Делаем электромагнитную пушку гаусса. Моя пушка Гаусса (гаусс-ган) Что нужно для создания гаусс пушки

Гаусс Ган своими руками

Раз уже начали встречаться в одной из статей с пушками гаусса, или по другому Гаусс Ган которые сделаны своими руками , в этой статье я публикую еще одну конструкцию и видиозаписи пушки Гаусса.

Данная пушка Гаусса запитывается от аккумулятора в 12 Вольт . На картинке его видно.

Данную статью так же можно использовать как инструкцию, так как в ней подробно описана сборка пушки.

Характеристики пушки:

Масса:2.5 кг
Скорость снаряда: примерно 9 м/с
Масса снаряда: 29 г
Кинетическая энергия снаряда: примерно 1.17 Дж.
Время зарядки конденсаторов от аккумулятора через преобразователь: 2 сек
Время зарядки конденсаторов от сети через преобразователь: около 30 сек
Размеры: 200х70х170 мм

Данный электромагнитный ускоритель способен стрелять любыми металлическими снарядами, которые магнитятся. Пушка Гаусса состоит из катушки и конденсаторов. При протекании электрического тока через катушку, образуется электромагнитное поле, которое в свою очередь разгоняет металлический снаряд. Назначение самое разное - в основном попугать своих одноклассников. В данной статье я вам расскажу как сделать себе такую Гаусс пушку.

Структурная схема Гаусс Пушки


Хотелось бы уточнить момент.На структурной схеме конденсатор 450 Вольт.А из умножителя выходит 500 Вольт.Абсурд.Не правда ли?Ну автор немного не учел это.Ставим конденсатор не менее чем на 500 Вольт.

А теперь сама схема умножителя:


В схеме используется полевой транзистор IRF 3205 .С этим транзистором скорость зарядки конденсатора 1000 мкФ на напряжение 500 вольт будет примерно равна 2-м секундам (с аккумулятором 4 ампер/часов). Можно использовать транзистор IRL3705, но скорость зарядки будет равна примерно 10-и секундам. Вот видео работы преобразователя:


В умножителе на видео стоят транзистор IRL3705, поэтому конденсаторы долго заряжаются. Позже я заменил IRL3705 на IRF 3205 скорость зарядки стала равна 2-м секундам.

Резистором R7 регулируется выходное напряжение от 50 до 900 вольт; светодиод LED 1 показывает, когда конденсаторы зарядились до нужного напряжения. Если трансформатор умножителя шумит, попробуйте уменьшить емкость конденсатора С1, дроссель L1 не обязателен, емкость конденсатора С2 можно уменьшить до 1000 мкФ, диоды D1 и D2 можно заменить на другие диоды с похожими характеристиками. ВАЖНО! Выключатель S1 замыкать только после того, когда подано напряжение на выводы питания. В противном случае, если подать напряжение на выводы и выключатель S1 будет замкнут, может выйти из строя транзистор из-за резкого скачка напряжения!

Сама схема работает просто: микросхема UC3845 вырабатывает прямоугольные импульсы, которые подаются на затвор мощного полевого транзистора, где усиливаются по амплитуде и подаются на первичную обмотку импульсного трансформатора. Далее импульсы раскаченные импульсным трансформатором до амплитуды 500-600 вольт выпрямляются диодом D2 и выпрямленным напряжением заряжают конденсаторы. Трансформатор взят из компьютерного блока питания. На схеме около трансформатора изображены точки. Эти точки указывают начало обмотки. Способ намотки трансформатора такой:

1 . Варим трансформатор взятый из ненужного компьютерного БП (самый большой трансформатор) в кипятке 5-10 мин, потом аккуратно разбираем Ш-образный ферритовый сердечник и разматываем полностью трансформатор.

2 . Сначала наматываем ПОЛОВИНУ вторичной обмотки проводом диаметра 0.5-0,7 мм. Наматывать надо с ножки указанной на схеме точкой.
Намотав 27 витков отводим провод не откусывая его, изолируем 27 витков бумагой или картоном и запоминаем в какую сторону накручивали провод.ЭТО ВАЖНО!!! Если первичная обмотка будет намотана в другую сторону, то ничего работать не будет, так как токи будут вычитаться!!!

3 . Далее наматываем первичную обмотку. Её наматываем тоже от указанного на схеме начала. Наматываем ее в ту же сторону, в которую была намотана первая часть первичной обмотки. Первичная обмотка состоит из 6-и проводов спаянных вместе и намотанных 4-я витками. Мотаем все 6 проводов параллельно друг другу, ровно выкладывая их 4-я витками в два слоя. Между слоями прокладываем слой изолирующей бумаги.

4 . Далее доматываем вторичную обмотку (ещё 27 витков). Мотаем в ту же сторону, что и раньше. И вот трансформатор готов! Осталось собрать саму схему. Если схема сделана правильно, то схема работает сразу без каких либо настроек.

Детали для преобразователя :

Для преобразователя требуется мощный источник энергии как аккумулятор на 4 ампер/час. Чем мощнее аккумулятор, тем быстрее зарядка конденсаторов.

Вот сам преобразователь:


Печатная плата преобразователя-вид снизу:

Эта плата довольно большая и немного потрудившись, я в Sprint-layout нарисовал плату поменьше:


Для тех, кто не способен сделать преобразователь, есть версия Гаусс пушки от сети ~220 вольт. Вот схема умножителя от сети:

Диоды можно взять любые, которые держут напряжение выше 600 вольт, емкость конденсатора подбирается опытным путем от 0.5 до 3.3 мкФ.

Если схема создана правильно, то она работать будет сразу без каких либо настроек.
Катушка у меня 8 Ом. Она намотана медным лакированным проводом диаметром 0.7 мм. Общая длина провода около 90 метров.

Теперь когда все сделано осталось собрать саму пушку. Общая стоимость пушки около 1000 руб. Стоимость рассчитывалась так:

  1. Аккумулятор 500 руб.
  2. Провод можно найти за 100 руб.
  3. Всякие мелочи и детали 400 руб.

Для тех, кто хочет сделать такую же пушку как у меня вот пошаговая инструкция:

1) Выпиливаем кусок фанеры размером 200х70х5 мм.

2) Делаем специальное крепление для рукоятки. Можно сделать рукоятку из игрушечного пистолета, но у меня стоит рукоятка от пистолета для инъекций инсулина. Внутрь рукоятки устанавливается кнопка с двумя положениями (три вывода).

3) Устанавливаем рукоятку.

4) Делаем крепления на фанере для преобразователя.

5) Устанавливаем преобразователь на фанеру.

6) Делаем защитный щиток на преобразователе, чтобы снаряд не повредил преобразователь.


7) Устанавливаем катушку и все спаиваем все провода как на структурной схеме.


8) Делаем корпус из ДВП

9) Устанавливаем все выключатели на место, аккумулятор закрепляем большими стяжками. Вот и все! Пушка готова! Стреляет эта пушка вот такими снарядами:

Диаметр снаряда 10 мм,а длина 50 мм. Вес 29 грам.

Пушка с приподнятым корпусом:


И в завершение несколько видеозаписей

Вот видео работы Гаусс пушки.Выстрел в коробку из рифлёного картона

Выстрел в плитку толщиной 0.8 мм:


Привет, друзья! Наверняка кто-то из вас уже когда-то читал или лично сталкивался с электромагнитным ускорителем Гаусса, который более известен под «Пушкой Гаусса».

Традиционная Гаусс-пушка строится с применением труднодоступных или довольно дорогих конденсаторов большой емкости, также для осуществления правильной зарядки и выстрела требуется некоторая обвязка (диоды, тиристоры и так далее). Это может быть довольно сложно для людей, которые ничего не понимают в радиоэлектронике, но желание поэкспериментировать не дает сидеть на месте. В этой статье я попытаюсь подробно рассказать о принципе работы пушки и о том, как можно собрать упрощенный до минимума ускоритель Гаусса.

Главной частью пушки является катушка. Как правило ее мотают самостоятельно на каком-либо диэлектрическом немагнитном стержне, который в диаметре несильно превышает диаметр снаряда. В предложенной конструкции катушку можно намотать даже «на глазок», потому что принцип действия просто не позволяет произвести никаких расчетов. Достаточно добыть медный или алюминиевый провод диаметром 0.2-1 мм в лаковой или силиконовой изоляции и намотать на стволе 150-250 витков так, чтобы длина намотки одного ряда была примерно 2-3 см. Можно использовать и готовый соленоид.



При прохождении электрического тока через катушку в ней возникает магнитное поле. Проще говоря, катушка превращается в электромагнит, который втягивает железный снаряд, а чтобы он не оставался в катушке, во время его вхождения в соленоид нужно просто отключить подачу тока.

В классических пушках это достигается за счет точных расчетов, применения тиристоров и других компонентов, которые «обрежут» импульс в нужный момент. Мы же просто будем разрывать цепь «когда получится». Для экстренного разрывания электрической цепи в быту используют плавкие предохранители, их можно использовать в нашем проекте, однако более целесообразно заменить их лампочками от елочной гирлянды. Они рассчитаны на питание низким напряжением, поэтому при питании от сети 220В мгновенно перегорают и разрывают цепь.



Готовое устройство состоит всего из трех деталей: катушки, сетевого кабеля и лампочки, подключенной последовательно катушке.


Многие согласятся, что использование пушки в таком виде крайне неудобно и неэстетично, а порой даже очень опасно. Поэтому я смонтировал устройство на небольшом кусочке фанеры. Для катушки установил отдельные клеммы. Это дает возможность быстро менять соленоид и экспериментировать с разными вариантами. Для лампочки я установил два тонких обрезанных гвоздя. Концы проводов лампочки просто обкручиваются вокруг них, поэтому лампочка меняется очень быстро. Обратите внимание, что сама колба находится в специально проделанном отверстии.


Дело в том, что при выстреле происходит большая вспышка и искры, поэтому я посчитал нужным немного отвести вниз эту «струю».


Скорость вылета снаряда здесь довольно большая, но даже бумагу он пробивает с трудом, иногда железные пули вбиваются в пенопласт.

Проект был начат в 2011 году.Это был проект подразумевающий полностью автономную автоматическую систему для развлекательных целей, с энергией снаряда порядка 6-7Дж, что сравнимо с пневматикой. Планировалось 3 автоматических ступеней с запуском от оптических датчиков, плюс мощный инжектор-ударник засылающий снаряд из магазина в ствол.

Компоновка планировалась такой:

Тоесть класический Булл-пап, что позволило вынести тяжелые аккумуляторы в приклад и тем самым сместить центр тяжести ближе к ручке.

Схема выглядит так:

Блок управления в последствии был разделен на блок управления силовым блоком и блок общего управления. Блок конденсаторов и блок коммутации были обьеденены в один. Так-же были разработаны резервные системы. Из них были собраны блок управления силовым блоком, силовой блок, преобразователь, распределитель напряжений, часть блока индикации.

Представляет собой 3 компаратора с оптическими датчиками.

Каждый датчик имеет свой компаратор. Это сделано для повышения надежности, так при выходе из строя одной микросхемы откажет только одна ступень, а не 2. При перекрытии снарядом луча датчика сопротивление фототранзистора меняется и срабатывает компаратор. При классической тиристорной коммутации управляющие выводы тиристоров можно подключать напрямую к выходам компараторов.

Датчики необходимо устанавливать так:

А устройство выглядит так:

Силовой блок имеет следующую простую схему:

Конденсаторы C1-C4 имеют напряжение 450В и емкость 560мкФ. Диоды VD1-VD5 применены типа HER307/ В качестве коммутации применены силовые тиристоры VT1-VT4 типа 70TPS12.

Собранный блок подключенный к блоку управления на фото ниже:

Преобразователь был применен низковольтный, подробнее о нем можно узнать

Блок распределения напряжений реализован банальным конденсаторным фильтром с силовым выключателем питания и индикатором, оповещающим процесс заряда аккумуляторов. Блок имеет 2 выхода- первый силовой, второй на все остальное. Так-же он имеет выводы для подключения зарядного устройства.

На фото блок распределения крайний справа сверху:

В нижнем левом углу резервный преобразователь, он был собран по самой простой схеме на NE555 и IRL3705 и имеет мощность около 40Вт. Предполагалось использовать его с отдельным небольшим аккумулятором, включая резервную систему при отказе основной или разряде основного аккумулятора.

Используя резервный преобразователь были произведены предварительные проверки катушек и проверялась возможность использования свинцовых аккумуляторов. На видео одноступенчатая модель стреляет в сосновую доску. Пуля со специальным наконечником повышенной пробивной способности входит в дерево на 5мм.

В пределах проекта так-же разрабатывалась универсальная ступень, как главный блок для следующих проектов.

Эта схема представляет собой блок для электромагнитного ускорителя, на основе которого можно собрать многоступенчатый ускоритель с числом ступеней до 20. Ступень имеет классическую тиристорную коммутацию и оптический датчик. Энергия накачиваемая в конденсаторы- 100Дж. Кпд около 2х процентов.

Использован 70Вт преобразователь с задающим генератором на микросхеме NE555 и силовым полевым транзистором IRL3705. Между транзистором и выходом микросхемы предусмотрен повторитель на комплементарной паре транзисторов, необходимый для снижения нагрузки на микросхему. Компаратор оптического датчика собран на микросхеме LM358, он управляет тиристором, подключая конденсаторы к обмотке при прохождении снарядом датчика. Параллельно трансформатору и ускоряющей катушки применены хорошие снабберные цепи.

Методы повышения КПД

Так-же рассматривались методы повышения КПД, такие как магнитопровод, охлаждение катушек и рекуперация энергии. О последней расскажу подробнее.

ГауссГан имеет очень малый КПД, люди работающие в этой области давно разыскивают способы повышения КПД. Одним из таких способов является рекуперация. Суть ее состоит в том чтобы вернуть не используемую энергию в катушке обратно в конденсаторы. Таким образом энергия индуцируемого обратного импульса не уходит в никуда и не цепляет снаряд остаточным магнитным полем, а закачивается обратно в конденсаторы. Этим способом можно вернуть до 30 процентов энергии, что в свою очередь повысит КПД на 3-4 процента и уменьшит время перезарядки, увеличив скорострельность в автоматических системах. И так- схема на примере трехступенчатого ускорителя.

Для гальванической развязки в цепи управления тиристоров использованы трансформаторы T1-T3. Рассмотрим работу одной ступени. Подаем напряжение заряда конденсаторов, через VD1 конденсатор С1 заряжается до номинального напряжения, пушка готова к выстрелу. При подаче импульса на вход IN1, он трансформируется трансформатором Т1, и попадает на управляющие выводы VT1 и VT2. VT1 и VT2 открываются и соединяют катушку L1 с конденсатором C1. На графике ниже изображены процессы во время выстрела.

Больше всего нас интересует часть начиная с 0.40мсек, когда напряжение становится отрицательным. Именно это напряжение при помощи рекуперации можно поймать и вернуть в конденсаторы. Когда напряжение становится отрицательным, оно проходя через VD4 и VD7 закачивается в накопитель следующей ступени. Этот процесс так-же срезает часть магнитного импульса, что позволяет избавится от тормозящего остаточного эффекта. Остальные ступени работают подобно первой.

Статус проекта

Проект и мои разработки в этом направлении в общем были приостановлены. Вероятно в скором будущем я продолжу свои работы в этой области, но ничего не обещаю.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Блок управления силовой частью
Операционный усилитель

LM358

3 В блокнот
Линейный регулятор 1 В блокнот
Фототранзистор SFH309 3 В блокнот
Светодиод SFH409 3 В блокнот
Конденсатор 100 мкФ 2 В блокнот
Резистор

470 Ом

3 В блокнот
Резистор

2.2 кОм

3 В блокнот
Резистор

3.5 кОм

3 В блокнот
Резистор

10 кОм

3 В блокнот
Силовой блок
VT1-VT4 Тиристор 70TPS12 4 В блокнот
VD1-VD5 Выпрямительный диод

HER307

5 В блокнот
C1-C4 Конденсатор 560 мкФ 450 В 4 В блокнот
L1-L4 Катушка индуктивности 4 В блокнот

LM555

1 В блокнот
Линейный регулятор L78S15CV 1 В блокнот
Компаратор

LM393

2 В блокнот
Биполярный транзистор

MPSA42

1 В блокнот
Биполярный транзистор

MPSA92

1 В блокнот
MOSFET-транзистор

IRL2505

1 В блокнот
Стабилитрон

BZX55C5V1

1 В блокнот
Выпрямительный диод

HER207

2 В блокнот
Выпрямительный диод

HER307

3 В блокнот
Диод Шоттки

1N5817

1 В блокнот
Светодиод 2 В блокнот
470 мкФ 2 В блокнот
Электролитический конденсатор 2200 мкФ 1 В блокнот
Электролитический конденсатор 220 мкФ 2 В блокнот
Конденсатор 10 мкФ 450 В 2 В блокнот
Конденсатор 1 мкФ 630 В 1 В блокнот
Конденсатор 10 нФ 2 В блокнот
Конденсатор 100 нФ 1 В блокнот
Резистор

10 МОм

1 В блокнот
Резистор

300 кОм

1 В блокнот
Резистор

15 кОм

1 В блокнот
Резистор

6.8 кОм

1 В блокнот
Резистор

2.4 кОм

1 В блокнот
Резистор

1 кОм

3 В блокнот
Резистор

100 Ом

1 В блокнот
Резистор

30 Ом

2 В блокнот
Резистор

20 Ом

1 В блокнот
Резистор

5 Ом

2 В блокнот
T1 Трансформатор 1 В блокнот
Блок распределения напряжений
VD1, VD2 Диод 2 В блокнот
Светодиод 1 В блокнот
C1-C4 Конденсатор 4 В блокнот
R1 Резистор

10 Ом

1 В блокнот
R2 Резистор

1 кОм

1 В блокнот
Выключатель 1 В блокнот
Батарея 1 В блокнот
Программируемый таймер и осциллятор

LM555

1 В блокнот
Операционный усилитель

LM358

1 В блокнот
Линейный регулятор

LM7812

1 В блокнот
Биполярный транзистор

BC547

1 В блокнот
Биполярный транзистор

BC307

1 В блокнот
MOSFET-транзистор

AUIRL3705N

1 В блокнот
Фототранзистор SFH309 1 В блокнот
Тиристор 25 А 1 В блокнот
Выпрямительный диод

HER207

3 В блокнот
Диод 20 А 1 В блокнот
Диод 50 А 1 В блокнот
Светодиод SFH409 1

Всем привет. В данной статье рассмотрим, как изготовить портативную электромагнитную пушку Гаусса, собранную с применением микроконтроллера. Ну, насчет пушки Гаусса я, конечно, погорячился, но то, что это – электромагнитная пушка, нет сомнения. Данное устройство на микроконтроллере было разработано для того, чтобы обучить начинающих программированию микроконтроллеров на примере конструирования электромагнитной пушки своими руками.Разберем некоторые конструктивные моменты как в самой электромагнитной пушке Гаусса, так и в программе для микроконтроллера.

С самого начала нужно определиться с диаметром и длиной ствола самой пушки и материалом, из которого она будет изготовлена. Я применил пластиковый футляр диаметром 10 мм из-под ртутного термометра, поскольку он у меня валялся без дела. Вы можете использовать любой доступный материал, обладающий не ферромагнитными свойствами. Это стекло, пластик, медная трубка и т. д. Длина ствола может зависеть от количества применяемых электромагнитных катушек. В моем случае используется четыре электромагнитных катушки, длина ствола составила двадцать сантиметров.

Что касается диаметра применяемой трубки, то в процессе работы электромагнитная пушка показала, что нужно учитывать диаметр ствола относительно применяемого снаряда. Проще говоря, диаметр ствола не должен намного превышать диаметр применяемого снаряда. В идеале, ствол электромагнитной пушки должен подходить под сам снаряд.

Материалом для создания снарядов послужила ось от принтера диаметром пять миллиметров. Из данного материала и были изготовлены пять болванок длиной 2,5 сантиметра. Хотя также можно применять стальные болванки, скажем, из проволоки или электрода – что найдется.

Нужно уделить внимание и весу самого снаряда. Вес по возможности должен быть небольшим. Мои снаряды слегка тяжеловаты получились.

Перед созданием данной пушки были проведены эксперименты. В качестве ствола использовалась пустая паста от ручки, в качестве снаряда – иголка. Иголка с легкостью пробивала обложку журнала, установленного неподалеку от электромагнитной пушки.

Поскольку оригинальная электромагнитная пушка Гаусса строится по принципу заряда конденсатора большим напряжением, порядка трехсот вольт, то в целях безопасности начинающим радиолюбителям следует запитывать её низким напряжением, порядка двадцати вольт. Низкое напряжение приводит к тому, что дальность полета снаряда не очень большая. Но опять же, всё зависит от количества применяемых электромагнитных катушек. Чем больше электромагнитных катушек применяется, тем больше получается ускорение снаряда в электромагнитной пушке. Также имеют значение диаметр ствола (чем меньше диаметр ствола, тем снаряд летит дальше) и качество намотки непосредственно самих электромагнитных катушек. Пожалуй, электромагнитные катушки – самое основное в устройстве электромагнитной пушки, на это нужно обратить серьёзное внимание, чтобы добиться максимального полета снаряда.

Я приведу параметры своих электромагнитных катушек, у вас они могут быть другими. Катушка наматывается проводом диаметром 0,2 мм. Длина намотки слоя электромагнитной катушки составляет два сантиметра и содержит шесть таких рядов. Каждый новый слой я не изолировал, а начинал намотку нового слоя на предыдущий. Из-за того, что электромагнитные катушки запитываются низким напряжением, вам нужно получить максимальную добротность катушки. Поэтому все витки наматываем плотно друг другу, виток к витку.

Что касается подающего устройства, то тут особые пояснения не нужны. Все паялось из отходов фольгированного текстолита, оставшегося от производства печатных плат. На рисунках все подробно отображено. Сердцем подающего устройства является сервопривод SG90, управляемый микроконтроллером.

Подающий шток изготовлен из стального прутка диаметром 1,5 мм, на конце штока запаяна гайка м3 для сцепления с сервоприводом. На качалке сервопривода для увеличения плеча установлена загнутая с двух концов медная проволока диаметром 1,5 мм.

Данного нехитрого устройства, собранного из подручных материалов, вполне хватает, чтобы подать снаряд в ствол электромагнитной пушки. Подающий шток должен полностью выходить из загрузочного магазина. В качестве направляющей для подающего штока послужила треснувшая латунная стойка с внутренним диаметром 3 мм и длиной 7 мм. Жалко было выбрасывать, вот и пригодилось, собственно, как и кусочки фольгированного текстолита.

Программа для микроконтроллера atmega16 создавалась в AtmelStudio, и является полностью открытым проектом для вас. Рассмотрим некоторые настройки в программе микроконтроллера, которые придется произвести. Для максимально эффективной работы электромагнитной пушки вам понадобится настроить в программе время работы каждой электромагнитной катушки. Настройка производится по порядку. Сначала подпаиваете в схему первую катушку, все остальные не подключаете. Задаете в программе время работы (в миллисекундах).

PORTA |=(1<<1); // катушка 1
_delay_ms(350); / / время работы

Прошиваете микроконтроллер, и запускаете программу на микроконтроллере. Усилия катушки должно хватать на то, чтобы втянуть снаряд и придать начальное ускорение. Добившись максимального вылета снаряда, подстраивая время работы катушки в программе микроконтроллера, подключаете вторую катушку и также настраиваете по времени, добиваясь еще большей дальности полета снаряда. Соответственно, первая катушка остается включенной.

PORTA |=(1<<1); // катушка 1
_delay_ms(350);
PORTA &=~(1<<1);
PORTA |=(1<<2); // катушка 2
_delay_ms(150);

Таким способом настраиваете работу каждой электромагнитной катушки, подключая их по порядку. По мере увеличения количества электромагнитных катушек в устройстве электромагнитной пушке Гаусса скорость и, соответственно, дальность снаряда должны также увеличиваться.

Данную кропотливую процедуру настройки каждой катушки можно избежать. Но для этого придется модернизировать устройство самой электромагнитной пушки, установив датчики между электромагнитными катушками для отслеживания перемещения снаряда от одной катушки к другой. Датчики в сочетании с микроконтроллером позволят не только упростить процесс настройки, но и увеличат дальность полета снаряда. Данные навороты я не стал делать и усложнять программу микроконтроллера. Целью было реализовать интересный и несложный проект с применением микроконтроллера. Насколько он интересен, судить, конечно, вам. Скажу честно, я радовался, как ребенок, «молотя» из данного устройства, и у меня созрела идея более серьезного устройства на микроконтроллере. Но это уже тема для другой статьи.

Программа и схема -

Обладать оружием, которое даже в компьютерных играх можно найти только в лаборатории сумасшедшего ученого или возле временного портала в будущее – это круто. Наблюдать, как равнодушные к технике люди невольно фиксируют на устройстве взгляд, а заядлые геймеры спешно подбирают с пола челюсть – ради этого стоит потратить денек на сборку пушки Гаусса своими руками .

Как водится, начать мы решили с простейшей конструкции – однокатушечной индукционной пушки . Эксперименты с многоступенчатым разгоном снаряда оставили опытным электронщикам, способным построить сложную систему коммутации на мощных тиристорах и точно настроить моменты последовательного включения катушек. Вместо этого мы сконцентрировались на возможности приготовления блюда из повсеместно доступных ингредиентов.

Итак, чтобы построить пушку Гаусса, прежде всего прийдётся пробежаться по магазинам. В радиомагазине для самоделки нужно купить несколько конденсаторов с напряжением 350–400 В и общей емкостью 1000–2000 микрофарад , эмалированный медный провод диаметром 0,8 мм , батарейные отсеки для «Кроны » и двух 1,5-вольтовых батареек типа С , тумблер и кнопку. В фототоварах возьмём пять одноразовых фотоаппаратов Kodak , в автозапчастях – простейшее четырёхконтактное реле от «Жигулей», в «продуктах» – пачку соломинок для коктейлей , а в «игрушках» – пластмассовый пистолет, автомат, дробовик, ружьё или любую другую пушку, которую вы захотите превратить в оружие будущего.

Мотаем на ус…

Главный силовой элемент нашей пушки – катушка индуктивности . С её изготовления стоит начать сборку орудия. Возьмите отрезок соломинки длиной 30 мм и две большие шайбы (пластмассовые или картонные), соберите из них бобину с помощью винта и гайки. Начните наматывать на нее эмалированный провод аккуратно, виток к витку (при большом диаметре провода это довольно просто). Будьте внимательны, не допускайте резких перегибов провода, не повредите изоляцию. Закончив первый слой, залейте его суперклеем и начинайте наматывать следующий. Поступайте так с каждым слоем. Всего нужно намотать 12 слоев . Затем можно разобрать бобину, снять шайбы и надеть катушку на длинную соломинку, которая послужит стволом. Один конец соломинки следует заглушить. Готовую катушку легко проверить, подключив её к 9-вольтовой батарейке : если она удержит на весу канцелярскую скрепку, значит, вы добились успеха. Можно вставить в катушку соломинку и испытать её в роли соленоида: она должна активно втягивать в себя отрезок скрепки, а при импульсном подключении даже выбрасывать её из ствола на 20–30 см .

Препарируем ценности

Для формирования мощного электрического импульса, как нельзя лучше подходит (в этом мнении мы солидарны с создателями самых мощных лабораторных рельсотронов). Конденсаторы хороши не только большой энергоемкостью, но и способностью отдать всю энергию в течение очень короткого времени, до того, как снаряд достигнет центра катушки. Однако конденсаторы необходимо как-то заряжать. К счастью, нужное нам зарядное устройство есть в любом фотоаппарате: конденсатор используется там для формирования высоковольтного импульса для поджигающего электрода вспышки. Лучше всего нам подойдут одноразовые фотоаппараты, потому что конденсатор и «зарядка» – это единственные электрические компоненты, которые в них есть, а значит, достать зарядный контур из них проще простого.

Разборка одноразового фотоаппарата – это этап, на котором стоит начать проявлять осторожность . Вскрывая корпус, старайтесь не касаться элементов электрической цепи: конденсатор может сохранять заряд в течение долгого времени. Получив доступ к конденсатору, первым делом замкните его выводы отверткой с ручкой из диэлектрика . Только после этого можно касаться платы, не опасаясь получить удар током. Удалите с зарядного контура скобы для батарейки, отпаяйте конденсатор, перемычку к контактам кнопки зарядки – она нам больше не понадобится. Подготовьте таким образом минимум пять зарядных плат. Обратите внимание на расположение проводящих дорожек на плате: к одним и тем же элементам схемы можно подключиться в разных местах.

Расставляем приоритеты

Подбор ёмкости конденсаторов – это вопрос компромисса между энергией выстрела и временем зарядки орудия. Мы остановились на четырех конденсаторах по 470 микрофарад (400 В) , соединенных параллельно. Перед каждым выстрелом мы в течение, примерно, минуты ждем сигнала светодиодов на зарядных контурах, сообщающих, что напряжение в конденсаторах достигло положенных 330 В . Ускорить процесс заряда можно, подключая к зарядным контурам по несколько 3-вольтовых батарейных отсеков параллельно. Однако стоит иметь в виду, что мощные батареи типа «С» обладают избыточной силой тока для слабеньких фотоаппаратных схем. Чтобы транзисторы на платах не сгорели, на каждую 3-вольтовую сборку должно приходиться 3–5 зарядных контуров, подключенных параллельно. На нашем орудии к «зарядкам» подключен только один батарейный отсек. Все остальные служат в качестве запасных магазинов.

Определяем зоны безопасности

Мы никому не посоветуем держать под пальцем кнопку, разряжающую батарею 400-вольтовых конденсаторов. Для управления спуском лучше установить реле . Его управляющий контур подключается к 9-вольтовой батарейке через кнопку спуска, а управляемый включается в цепь между катушкой и конденсаторами. Правильно собрать пушку поможет принципиальная схема. При сборке высоковольтного контура пользуйтесь проводом сечением не менее миллиметра , для зарядного и управляющего контуров подойдут любые тонкие провода. Проводя эксперименты со схемой, помните: конденсаторы могут иметь остаточный заряд. Прежде чем прикасаться к ним, разряжайте их коротким замыканием.


Artem

Подводим итог

Процесс стрельбы выглядит так:

  • включаем тумблер питания;
  • дожидаемся яркого свечения светодиодов;
  • опускаем в ствол снаряд так, чтобы он оказался слегка позади катушки;
  • выключаем питание, чтобы при выстреле батарейки не отбирали энергию на себя; прицеливаемся и нажимаем на кнопку спуска.

Результат во многом зависит от массы снаряда.

Соблюдайте осторожность, орудие представляет реальную опасность.

gastroguru © 2017