2 аксиома параллельных прямых. Урок "аксиома параллельных прямых"

Сначала рассмотрим разницу между понятиями признак, свойство и аксиома.

Определение 1

Признаком называют некий факт, по которому можно определить истинность суждения об интересующем объекте.

Пример 1

Прямые являются параллельными, если их секущая образует равные накрест лежащие углы.

Определение 2

Свойство формулируется в том случае, когда есть уверенность в справедливости суждения.

Пример 2

При параллельных прямых их секущая образует равные накрест лежащие углы.

Определение 3

Аксиомой называют такое утверждение, которое не требует доказательства и принимается как истина без него.

Каждая наука имеет аксиомы, на которых строятся последующие суждения и их доказательства.

Аксиома параллельных прямых

Иногда аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.

Теорема 1

Через точку, которая не лежит на заданной прямой, на плоскости можно провести лишь одну прямую, которая будет параллельной заданной.

Аксиома доказательства не требует.

Свойства параллельных прямых

Теорема 2

Свойство1. Свойство транзитивности параллельности прямых:

Когда одна из двух параллельных прямых является параллельной третьей, то и вторая прямая будет ей параллельна.

Свойства требуют доказательств.

Доказательство:

Пусть имеются две параллельные прямые $a$ и $b$. Прямая $с$ параллельна прямой $а$. Проверим, будет ли в таком случае прямая $с$ параллельна и прямой $b$.

Для доказательства будем пользоваться противоположным суждением:

Представим, что возможен такой вариант, при котором прямая $c$ параллельна одной из прямых, например, прямой $a$, а другую – прямую $b$ – пересекает в некоторой точке $K$.

Получаем противоречие согласно аксиоме параллельных прямых. Получается ситуация, при которой в одной точке пересекаются две прямые, к тому же параллельные одной и той же прямой $a$. Такая ситуация невозможна, следовательно, прямые $b$ и $c$ пересекаться не могут.

Таким образом, доказано, что если одна из двух параллельных прямых является параллельной третьей прямой, то и вторая прямая параллельна третьей прямой.

Теорема 3

Свойство 2.

Если одна из двух параллельных прямых пересекается третьей, то ею будет пересекаться и вторая прямая.

Доказательство:

Пусть имеются две параллельные прямые $а$ и $b$. Также пусть имеется некоторая прямая $с$, которая пересекает одну из параллельных прямых, например, прямую $а$. Необходимо показать, что прямая $с$ пересекает и вторую прямую – прямую $b$.

Построим доказательство методом от противного.

Представим, что прямая $с$ не пересекает прямую $b$. Тогда через точку $К$ проходят две прямые $а$ и $с$, которые не пересекают прямую $b$, т. е. являются параллельными ей. Но такая ситуация противоречит аксиоме параллельных прямых. Значит, предположение было неверным и прямая $с$ пересечет прямую $b$.

Теорема доказана.

Свойства углов , которые образуют две параллельные прямые и секущая: накрест лежащие углы равны, соответственные углы равны, * сумма односторонних углов равна $180^{\circ}$.

Пример 3

Даны две параллельные прямые и третья прямая, перпендикулярная одно из них. Доказать, что эта прямая перпендикулярна и другой из параллельных прямых.

Доказательство .

Пусть имеем прямые $а \parallel b$ и $с \perp а$.

Поскольку прямая $с$ пересекает прямую $а$, то согласно свойству параллельных прямых она будет пересекать и прямую $b$.

Секущая $с$, пересекая параллельные прямые $а$ и $b$, образует с ними равные внутренние накрест лежащие углы.

Т.к. $с \perp а$, то углы будут по $90^{\circ}$.

Следовательно, $с \perp b$.

Доказательство завершено.

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Если a ||c и b ||c , то a ||b .

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Если a c и b c , то a ||b .

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Если ∠1 + ∠2 = 180°, то a ||b .

4. Если соответственные углы равны, то прямые параллельны:

Если ∠2 = ∠4, то a ||b .

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Если ∠1 = ∠3, то a ||b .

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Если a ||b , то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Если a ||b , то ∠2 = ∠4.

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Если a ||b , то ∠1 = ∠3.

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Если a ||b и c a , то c b .

Пятое свойство - это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой.

Немецкий физик Альберт Эйнштейн с помощью математических методов разработал теорию относительности, совершив переворот в физике ХХ в.

Считается, что основы современной математики заложены Эвклидом в его 13-томном труде «Элементы» около 300 г. до н. э. В отличие от предшественников, Евклид объясняет здесь геометрию не с помощью бесчисленных чертежей, но чисто логически. Вначале он описывает целый ряд фактов, которые он считает истинными и непреложными. Эти факты называются постулатами. Один из таких постулатов Евклида, например, гласит: «Из каждой точки можно провести одну прямую к любой другой точке». Затем, исходя из этих постулатов, он выводит все остальное. Тем самым Евклид впервые продемонстрировал современное математическое мышление: исходя из определенных предположений, однажды сделанных и не подвергавшихся больше пересмотру, доказал множество других утверждений.

Столетиями шли споры по поводу пятого постулата Евклида, так называемой аксиомы о параллельных прямых: через любую точку Р, лежащую вне прямой g, можно провести только одну прямую, которая не пересечет g. Такую прямую называют параллельной к прямой g, проходящей через точку Р. Многие ученые стремились не просто принять это положение, а вывести его из первых четырех. Но это оказалось невозможным. Математики стали создавать геометрию, которая основывалась на первых четырех аксиомах Евклида и отвергала пятую. То, что вначале выглядело математической игрой, в начале XX в. оказалось востребованным. Альберт Эйнштейн увидел в этих моделях геометрии основу для своей общей теории относительности.




Мы использовали и другие аксиомы, хотя особо не выделяли их. Так, сравнение 2-ух отрезков мы проводили с помощью наложения. Возможность такого наложения вытекает из аксиомы «На любом луче от его начала можно отложить отрезок, равный данному, и притом только один»




Эти аксиомы не вызывают сомнений и с помощью них доказываются другие утверждения. Такой способ зародился очень давно и был изложен в сочинении «Начала» ученого Евклида. Некоторые из аксиом Евклида - постулаты сейчас используются в геометрии а сама геометрия, изложенная в «Началах», называется Евклидовой геометрией.








Теоремы об углах, образованных двумя параллельными и секущей. Условие – это то, что дано. Заключение – то, что требуется доказать. Теорема, обратная данной –такая теорема, в которой условием является заключение данной теоремы, а заключением – условие данной теоремы.






Замечание. Если доказана некоторая теорема, то отсюда еще не следует справедливость обратного утверждения. Более того, обратное утверждение не всегда верно. Например, «вертикальные углы равны». Обратное утверждение: «если углы равны, то они вертикальные»- конечно же, неверно.

Видеоурок «Аксиома параллельных прямых» предполагает детальное рассмотрение важной аксиомы геометрии - аксиомы параллельных прямых, ее особенностей, следствий из данной аксиомы, широко применяющихся в практике решения геометрических задач. Задача данного видеоурока - облегчить запоминание аксиомы и ее следствий, сформировать представление о ее особенностях, применении при решении задач.

Подача материала в форме видеоурока открывает новые возможности для учителя. Подача ученикам стандартного блока учебного материала автоматизируется. При этом улучшается качество подачи материала, так как он обогащен наглядным представлением, анимационными эффектами, приближающими построения к реальным, проводимым на доске. Исторические сведения подаются с рисунками и фото, вызывая интерес к изучаемой теме. Видео также освобождает учителя для углубления индивидуальной работы во время обучения.

Сначала на данном видео демонстрируется название темы. Рассмотрение аксиомы начинается с построения ее модели. На экране изображены прямая а, лежащая вне ее точка М. Далее описывается доказательство утверждения, что через заданную точку М можно построить прямую, параллельную данной. Проводится перпендикулярно прямой а прямая с, затем перпендикулярно прямой с в точке М проводится прямая b. Основываясь на утверждении, о параллельности двух прямых, перпендикулярных третьей, отмечаем, что прямая b параллельна исходной прямой а. Учитывая это, указываем, что в точке М проведена прямая, параллельная данной. Однако необходимо еще проверить, есть ли возможность провести через М иную параллельную прямую. На экране показано, что любой поворот прямой b в точке М приведет к построению прямой, которая пересечет прямую а. Однако возможно ли доказать невозможность проведения другой прямой?

Вопрос доказательства невозможности проведения иной прямой, параллельной данной, имеет давнюю историю. Ученикам предлагается небольшой экскурс в историю вопроса. Отмечается, что в труде Евклида «Начала» данное утверждение приведено в виде пятого постулата. Попытки ученых доказать утверждение не привели к успеху. На протяжении многих веков математиков интересовала эта задача. Однако только в прошлом веке окончательно было доказано, что данное утверждение недоказуемо в евклидовой геометрии. Оно является аксиомой. Ученикам представляется один из знаменитых математиков, вложивших значительный вклад в математическую науку - Николай Иванович Лобачевский. Именно он сыграл важную роль в окончательном решении вопроса. Поэтому утверждение, рассматриваемое на данном уроке, является аксиомой, лежащей в фундаменте науки наряду с другими аксиомами.

Далее предлагается рассмотреть следствия из данной аксиомы. Для этого необходимо уточнить понятие «следствия». На экране отображается определение следствий как утверждений, выводящихся непосредственно из теорем или аксиом. Данное определение может быть предложено ученикам для записи в тетрадь. Понятие следствий демонстрируется на примере, который уже рассматривался в видеоуроке 18 «Свойства равнобедренного треугольника». На экране выведена теорема о свойствах равнобедренного треугольника. Напоминается, что после доказательства данной теоремы рассматривались не менее важные следствия из нее. Так, если основная теорема утверждала, что биссектриса равнобедренного треугольника является медианой и высотой, то следствия имели близкое содержание, утверждая, что и высота равнобедренного треугольника является биссектрисой и медианой, а также медиана равнобедренного треугольника является одновременно биссектрисой и высотой.

Уточнив понятие следствий, рассматриваются непосредственно следствия, выходящие из данной аксиомы параллельности прямых. На экране отображается текст первого следствия аксиомы, утверждающий, что пересечение прямой одной из параллельных прямых означает пересечение ею и второй параллельной прямой. На рисунке под текстом следствия изображается прямая b и параллельная ей прямая а. Вторая прямая пересекает прямую с в точке М, принадлежащей прямой а. Приводится доказательство утверждения, что прямая с пересечет также прямую b. Доказательство производится от противного, используя аксиому о параллельных прямых. Если предположить, что прямая с не пересекает b, это означает, что через данную точку можно провести еще одну прямую, параллельную указанной. Но это невозможно, учитывая аксиому параллельных прямых. Следовательно, с пересекает также прямую b. Следствие доказано.

Далее рассматривается второе следствие из данной аксиомы. На экране отображается текст следствия, утверждающего, что если две прямые являются параллельными третьей, то можно утверждать о параллельности их между собой. На рисунке, демонстрирующем данное утверждение, построены прямые а, b, с. При этом прямая с как параллельная обеим прямым, выделена синим цветом. Предлагается доказать данное утверждение. В ходе доказательства допускается, что параллельные прямой с прямые а, b не являются параллельными между собой. Это означает, что они имеют точку пересечения. Это означает, что проходящие через точку М, обе прямые параллельны данной, что вступает в противоречие с аксиомой параллельных прямых. Данное следствие верно.

Видеоурок «Аксиома параллельных прямых» может облегчить учителю задачу объяснить ученикам особенности аксиомы, доказательства ее следствий, облегчить запоминание материала школьниками на обычном уроке. Также данный видеоматериал может быть использован при дистанционном обучении, быть рекомендованным для самостоятельного изучения.

gastroguru © 2017