция представлена в явном виде. Это и есть общее решение.

Ответ : общее решение: .

Ответы многих дифференциальных уравнений довольно легко проверить. В нашем случае это делается совсем просто, берём найденное решение и дифференцируем его:

После чего подставляем и производную в исходное уравнение :

– получено верное равенство, значит, общее решение удовлетворяет уравнению , что и требовалось проверить.

Придавая константе различные значения, можно получить бесконечно много частных решений дифференциального уравнения. Ясно, что любая из функций , , и т.д. удовлетворяет дифференциальному уравнению .

Иногда общее решение называют семейством функций . В данном примере общее решение – это семейство линейных функций, а точнее, семейство прямых пропорциональностей.

После обстоятельного разжевывания первого примера уместно ответить на несколько наивных вопросов о дифференциальных уравнениях:

1) В этом примере нам удалось разделить переменные. Всегда ли это можно сделать? Нет, не всегда. И даже чаще переменные разделить нельзя. Например, в однородных уравнениях первого порядка , необходимо сначала провести замену. В других типах уравнений, например, в линейном неоднородном уравнении первого порядка , нужно использовать различные приёмы и методы для нахождения общего решения. Уравнения с разделяющимися переменными, которые мы рассматриваем на первом уроке – простейший тип дифференциальных уравнений.

2) Всегда ли можно проинтегрировать дифференциальное уравнение? Нет, не всегда. Очень легко придумать «навороченное» уравнение, которое не проинтегрировать, кроме того, существуют неберущиеся интегралы. Но подобные ДУ можно решить приближенно с помощью специальных методов. Даламбер и Коши гарантируют... …тьфу, lurkmore.to давеча начитался, чуть не добавил «с того света».

3) В данном примере мы получили решение в виде общего интеграла . Всегда ли можно из общего интеграла найти общее решение, то есть, выразить «игрек» в явном виде? Нет не всегда. Например: . Ну и как тут выразить «игрек»?! В таких случаях ответ следует записать в виде общего интеграла. Кроме того, иногда общее решение найти можно, но оно записывается настолько громоздко и коряво, что уж лучше оставить ответ в виде общего интеграла

4) ...пожалуй, пока достаточно. В первом же примере нам встретился ещё один важный момент , но дабы не накрыть «чайников» лавиной новой информации, оставлю его до следующего урока.

Торопиться не будем. Еще одно простое ДУ и еще один типовой приём решения:

Пример 2

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

Решение : по условию требуется найти частное решение ДУ, удовлетворяющее заданному начальному условию. Такая постановка вопроса также называется задачей Коши .

Сначала находим общее решение. В уравнении нет переменной «икс», но это не должно смущать, главное, в нём есть первая производная.

Переписываем производную в нужном виде:

Очевидно, что переменные можно разделить, мальчики – налево, девочки – направо:

Интегрируем уравнение:

Общий интеграл получен. Здесь константу я нарисовал с надстрочной звездочкой, дело в том, что очень скоро она превратится в другую константу.

Теперь пробуем общий интеграл преобразовать в общее решение (выразить «игрек» в явном виде). Вспоминаем старое, доброе, школьное: . В данном случае:

Константа в показателе смотрится как-то некошерно, поэтому её обычно спускают с небес на землю. Если подробно, то происходит это так. Используя свойство степеней, перепишем функцию следующим образом:

Если – это константа, то – тоже некоторая константа, переообозначим её буквой :

Запомните «снос» константы – это второй технический приём , который часто используют в ходе решения дифференциальных уравнений.

Итак, общее решение: . Такое вот симпатичное семейство экспоненциальных функций.

На завершающем этапе нужно найти частное решение, удовлетворяющее заданному начальному условию . Это тоже просто.

В чём состоит задача? Необходимо подобрать такое значение константы , чтобы выполнялось условие .

Оформить можно по-разному, но понятнее всего, пожалуй, будет так. В общее решение вместо «икса» подставляем ноль, а вместо «игрека» двойку:



То есть,

Стандартная версия оформления:

Теперь в общее решение подставляем найденное значение константы :
– это и есть нужное нам частное решение.

Ответ : частное решение:

Выполним проверку. Проверка частного решение включает в себя два этапа:

Сначала необходимо проверить, а действительно ли найденное частное решение удовлетворяет начальному условию ? Вместо «икса» подставляем ноль и смотрим, что получится:
– да, действительно получена двойка, значит, начальное условие выполняется.

Второй этап уже знаком. Берём полученное частное решение и находим производную:

Подставляем и в исходное уравнение :


– получено верное равенство.

Вывод: частное решение найдено правильно.

Переходим к более содержательным примерам.

Пример 3

Решить дифференциальное уравнение

Решение: Переписываем производную в нужном нам виде:

Оцениваем, можно ли разделить переменные? Можно. Переносим второе слагаемое в правую часть со сменой знака:

И перекидываем множители по правилу пропорции:

Переменные разделены, интегрируем обе части:

Должен предупредить, приближается судный день. Если вы плохо изучили неопределенные интегралы , прорешали мало примеров, то деваться некуда – придется их осваивать сейчас.

Интеграл левой части легко найти , с интегралом от котангенса расправляемся стандартным приемом, который мы рассматривали на уроке Интегрирование тригонометрических функций в прошлом году:


В правой части у нас получился логарифм, и, согласно моей первой технической рекомендации, константу тоже следует записать под логарифмом.

Теперь пробуем упростить общий интеграл. Поскольку у нас одни логарифмы, то от них вполне можно (и нужно) избавиться. С помощью известных свойств максимально «упаковываем» логарифмы. Распишу очень подробно:

Упаковка завершена, чтобы быть варварски ободранной:

Можно ли выразить «игрек»? Можно. Надо возвести в квадрат обе части.

Но делать этого не нужно.

Третий технический совет: если для получения общего решения нужно возводить в степень или извлекать корни, то в большинстве случаев следует воздержаться от этих действий и оставить ответ в виде общего интеграла. Дело в том, что общее решение будет смотреться просто ужасно – с большими корнями, знаками и прочим трэшем.

Поэтому ответ запишем в виде общего интеграла. Хорошим тоном считается представить его в виде , то есть, в правой части, по возможности, оставить только константу. Делать это не обязательно, но всегда же выгодно порадовать профессора;-)

Ответ: общий интеграл:

! Примечание: общий интеграл любого уравнения можно записать не единственным способом. Таким образом, если ваш результат не совпал с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Общий интеграл тоже проверяется довольно легко, главное, уметь находить производную от функции, заданной неявно . Дифференцируем ответ:

Умножаем оба слагаемых на :

И делим на :

Получено в точности исходное дифференциальное уравнение , значит, общий интеграл найден правильно.

Пример 4

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Это пример для самостоятельного решения.

Напоминаю, что алгоритм состоит из двух этапов:
1) нахождение общего решения;
2) нахождение требуемого частного решения.

Проверка тоже проводится в два шага (см. образец в Примере №2), нужно:
1) убедиться, что найденное частное решение удовлетворяет начальному условию;
2) проверить, что частное решение вообще удовлетворяет дифференциальному уравнению.

Полное решение и ответ в конце урока.

Пример 5

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: Сначала найдем общее решение.Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интегрируем уравнение:

Интеграл слева – табличный, интеграл справа – берем методом подведения функции под знак дифференциала :

Общий интеграл получен, нельзя ли удачно выразить общее решение? Можно. Навешиваем логарифмы на обе части. Поскольку они положительны, то знаки модуля излишни:

(Надеюсь, всем понятно преобразование , такие вещи надо бы уже знать)

Итак, общее решение:

Найдем частное решение, соответствующее заданному начальному условию .
В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Более привычное оформление:

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

Проверка: Сначала проверим, выполнено ли начальное условие :
– всё гуд.

Теперь проверим, а удовлетворяет ли вообще найденное частное решение дифференциальному уравнению. Находим производную:

Смотрим на исходное уравнение: – оно представлено в дифференциалах. Есть два способа проверки. Можно из найденной производной выразить дифференциал :

Подставим найденное частное решение и полученный дифференциал в исходное уравнение :

Используем основное логарифмическое тождество :

Получено верное равенство, значит, частное решение найдено правильно.

Второй способ проверки зеркален и более привычен: из уравнения выразим производную, для этого разделим все штуки на :

И в преобразованное ДУ подставим полученное частное решение и найденную производную . В результате упрощений тоже должно получиться верное равенство.

Пример 6

Решить дифференциальное уравнение . Ответ представить в виде общего интеграла .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Какие трудности подстерегают при решении дифференциальных уравнений с разделяющимися переменными?

1) Не всегда очевидно (особенно, «чайнику»), что переменные можно разделить. Рассмотрим условный пример: . Здесь нужно провести вынесение множителей за скобки: и отделить корни: . Как действовать дальше – понятно.

2) Сложности при самом интегрировании. Интегралы нередко возникают не самые простые, и если есть изъяны в навыках нахождения неопределенного интеграла , то со многими диффурами придется туго. К тому же у составителей сборников и методичек популярна логика «раз уж дифференциальное уравнение является простым, то пусть хоть интегралы будут посложнее».

3) Преобразования с константой. Как все заметили, с константой в дифференциальных уравнениях можно обращаться достаточно вольно, и некоторые преобразования не всегда понятны новичку. Рассмотрим ещё один условный пример: . В нём целесообразно умножить все слагаемые на 2: . Полученная константа – это тоже какая-то константа, которую можно обозначить через : . Да, и коль скоро в правой части логарифм, то константу целесообразно переписать в виде другой константы: .

Беда же состоит в том, что с индексами частенько не заморачиваются и используют одну и ту же букву . В результате запись решения принимает следующий вид:

Что за ересь? Тут же ошибки! Строго говоря – да. Однако с содержательной точки зрения – ошибок нет, ведь в результате преобразования варьируемой константы всё равно получается варьируемая константа.

Или другой пример, предположим, что в ходе решения уравнения получен общий интеграл . Такой ответ выглядит некрасиво, поэтому у каждого слагаемого целесообразно сменить знак: . Формально здесь опять ошибка – справа следовало бы записать . Но неформально подразумевается, что «минус цэ» – это всё равно константа (которая с тем же успехом принимает любые значения!) , поэтому ставить «минус» не имеет смысла и можно использовать ту же букву .

Я буду стараться избегать небрежного подхода, и всё-таки проставлять у констант разные индексы при их преобразовании.

Пример 7

Решить дифференциальное уравнение . Выполнить проверку.

Решение: Данное уравнение допускает разделение переменных. Разделяем переменные:

Интегрируем:

Константу тут не обязательно определять под логарифм, поскольку ничего путного из этого не получится.

Ответ: общий интеграл:

Проверка: Дифференцируем ответ (неявную функцию):

Избавляемся от дробей, для этого умножаем оба слагаемых на :

Получено исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Пример 8

Найти частное решение ДУ.
,

Это пример для самостоятельного решения. Единственная подсказка – здесь получится общий интеграл, и, правильнее говоря, нужно исхитриться найти не частное решение, а частный интеграл . Полное решение и ответ в конце урока.

6.1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

При решении различных задач математики и физики, биологии и медицины довольно часто не удается сразу установить функциональную зависимость в виде формулы, связывающей переменные величины, которые описывают исследуемый процесс. Обычно приходится использовать уравнения, содержащие, кроме независимой переменной и неизвестной функции, еще и ее производные.

Определение. Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные различных порядков, называется дифференциальным.

Неизвестную функцию обычно обозначают y(x) или просто y, а ее производные - y" , y" и т. д.

Возможны и другие обозначения, например: если y = x(t), то x"(t), x""(t) - ее производные, а t - независимая переменная.

Определение. Если функция зависит от одной переменной, то дифференциальное уравнение называется обыкновенным. Общий вид обыкновенного дифференциального уравнения:

или

Функции F и f могут не содержать некоторых аргументов, но для того, чтобы уравнения были дифференциальными, существенно наличие производной.

Определение. Порядком дифференциального уравнения называется порядок старшей производной, входящей в него.

Например, x 2 y" - y = 0, y" + sinx = 0 - уравнения первого порядка, а y" + 2 y" + 5 y = x - уравнение второго порядка.

При решении дифференциальных уравнений используется операция интегрирования, что связано с появлением произвольной постоянной. Если действие интегрирования применяется n раз, то, очевидно, и в решении будет содержаться n произвольных постоянных.

6.2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Общий вид дифференциального уравнения первого порядка определяется выражением

Уравнение может не содержать в явном виде x и y, но обязательно содержит у".

Если уравнение можно записать в виде

то получим дифференциальное уравнение первого порядка, разрешенное относительно производной.

Определение. Общим решением дифференциального уравнения первого порядка (6.3) (или (6.4)) является множество решений, где С - произвольная постоянная.

График решения дифференциального уравнения называется интегральной кривой.

Придавая произвольной постоянной С различные значения, можно получить частные решения. На плоскости xOy общее решение представляет собой семейство интегральных кривых, соответствующих каждому частному решению.

Если задать точку A (x 0 , y 0), через которую должна проходить интегральная кривая, то, как правило, из множества функций можно выделить одну - частное решение.

Определение. Частным решением дифференциального уравнения называется его решение, не содержащее произвольных постоянных.

Еслиявляется общим решением, тогда из условия

можно найти постоянную С. Условиеназывают начальным условием.

Задача нахождения частного решения дифференциального уравнения (6.3) или (6.4), удовлетворяющего начальному условиюпри называется задачей Коши. Всегда ли эта задача имеет решение? Ответ содержит следующая теорема.

Теорема Коши (теорема существования и единственности решения). Пусть в дифференциальном уравнении y" = f (x, y) функция f (x, y) и ее

частная производная определены и непрерывны в некоторой

области D, содержащей точкуТогда в области D существует

единственное решение уравнения, удовлетворяющее начальному условиюпри

Теорема Коши утверждает, что при определенных условиях существует единственная интегральная кривая y = f (x), проходящая через точкуТочки, в которых не выполняются условия теоремы

Коши, называются особыми. В этих точках терпит разрыв f (x, y) или.

Через особую точку проходит либо несколько интегральных кривых, либо ни одной.

Определение. Если решение (6.3), (6.4) найдено в виде f (x, y, C) = 0, не разрешенным относительно у, то оно называется общим интегралом дифференциального уравнения.

Теорема Коши только гарантирует, что решение существует. Поскольку единого метода нахождения решения нет, мы будем рассматривать только некоторые типы дифференциальных уравнений первого порядка, интегрируемые в квадратурах.

Определение. Дифференциальное уравнение называется интегрируемым в квадратурах, если отыскание его решения сводится к интегрированию функций.

6.2.1. Дифференциальные уравнения первого порядка с разделяющимися переменными

Определение. Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными,

Правая часть уравнения (6.5) представляет собой произведение двух функций, каждая из которых зависит только от одной переменной.

Например, уравнениеявляется уравнением с разделяющи-

мися переменными
а уравнение

нельзя представить в виде (6.5).

Учитывая, что, перепишем (6.5) в виде

Из этого уравнения получим дифференциальное уравнение с разделенными переменными, в котором при дифференциалах стоят функции, зависящие лишь от соответствующей переменной:

Интегрируя почленно, имеем


где C = C 2 - C 1 - произвольная постоянная. Выражение (6.6) представляет собой общий интеграл уравнения (6.5).

Разделив обе части уравнения (6.5) на,, мы можем потерять те решения, при которых,Действительно, еслипри

тоочевидно, является решением уравнения (6.5).

Пример 1. Найти решение уравненияудовлетворяющее

условию: y = 6 при x = 2 (y (2) = 6).

Решение. Заменим у" натогда. Умножим обе части на

dx, так как при дальнейшем интегрировании нельзя оставлять dx в знаменателе:

а затем, разделив обе части наполучим уравнение,

которое можно проинтегрировать. Интегрируем:

Тогда; потенцируя, получим y = C . (x + 1) - об-

щее решение.

По начальным данным определяем произвольную постоянную, подставив их в общее решение

Окончательно получаем y = 2(x + 1) - частное решение. Рассмотрим еще несколько примеров решения уравнений с разделяющимися переменными.

Пример 2. Найти решение уравнения

Решение. Учитывая, что, получим.

Проинтегрировав обе части уравнения, будем иметь

откуда

Пример 3. Найти решение уравненияРешение. Делим обе части уравнения на те сомножители, которые зависят от переменной, не совпадающей с переменной под знаком дифференциала, т. е. наи интегрируем. Тогда получим


и, наконец,

Пример 4. Найти решение уравнения

Решение. Зная, чтополучим. Разде-

лим переменные. Тогда

Интегрируя, получим


Замечание. В примерах 1 и 2 искомая функция y выражена явно (общее решение). В примерах 3 и 4 - неявно (общий интеграл). В дальнейшем форма решения оговариваться не будет.

Пример 5. Найти решение уравненияРешение.


Пример 6. Найти решение уравнения, удовлетворяющее

условию y(e) = 1.

Решение. Запишем уравнение в виде

Умножая обе части уравнения на dx и на, получим

Интегрируя обе части уравнения (интеграл в правой части берется по частям), получим

Но по условию y = 1 при x = e . Тогда

Подставим найденные значения С в общее решение:

Полученное выражение называется частным решением дифференциального уравнения.

6.2.2. Однородные дифференциальные уравнения первого порядка

Определение. Дифференциальное уравнение первого порядка называется однородным, если его можно представить в виде

Приведем алгоритм решения однородного уравнения.

1.Вместо y введем новую функциюТогдаи, следовательно,

2.В терминах функции u уравнение (6.7) принимает вид

т. е. замена сводит однородное уравнение к уравнению с разделяющимися переменными.

3.Решая уравнение (6.8), находим сначала u, а затем y = ux.

Пример 1. Решить уравнениеРешение. Запишем уравнение в виде

Производим подстановку:
Тогда

Заменим

Умножим на dx: Разделим на x и натогда

Проинтегрировав обе части уравнения по соответствующим переменным, будем иметь


или, возвращаясь к старым переменным, окончательно получим

Пример 2. Решить уравнениеРешение. Пустьтогда


Поделим обе части уравнения на x 2: Раскроем скобки и перегруппируем слагаемые:


Переходя к старым переменным, придем к окончательному результату:

Пример 3. Найти решение уравнения при условии

Решение. Выполняя стандартную заменуполучаем

или


или

Значит, частное решение имеет видПример 4. Найти решение уравнения

Решение.


Пример 5. Найти решение уравнения Решение.

Самостоятельная работа

Найти решение дифференциальных уравнений с разделяющимися переменными (1-9).

Найти решение однородных дифференциальных уравнений (9-18).

6.2.3. Некоторые приложения дифференциальных уравнений первого порядка

Задача о радиоактивном распаде

Скорость распада Ra (радия) в каждый момент времени пропорциональна его наличной массе. Найти закон радиоактивного распада Ra, если известно, что в начальный момент имелосьRa и период полураспада Ra равен 1590 лет.

Решение. Пусть в моментмасса Ra составляет x = x(t) г, причем Тогда скорость распада Ra равна


По условию задачи

где k

Разделяя в последнем уравнении переменные и интегрируя, получим

откуда

Для определения C используем начальное условие: при.

Тогдаи, значит,

Коэффициент пропорциональности k определяем из дополнительного условия:

Имеем

Отсюдаи искомая формула

Задача о скорости размножения бактерий

Скорость размножения бактерий пропорциональна их количеству. В начальный момент имелось 100 бактерий. В течение 3 ч их число удвоилось. Найти зависимость количества бактерий от времени. Во сколько раз увеличится количество бактерий в течение 9 ч?

Решение. Пусть x - количество бактерий в момент t. Тогда, согласно условию,

где k - коэффициент пропорциональности.

ОтсюдаИз условия известно, что. Значит,

Из дополнительного условия. Тогда

Искомая функция:

Значит, при t = 9 x = 800, т. е. в течение 9 ч количество бактерий увеличилось в 8 раз.

Задача об увеличении количества фермента

В культуре пивных дрожжей быстрота прироста действующего фермента пропорциональна его начальному количеству x. Первоначальное количество фермента a в течение часа удвоилось. Найти зависимость

x(t).

Решение. По условию дифференциальное уравнение процесса имеет вид

отсюда

Но. Значит, C = a и тогда

Известно также, что

Следовательно,

6.3. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

6.3.1. Основные понятия

Определение. Дифференциальным уравнением второго порядка называется соотношение, связывающее независимую переменную, искомую функцию и ее первую и вторую производные.

В частных случаях в уравнении могут отсутствовать x, у или у". Однако уравнение второго порядка обязательно должно содержать у". В общем случае дифференциальное уравнение второго порядка записывается в виде:

или, если это возможно, в виде, разрешенном относительно второй производной:

Как и в случае уравнения первого порядка, для уравнения второго порядка могут существовать общее и частное решения. Общее решение имеет вид:

Нахождение частного решения

при начальных условиях- заданные

числа) называется задачей Коши. Геометрически это означает, что требуется найти интегральную кривую у = у (x), проходящую через заданную точкуи имеющую в этой точке касательнуюкоторая об-

разует с положительным направлением оси Ox заданный уголт. е. (рис. 6.1). Задача Коши имеет единственное решение, если правая часть уравнения (6.10),непре-

рывна и имеет непрерывные частные производные по у, у" в некоторой окрестности начальной точки

Для нахождения постоянных входящих в частное решение, надо разрешить систему

Рис. 6.1. Интегральная кривая

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

На сегодняшний день одним из важнейших навыков для любого специалиста является умение решать дифференциальные уравнения. Решение дифференциальных уравнений – без этого не обходится ни одна прикладная задача, будь это расчет какого-либо физического параметра или моделирование изменений в результате принятой макроэкономической политики. Эти уравнения также важны для ряда других наук, таких как химия, биология, медицина и т.д. Ниже мы приведем пример использования дифференциальных уравнений в экономике, но перед этим кратко расскажем об основных типах уравнений.

Дифференциальные уравнения – простейшие виды

Мудрецы говорили, что законы нашей вселенной написаны на математическом языке. Конечно, в алгебре есть много примеров различных уравнений, но это, большей частью, учебные примеры, неприменимые на практике. По-настоящему интересная математика начинается, когда мы хотим описать процессы, протекающие в реальной жизни. Но как отразить фактор времени, которому подчиняются реальные процессы – инфляция, выработка продукции или демографические показатели?

Вспомним одно важное определение из курса математики, касающееся производной функции. Производная является скоростью изменения функции, следовательно, она может помочь нам отразить фактор времени в уравнении.

То есть, мы составляем уравнение с функцией, которая описывает интересующий нас показатель и добавляем в уравнение производную этой функции. Это и есть дифференциальное уравнение. А теперь перейдем к простейшим типам дифференциальных уравнений для чайников .

Простейшее дифференциальное уравнение имеет вид $y’(x)=f(x)$, где $f(x)$ – некоторая функция, а $y’(x)$ – производная или скорость изменения искомой функции. Оно решается обычным интегрированием: $$y(x)=\int f(x)dx.$$

Второй простейший тип называется дифференциальным уравнением с разделяющимися переменными. Такое уравнение выглядит следующим образом $y’(x)=f(x)\cdot g(y)$. Видно, что зависимая переменная $y$ также входит в состав конструируемой функции. Уравнение решается очень просто – нужно "разделить переменные", то есть привести его к виду $y’(x)/g(y)=f(x)$ или $dy/g(y)=f(x)dx$. Остается проинтегрировать обе части $$\int \frac{dy}{g(y)}=\int f(x)dx$$ – это и есть решение дифференциального уравнения разделяющегося типа.

Последний простой тип – это линейное дифференциальное уравнение первого порядка. Оно имеет вид $y’+p(x)y=q(x)$. Здесь $p(x)$ и $q(x)$ – некоторые функции, а $y=y(x)$ – искомая функция. Для решения такого уравнения применяют уже специальные методы (метод Лагранжа вариации произвольной постоянной, метод подстановки Бернулли).

Есть более сложные виды уравнений – уравнения второго, третьего и вообще произвольного порядка, однородные и неоднородные уравнения, а также системы дифференциальных уравнений. Для их решения нужна предварительная подготовка и опыт решения более простых задач.

Большое значение для физики и, что неожиданно, финансов имеют так называемые дифференциальные уравнения в частных производных. Это значит, что искомая функция зависит от нескольких переменных одновременно. Например, уравнение Блека-Шоулса из области финансового инжиниринга описывает стоимость опциона (вид ценной бумаги) в зависимости от его доходности, размера выплат, а также сроков начала и конца выплат. Решение дифференциального уравнения в частных производных довольно сложное, обычно нужно использовать специальные программы, такие как Matlab или Maple.

Пример применения дифференциального уравнения в экономике

Приведем, как и было обещано, простой пример решения дифференциального уравнения. Вначале поставим задачу.

Для некоторой фирмы функция маржинальной выручки от продажи своей продукции имеет вид $MR=10-0,2q$. Здесь $MR$ – маржинальная выручка фирмы, а $q$ – объем продукции. Нужно найти общую выручку.

Как видно из задачи, это прикладной пример из микроэкономики. Множество фирм и предприятий постоянно сталкивается с подобными расчетами в ходе своей деятельности.

Приступаем к решению. Как известно из микроэкономики, маржинальная выручка представляет собой производную от общей выручки, причем выручка равна нулю при нулевом уровне продаж.

С математической точки задача свелась к решению дифференциального уравнения $R’=10-0,2q$ при условии $R(0)=0$.

Проинтегрируем уравнение, взяв первообразную функцию от обеих частей, получим общее решение: $$R(q) = \int (10-0,2q)dq = 10 q-0,1q^2+C. $$

Чтобы найти константу $C$, вспомним условие $R(0)=0$. Подставим: $$R(0) =0-0+C = 0. $$ Значит C=0 и наша функция общей выручки принимает вид $R(q)=10q-0,1q^2$. Задача решена.

Другие примеры по разным типам ДУ собраны на странице:

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Конспект лекции для студентов бухгалтерского факультета

заочной формы получения образования (НИСПО)

Горки, 2013

Дифференциальные уравнения первого порядка

    Понятие дифференциального уравнения. Общее и частное решения

При изучении различных явлений часто не удаётся найти закон, который непосредственно связывает независимую переменную и искомую функцию, но можно установить связь между искомой функцией и её производными.

Соотношение, связывающее независимую переменную, искомую функцию и её производные, называется дифференциальным уравнением :

Здесь x – независимая переменная, y – искомая функция,
- производные искомой функции. При этом в соотношении (1) обязательно наличие хотя бы одной производной.

Порядком дифференциального уравнения называется порядок старшей производной, входящей в уравнение.

Рассмотрим дифференциальное уравнение

. (2)

Так в это уравнение входит производная только первого порядка, то оно называется дифференциальным уравнением первого порядка.

Если уравнение (2) можно разрешить относительно производной и записать в виде

, (3)

то такое уравнение называется дифференциальным уравнением первого порядка в нормальной форме.

Во многих случаях целесообразно рассматривать уравнение вида

которое называется дифференциальным уравнением первого порядка, записанным в дифференциальной форме.

Так как
, то уравнение (3) можно записать в виде
или
, где можно считать
и
. Это означает, что уравнение (3) преобразовано в уравнение (4).

Запишем уравнение (4) в виде
. Тогда
,
,
, где можно считать
, т.е. получено уравнение вида (3). Таким образом, уравнения (3) и (4) равносильны.

Решением дифференциального уравнения (2) или (3) называется любая функция
, которая при подстановке её в уравнение (2) или (3) обращает его в тождество:

или
.

Процесс нахождения всех решений дифференциального уравнения называется его интегрированием , а график решения
дифференциального уравнения называетсяинтегральной кривой этого уравнения.

Если решение дифференциального уравнения получено в неявном виде
, то оно называетсяинтегралом данного дифференциального уравнения.

Общим решением дифференциального уравнения первого порядка называется семейство функций вида
, зависящее от произвольной постояннойС , каждая из которых является решением данного дифференциального уравнения при любом допустимом значении произвольной постоянной С . Таким образом, дифференциальное уравнение имеет бесчисленное множество решений.

Частным решением дифференциального уравнения называется решение, получаемое из формулы общего решения при конкретном значении произвольной постоянной С , включая
.

    Задача Коши и её геометрическая интерпретация

Уравнение (2) имеет бесчисленное множество решений. Чтобы из этого множества выделить одно решение, которое называется частным, нужно задать некоторые дополнительные условия.

Задача отыскания частного решения уравнения (2) при заданных условиях называется задачей Коши . Эта задача является одной из важнейших в теории дифференциальных уравнений.

Формулируется задача Коши следующим образом: среди всех решений уравнения (2) найти такое решение
, в котором функция
принимает заданное числовое значение, если независимая переменная
x принимает заданное числовое значение , т.е.

,
, (5)

где D – область определения функции
.

Значение называетсяначальным значением функции , а начальным значением независимой переменной . Условие (5) называется начальным условием или условием Коши .

С геометрической точки зрения задачу Коши для дифференциального уравнения (2) можно сформулировать следующим образом: из множества интегральных кривых уравнения (2) выделить ту, которая проходит через заданную точку
.

    Дифференциальные уравнения с разделяющимися переменными

Одним из простейших видов дифференциальных уравнений является дифференциальное уравнение первого порядка, не содержащее искомой функции:

. (6)

Учитывая, что
, запишем уравнение в виде
или
. Интегрируя обе части последнего уравнения, получим:
или

. (7)

Таким образом, (7) является общим решением уравнения (6).

Пример 1 . Найти общее решение дифференциального уравнения
.

Решение . Запишем уравнение в виде
или
. Проинтегрируем обе части полученного уравнения:
,
. Окончательно запишем
.

Пример 2 . Найти решение уравнения
при условии
.

Решение . Найдём общее решение уравнения:
,
,
,
. По условию
,
. Подставим в общее решение:
или
. Найденное значение произвольной постоянной подставим в формулу общего решения:
. Это и есть частное решение дифференциального уравнения, удовлетворяющее заданному условию.

Уравнение

(8)

Называется дифференциальным уравнением первого порядка, не содержащим независимой переменной . Запишем его в виде
или
. Проинтегрируем обе части последнего уравнения:
или
- общее решение уравнения (8).

Пример . Найти общее решение уравнения
.

Решение . Запишем это уравнение в виде:
или
. Тогда
,
,
,
. Таким образом,
– общее решение данного уравнения.

Уравнение вида

(9)

интегрируется с помощью разделения переменных. Для этого уравнение запишем в виде
, а затем с помощью операций умножения и деления приводим его к такой форме, чтобы в одну часть входила только функция отх и дифференциал dx , а во вторую часть – функция от у и дифференциал dy . Для этого обе части уравнения нужно умножить на dx и разделить на
. В результате получим уравнение

, (10)

в котором переменные х и у разделены. Проинтегрируем обе части уравнения (10):
. Полученное соотношение является общим интегралом уравнения (9).

Пример 3 . Проинтегрировать уравнение
.

Решение . Преобразуем уравнение и разделим переменные:
,
. Проинтегрируем:
,
или – общий интеграл данного уравнения.
.

Пусть уравнение задано в виде

Такое уравнение называется дифференциальным уравнением первого порядка с разделяющимися переменными в симметрической форме.

Для разделения переменных нужно обе части уравнения разделить на
:

. (12)

Полученное уравнение называется дифференциальным уравнением с разделёнными переменными . Проинтегрируем уравнение (12):

.(13)

Соотношение (13) является общим интегралом дифференциального уравнения (11).

Пример 4 . Проинтегрировать дифференциальное уравнение .

Решение . Запишем уравнение в виде

и разделим обе его части на
,
. Полученное уравнение:
является уравнением с разделёнными переменными. Проинтегрируем его:

,
,

,
. Последнее равенство является общим интегралом данного дифференциального уравнения.

Пример 5 . Найти частное решение дифференциального уравнения
, удовлетворяющее условию
.

Решение . Учитывая, что
, запишем уравнение в виде
или
. Разделим переменные:
. Проинтегрируем это уравнение:
,
,
. Полученное соотношение является общим интегралом данного уравнения. По условию
. Подставим в общий интеграл и найдёмС :
,С =1. Тогда выражение
является частным решением данного дифференциального уравнения, записанным в виде частного интеграла.

    Линейные дифференциальные уравнения первого порядка

Уравнение

(14)

называется линейным дифференциальным уравнением первого порядка . Неизвестная функция
и её производная входят в это уравнение линейно, а функции
и
непрерывны.

Если
, то уравнение

(15)

называется линейным однородным . Если
, то уравнение (14) называетсялинейным неоднородным .

Для нахождения решения уравнения (14) обычно используют метод подстановки (Бернулли) , суть которого в следующем.

Решение уравнения (14) будем искать в виде произведения двух функций

, (16)

где
и
- некоторые непрерывные функции. Подставим
и производную
в уравнение (14):

Функцию v будем подбирать таким образом, чтобы выполнялось условие
. Тогда
. Таким образом, для нахождения решения уравнения (14) нужно решить систему дифференциальных уравнений

Первое уравнение системы является линейным однородным уравнением и решить его можно методом разделения переменных:
,
,
,
,
. В качестве функции
можно взять одно из частных решений однородного уравнения, т.е. приС =1:
. Подставим во второе уравнение системы:
или
.Тогда
. Таким образом, общее решение линейного дифференциального уравнения первого порядка имеет вид
.

Пример 6 . Решить уравнение
.

Решение . Решение уравнения будем искать в виде
. Тогда
. Подставим в уравнение:

или
. Функциюv выберем таким образом, чтобы выполнялось равенство
. Тогда
. Решим первое из этих уравнений методом разделения переменных:
,
,
,
,. Функциюv подставим во второе уравнение:
,
,
,
. Общим решением данного уравнения является
.

Вопросы для самоконтроля знаний

    Что называется дифференциальным уравнением?

    Что называется порядком дифференциального уравнения?

    Какое дифференциальное уравнение называется дифференциальным уравнением первого порядка?

    Как записывается дифференциальное уравнение первого порядка в дифференциальной форме?

    Что называется решением дифференциального уравнения?

    Что называется интегральной кривой?

    Что называется общим решением дифференциального уравнения первого порядка?

    Что называется частным решением дифференциального уравнения?

    Как формулируется задача Коши для дифференциального уравнения первого порядка?

    Какова геометрическая интерпретация задачи Коши?

    Как записывается дифференциальное уравнение с разделяющимися переменными в симметрической форме?

    Какое уравнение называется линейным дифференциальным уравнением первого порядка?

    Каким методом можно решить линейное дифференциальное уравнение первого порядка и в чём суть этого метода?

Задания для самостоятельной работы

    Решить дифференциальные уравнения с разделяющимися переменными:

а)
; б)
;

в)
; г)
.

2. Решить линейные дифференциальные уравнения первого порядка:

а)
; б)
; в)
;

г)
; д)
.

gastroguru © 2017