Водородная дегазация на русской платформе, ее плюсы и минусы. Выходы водорода на русской платформе Водород из земли

Посмотрим какое расстояние в градусах по долготе между "шпорой" Апеннинского п-ова и дельтой Волги:

Имеем 32 градуса.

А теперь сравним это расстояние по карте Виллема Янсзона Блау 1640 г.:


Тут уже 43 град.
Вот это разница!
Если на старинной карте в то же расстояние помещалось больше меридианов - значит Земля была меньше?

Аргументы о неточностях не принимаются, это вам не Америка - все изъезжено и истоптано к 17 веку.
О начальной точке отсчета (нулевом меридиане) господина Виллема я тоже ничего не нашла.
Значит Земля расширилась!

Расстояние в градусах долготы для неподвижных объектов должно оставаться неизменным. Если же земля увеличивается в размерах, то меридианы "разъезжаются" и меньшее их количество помещается между заданными точками на местности. При этом разница в градусах не зависит от начала точки отсчета (нулевого меридиана). Главное - количество градусов 360.

Читайте теорию Ларина- там Земля действительно расширяется ("раздувается"). Ссылка на книгу в сети:
http://hydrogen-future.com/images/Nasha%20Zemlya,%20V.%20Larin,%202005.pdf
http://hydrogen-future.com - гидридная дегазация Земли
Краткое объяснение: гидриды металлов, выделяя водород, расширяются.
Или книгу Ю.Бабикова:
http://yadi.sk/d/f-pDoLcM25xLn

Короткий ролик на эту тему:

Но кроме более-менее классических физических явлений, объясняющих эти процессы, есть и из разряда "задвинутых". Теория эфира объясняет рост массы планеты.

(ГУП ХМАО НАЦ РН им. В.И.Шпильмана)

В мае 2002 г. в Москве прошла Международная конференция «Дегазация Земли: геодинамика, геофлюиды, нефть и газ», организованная Российской Академией наук при поддержке Российского фонда фундаментальных исследований. Тезисы докладов опубликованы.

На конференции обсуждались глобальные аспекты дегазации Земли и воздействие её на процессы в приповерхностных слоях, геодинамические факторы, их роль в дегазации Земли, а также вопросы, связанные с генезисом нефти и газа, и новые подходы при поисках скоплений нефти и газа.

В многочисленных докладах звучало, что жизнь на Земле находится под полным контролем процессов глубинной дегазации, масштабы которой огромны и на несколько порядков выше, чем «дыхание» залежей нефти и газа, открытых в осадочном чехле. С глубинной дегазацией связаны планетарные катастрофы в биосфере. Корни глобальных геодинамических процессов сместились с уровня верхней мантии до ядра Земли. Рассматривались каналы миграции флюидов, связанные с дизъюнктивными деформациями и с инъекционными структурами (диапирами). В мантии важнейшими структурами разгрузки глубинной энергии были плюмы, суперплюмы. Наметился прогресс в термодинамическом моделировании состояния УВ в мантии и их трансформации на пути в осадочный чехол.

За время развития Земли (4.5 млрд.лет) процесс дегазации Летников Ф.Л. предлагает рассматривать как монотонно угасающий общепланетарный процесс с характерным истощением по флюидным компонентам в верхних горизонтах литосферы, c периодическими импульсами интенсивной дегазации на её фоне.

Основу флюидов составляют газы и прежде всего водород. Выделяются две принципиально разные флюидные системы: водородно-углеродная и водородно-сернистая. Они зарождаются на различных глубинах жидкого ядра. Водородно-сернистая флюидальная система служит основой формирования скоплений сульфидов и сернисто-сероводородных систем в малоглубинных вулканических комплексах. Выброс газового скопления за пределы жидкого ядра в мантию и его тепловое воздействие на литосферу может длиться десятки и даже сотни миллионов лет. Газовые потоки плюмов, имеющие температуру примерно 4000 0 С и давление Р~1 млн.бар, прожигали мантию. Существенно водородные потоки, взаимодействуя с кислородной матрицей, выделяют тепло, что позволяет потокам достигать верхних горизонтов литосферы и влиять на состав астеносферы.

Маракушев А.А. в своем докладе отмечал разный характер трансформации восходящих флюидных потоков из очагов землетрясений:

17.5Н 2 + С 7 Н 5 (NO 2) 3 = 6H 2 O + 7CH 4 + 1.5NO

1.5H 2 + C 5 H 7 (NO 2) 3 = 4H 2 O + CO 2 + 1.5N 2 + 6C

С 5 Н 7 (NО 2) 3 - соединения углеводородов с оксидами.

Количество воды, ежегодно освобождаемое из верхней мантии, по расчетам Г.Хесса – 0.4·109 м 3 .

Масштабы дегазации. Количество УВ, поступившее из мантии в течение фанерозоя (за 570 млн.лет), оценивается в 60·10 18 м 3 , или n·10 16 т; часть пошла на серпентизацию гипербазитов, часть — на иные процессы, в том числе на формирование залежей нефти и газа.

Об огромных масштабах дегазации Земли свидетельствуют запасы газогидратов — «горючего льда» на суше и в морях (доклад В.А. Краюшкина). Запасы метана в газогидратах нашей планеты оцениваются в 113 сотен квадриллионов кубометров. Для сравнения запасы геологического топлива – нефти, газа, угля (по данным геологической службы США, 1999 г.) оцениваются в 5 трлн.т. Газогидраты наблюдаются не только под вечной мерзлотой в северных широтах, но и в относительно южных районах (в России, например, в Оренбургской области, Каспийском и Черном морях; в США – в Калифорнийском заливе). Толщина газогидратной толщи достигает 1000-1500 м. На 90-95% площади Мирового океана развиты гидраты «горючего льда». Это дополнительный энергетический источник в будущем.

Во многих докладах рассматривались замеры и результаты дегазации недр на территории морей – Черном и Каспийском. С дегазацией недр в Каспийском море (доклад Голубова Б. и Катулина Д.) была связана гибель двух видов кильки в 2001 г. в средней части моря. На прибрежной части моря рыба не пострадала. Исследование рыб показало, что в жабрах и мышцах содержались газообразные включения, а заболеваний и технических причин для вымирания не было. С помощью космоснимков определили подъем глубинных вод в поверхностные слои, которые подверглись интенсивному охлаждению. Тепловой режим восстановился в течение двух недель. Как показали гидрогеологические и гидрогеохимические исследования, произошло резкое снижение кислорода и формирование в придонных слоях Н 2 S, в гидротермальных источниках наблюдался мышьяк, Н 2 S и СН 4 . С этим, вероятно, и связана гибель кильки. В настоящее время Каспийская впадина испытывает восходящие тектонические движения, интенсивность которых превышает воздымание Альп, Карпат, Балкан. Земная кора под дном Среднего Каспия раздроблена густой сеткой сейсмоактивных разломов трех направлений — меридионального, северо-западного и северо-восточного, обусловливающих обширные зоны дегазации недр. Донные отложения обогащены сульфидами и покрыты газогидратами. Диффузионно-фильтрационный поток газа из недр Среднего Каспия оценивается в n10 6 -n10 7 м 3 /год. Адиабатическое расширение при дросселировании газовых струй вызывает резкое понижение температуры морской воды, что приводит к образованию кристаллогидратов.

В районе Ракушечной структуры наблюдаются грифоны высоконапорных вод. Разгрузка подземных вод и газов сопровождается землетрясениями. Гидровулканизм — типичное явление для Каспийского моря.

Масштабы дегазации недр в Черном море рассматривались в докладе В.И.Созанского. В водах Черного моря растворено 80 млрд.м 3 метана и это, несмотря на то, что воды впадающих рек не содержат метана. Полный цикл обновления воды 400-2000 лет. Всё это свидетельствует о мощном постоянном подтоке УВ из недр. Как показывают замеры у побережия Грузии, со дна Черного моря поднимается поток углеводородного газа дебитом 172 тыс.м 3 /сут на участке S=16 км 2 . По лабораторным анализам в газе содержится 94.5 % СН4 и около 4.5 % этана. То есть со дна Черного моря в сутки поступают миллионы кубических метров метана.

В Керчинско-Таманской области широко развиты грязевые вулканы и связанные с ними «вдавленные синклинали». Для образования последних требуются многие триллионы кубических метров газа. В этих синклиналях образовались мощные толщи железных руд с общими запасами около 2 млрд.т. Конечно, проблема генезиса грязевых вулканов является дискуссионной, и часть специалистов (в частности, Лаврушко В.) считают, что корни вулканов не связаны с магмой, а располагаются на глубинах 5-9 км.

Ниже дна обоих морей залегают осадочные породы толщиной более 10 км, которые вмещают залежи нефти и газа. Что это? Глубинная дегазация из мантии или осадочного чехла? Возможно из разных оболочек Земли, в том числе из ядра, о чем свидетельствуют запасы железа.

Происхождение нефти и газа. В докладах о генезисе нефти и газа большое внимание уделялось процессам дегазации Земли и трансформации их состава на пути движения из глубинных очагов в литосферу. В нескольких докладах высказывались мысли о смешанном генезисе нефти и газа, образовании УВ в результате воздействия биогенного ОВ, рассеянного в осадочных породах, с Н 2 или СН 4 , поступающих из мантии.

Проблеме абиогенного происхождения УВ на совещании уделялось много внимания.

Кучеров В.Г. и др. докладывали о результатах синтеза углеводородов из неорганических компонентов (закиси железа, карбоната кальция и воды) при давлении до 5 ГПа и температуре до 1500 0 К, то есть условиях, характерных для верхней мантии Земли. Регистрировались масс-спектры газов, выделяемых при 423, 573, 723 и 873 0 К.

В общем виде предполагается, что реакция имеет следующий вид:

NCaCO 3 +(9n+3)FeO+(2n+1)H 2 O=nCa(OH) 2 +(3n+1)Fe 3 O 4 +CnH 2n+2 .

В качестве доказательств синтеза УВ из минералов приводились открытия нефти на глубинах 6.5-7 км в докембрийских гранитах, в сверхглубокой Шведской скважине.

В докладе Гептнер А.Р., Пиковского Ю.И. и других рассматривались полициклические ароматические УВ (ПАУ), обнаруженные в асфальтитах, залегающих в платобазальтах Исландии. В асфальтите методом жидкостной хроматографии было идентифицировано 7 полициклических ароматических УВ: фенатрен, пирен, бензаантрацен, хризен, бензапирен и бензперилен, ассоциации которых имеют типично гидротермальный характер.

Проблема вклада глубинных УВ флюидов в формирование месторождений рассматривалась в докладе Родкина М.В. Отмечалось, что вклад многими оценивается как незначительный. Почему? Оценка основывается на расчете мантийного гелия в газах УВ месторождений и на использовании соотношения между концентрациями метана и гелия для типичных мантийных газов. Авторы отмечают, что ошибка заложена в технологии расчета.

В последние два десятилетия большое внимание уделялось бактериальной модели образования УВ, был открыт ряд особенностей жизнедеятельности бактерий: повышение температуры до 100 0 С и выше, при которой могут жить бактерии; обнаружена способность бактерий находиться в состоянии анабиоза многие миллионы лет; открыт механизм синтеза различных хемофоссилий бактериями; взаимодействие бактерий с углеродными газами и питание бактерий глубинными флюидами и газами – СО 2 , СО, СН 4 , Н 2 S; NH 3 , поступающими по разломам из глубин Земли. По расчетам Ф.Кона бактерия может в течение четырех с половиной суток дать потомство 1036 индивидуумов, которое способно заполнить океан; одна диатомея, как показал Эренберг, не встречая препятствий, за 8 дней может дать массу материи, равную по объему нашей планете, а мелкая обычная инфузория за 5 лет может дать массу протоплазмы по объему в 104 раза больше объема Земли. Бактериальная масса – реальный источник УВ.

На конференции глубинная дегазация рассматривалась как причина аномальной биопродуктивности Мирового океана (доклад Сывороткина В.Л.). Анализировались две аномальные зоны: северная – над разломом Мендана и южная – над хребтом Наска. В этих зонах в толщу океанской воды поступает огромное количество химических соединений, в том числе элементов жизни – азота, фосфора и микроэлементы. Основной объем газа составляют — СН 4 , Н 2 S, H 2 , NH 4 ; содержание в толще воды кислорода минимальное. Но поверхностный слой богат кислородом, здесь бурно развивается фитопланктон, им питаются анчоусы, которых поедают птицы. Очень высокая биопродуктивность в Южных Курилах, периодически, через 2-3, 6-7 лет происходит массовая гибель биоты. Смерть настигает все сообщество от фитопланктона до позвоночных, но после гибели аэробной биоты начинается бурное развитие одноклеточных красных водорослей — динофлагеллят. Отмечалось, что массовая гибель рыбы в Аравийском море была соизмерима с годовым уловом во всех водах Земного шара.

На конференции было представлено много докладов о путях миграции газов, в том числе УВ и Н 2 из мантии. В качестве путей миграции ювенильной нефти и газов рассматривались глубинные планетарные разломы и зоны тектонических напряжений. Наиболее благоприятными для вертикальных перетоков были узлы пересечений разнонаправленных напряжений, кольцевые структуры, выделяемые по космоснимкам, и диапиры.

Во многих докладах рассматривалось влияние геодинамических факторов на размещение залежей УВ, рекомендовалось при выделении напряженных зон анализировать линеаменты, особенно прослеживаемые на расстояния более 10 тыс.км и более, широко использовать космические снимки. Отмечалось, что в Азово-Черноморском регионе практически все месторождения УВ локализуются в таких зонах и это учитывается при поисковых работах.

На конференции подверглись критике некоторые доказательства сторонников органической гипотезы происхождения нефти и газа.

В одном из докладов критически рассматривалась оптическая активность нефти как доказательство органического её происхождения. Филиппи в 1977 г. показал, что определение оптических свойств нефти в целом лишено смысла. В одном образце одновременно могут присутствовать левовращающие, правовращающие и невращающие или оптически инертные компоненты. Способность нефти вращать плоскость поляризации вправо вторична и обусловлена селективной переработкой левовращающих соединений теми бактериями, которые живут в нефти и питаются ею, в то время как левовращающие компоненты нефти есть ничто иное как остатки самих бактерий. Отсюда вывод: нельзя использовать и биогенные маркеры в нефти, идентичные ей по изотопному составу углерода. Со временем оптические углеводородные соединения превращаются в инертные.

Ряд докладов был посвящен неоднозначности выводов при изучении изотопного состава углерода, его эволюции в процессах дегазации и дифференциации мантии. Так например, М.И. Кучер утверждал, что значение глубинного изотопа δ 13 С меняется в зависимости от окислительно-восстановительной обстановки той среды, куда он попадает. Глубинные магмы содержат более облегченный δ 13 С (со значениями от -28 до -20-17‰), а в поверхностных слоях (то есть в более окислительной обстановке) изотоп может утяжеляться до -7-10‰.

На конференции также рассматривался вопрос об изменении изотопов С при абиогенном и биогенном циклах образования нефтяных УВ. Обращалось внимание на то, что значения соотношений δ 12 С к δ 13 С определяются как исходным углеродом, так и совокупностью всех процессов, участвующих в образовании, преобразовании УВ, их миграции и аккумуляции. Фотосинтез при биогенном цикле сопровождается изотопным фракционированием. Отмечалась зависимость вариаций δ 13 С углерода СО 2 в свободно выделяющихся газах новейшей тектономагматической активности. На активных участках был замерен δ 13 С из СО 2 как облегченный (до –20-21‰), а на пассивных и затухающих участках отмечалось утяжеление изотопа (до –8-10‰).

Серия докладов была посвящена пространственным закономерностям в размещении месторождений нефти и газа и других полезных ископаемых. В одном из докладов обосновывался общий механизм цикличности рудо- и нефтеобразования с геодинамических позиций, а также общие черты в пространственном их размещении. Рассчитывалась сеть по отношению к определенным полюсам в разное геологическое время на поверхности Земли. По сетке закартированы газонефтеносные меридианы и параллели, близкие к поясам нефтегазонакопления А. Хаина.

В докладе Смирновой М.Н. рассматривались кольцевые структуры — Уренгойская, Южно-Каспийская, Грозненская, Южнобаренцовоморская как очаги, каналы вертикальной миграции УВ флюидов. Их происхождение автор связывает с внедрением астенолитов. Высота астенолита, по её данным, на Уренгойском газоконденсатнонефтяном месторождении составляет 70-74 км. Его внедрение в мантию оказывает диффузионно-фильтрационное воздействие и в итоге способствует нефтегазонакоплению: чем выше внедряется астенолит, тем больше растяжение и погружение, тем мощнее осадочный чехол и больше аккумулируется УВ.

Кочетков О.С. рассматривал концентрацию углеводородных скоплений в «критических» центрах, возникающих на пересечениях меридианов и параллелей, где происходят максимальные деформации земной коры при роторном вращении Земли (Калифорнийский и другие центры).

Шпильман А.В. в своем докладе отмечал волновой характер в размещении месторождений нефти и газа в крупнейшей Западно-Сибирской нефтегазоносной провинции. Бембель Р.М. и другие авторы обращали внимание на связь между расположением месторождений с высокой плотностью запасов УВ и субвертикальными зонами деструкций на территории Западной Сибири.

На конференции были предложены новые технологии поисков и оценки перспектив нефтегазоносности. Рейнер Г.И. с соавторами рекомендовали проводить оценку перспектив нефтегазоносности с использованием двух независимых между собой методических подходов: изучение особенностей строения коры по комплексу геолого-геофизических данных и специализированный подход к обработке космических снимков для выявления тектонической раздробленности земной коры (на примере территории республики Дагестан).

Технология оценки перспектив следующая: изучаются параметры глубинного строения — мощность земной коры, высоты рельефа, их контрастность, аномалии силы тяжести, тепловой поток, мощность осадочного чехла. Территория разбивается на ячейки размером 20’·30’, с указанием параметров по каждой ячейке. Для обработки используется кластерный анализ, он позволяет в многопризнаковом пространстве объединить в один кластер ячейки, близкие по своим геолого-геофизическим характеристикам. На территории Дагестана выделено 147 элементарных ячеек, которые объединялись в 95 кластеров. Выбирались «учителя» – ячейки на территории Дагестана и окружающей его площади с реально открытыми месторождениями нефти и газа. Составлялся «Каталог ячеек–учителей» и проводилось сопоставление ячеек-учителей с прогнозируемыми ячейками. Соотношение составляло 1:2. Дешифрирование космических снимков сводилось к тотальному дешифрированию, выявлению всех линейных элементов земной поверхности и созданию линеаментной сети. По специальной программе рассчитывалась тектоническая раздробленность на различных глубинах. Далее линеаментная сеть накладывалась на карту, где выделялись ячейки, прогнозируемые по параметрам глубинного строения как перспективные. В качестве первоочередных для поиска нефти и газа выделялись перспективные ячейки, пересекаемые линеаментами.

На конференции была поднята проблема о возможном восполнении запасов нефти и газа в разрабатываемых месторождениях в связи с большими расхождениями конечной добычи от подсчитанных начальных запасов. Следует отметить, что доказательств правильности оценок начальных запасов нет. Возобновляемость ресурсов нефти рассматривалась на примере Татарского свода (доклад Муслимова Р.Х.) и других регионов России (доклад Корчагина В.И. и др.). Докладчики отмечали, что небольшие по запасам месторождения нефти и газа эксплуатируются длительное время и на поздних этапах разработки уровень добычи, снизившись до 10-20%, стабилизируется: есть скважины с накопленной добычей нефти в несколько десятков миллионов тонн и длительно сохраняющих высокие дебиты. Получение нефти из фундамента, значительно глубже его кровли, выявление многочисленных зон проницаемых пород в фундаменте (до 60 в скв.20009 Ромашкинского месторождения) докладчики связывают с ювенильными глубинными флюидами, дегазацией Земли.

В некоторых докладах рассматривались следы дегазации Земли в породах, выявленные при изучении литологии разрезов. Колокольцев В.Г., анализируя текстуры «конус в конусе» в карбонатных линзах, пришел к выводу, что их появление связано с вещественным составом тепломассопотоков и динамикой среды. Докладчик отмечает, что основания конусов всегда обращены в сторону низкой температуры. Аналогичное происхождение имеют и некарбонатные аналогии подобных текстур – циркон-лейкоксен–кварцевые и кварцевые конусы. Текстурными индикаторами в породах являются флюидные трубки, отличающиеся от биотурбитных текстур сохранившимися в них реликтами исходных осадочных пород с ненарушенными первичными структурно-текстурными признаками, и флюидные многогранники кремнеземного состава, обнаруживаемые в разнообразных осадочных породах от ордовика до девона включительно, например на Среднем Тимане, часто в парагенезе с самородным золотом и алмазами. Кропоткин П.Н. ранее отмечал в разрезах осадочного чехла «сульфидные столбы», несущие мантийную ассоциацию металлов и трассирующие газовые каналы миграции.

Заканчивая рассмотрение основных проблем и вопросов, связанных с дегазацией Земли, хочется еще раз подчеркнуть главную идею обсуждаемых докладов. Сегодня, учитывая огромные масштабы дегазации Земли, нельзя изучать генезис и вести поиск залежей нефти и газа без учета возможно абиогенного синтеза углеводородов. Анализ путей миграции глубинных флюидов, зон разгрузки глубинной энергии позволит разработать новую стратегию поиска залежей нефти и газа и нестандартно подойти к оценке запасов углеводородного сырья.

Важно, что на конференции при обсуждении докладов отмечалось сближение органической и неорганической концепций генезиса нефти и газа. Рассмотрение двух источников углеводородных систем вызвало среди участников конференции одобрение.

Плюсы и минусы выхода водорода на Русской платформе

В.Ларин, Н.Ларин

Несколько лет назад в России были изобретены компактные водородные газоанализаторы. Эти приборы дают возможность в полевых условиях определять концентрацию водорода (в смеси других газов). В результате проведенных работ (2005-2009 г.г.) мы обнаружили аномально высокие содержания водорода в подпочвенном воздухе в центральных регионах европейской части России.
Микросейсмическое зондирование ” (Российское “know how”, автор А.В.Горбатиков) выявило у “водородных аномалий” подводящие каналы, уходящие глубоко в земную кору и в мантийные горизонты планеты. Таким образом, установлено - площадные аномалии подпочвенного водорода питаются из расположенных на глубине вертикальных трубообразных зон – своеобразных “водородо-проводов ”. И весьма вероятно, что из этих зон можно будет отбирать водород буровыми скважинами, глубина которых составит 1-1.5 км.

Мы знаем где и как искать эти “водородо-проводы” . Всех заинтересованных лиц мы готовы ознакомить с нашей аппаратурой, методикой измерений и результатами наших исследований. Мы также можем показать на конкретных объектах выходы водородных потоков, и негативное воздействие этого явления на природу: разнообразные воронки, обширные зоны проседания земли, разрушение гумусовой составляющей чернозема, гибель леса на площадях выходов водорода и др.
В настоящее время многие страны мечтают о переводе транспорта и энергетики на водород. Однако существует проблема, связанная с получением водорода. Его предполагается производить в основном электролизом воды. Но сжигание такого водорода дает гораздо меньше энергии в сравнении с затраченной на электролиз. Эксперты видят в этом непреодолимый тупик. Вместе с тем, обнаруженные нами “водородо-проводы ” снимают эту проблему, и открывают реальные перспективы для развития водородной энергетики.
Исследования “по водороду” проводились нами в частном порядке и на собственные (личные) средства. Что могли - мы сделали. Мы выявили неизвестное ранее явление – выходы водородных потоков из глубоких недр планеты на современном этапе ее развития , и сейчас можем утверждать - данное явление имеет грандиозные масштабы проявления. Но для дальнейшего развития этого перспективного направления нужна финансовая поддержка.

Новые перспективы

Водородная энергетика
Струи и потоки глубинного водорода создают на дневной поверхности весьма характерные структурные формы, которые хорошо читаются на космических снимках Земли. Это позволило определить территориальное размещение выходов водорода. Дешифрирование космоснимков и наши экспедиции показали, что практически вся европейская часть России может быть обустроена скважинами, дающими водород. Его можно использовать на месте для получения электроэнергии, и распределять ее на прилегающие площади. Такое децентрализованное энергоснабжение неуязвимо перед природными катастрофами и террористическими актами. При этом для осуществления данной новации не нужно ничего изобретать принципиально нового. Поэтому реализация может быть проведена быстро, и соответственно быстро окупятся вложенные средства.

Восполнение месторождений нефти и газа
В химическом составе нефти и газа на один атом углерода приходится от 2,5 до 4-х атомов водорода, тогда как в составе органических остатков осадочных пород (нефтематеринских) содержится не более одного водорода на один углерод. В данной связи совершенно очевидно, что проблема происхождения углеводородного сырья – это, прежде всего, проблема источника водорода .
В свете водородной дегазации становится понятно - почему не кончается нефть в некоторых месторождениях, из которых выбрано уже в несколько раз больше того, что было разведано. Или почему восполняются отработанные месторождения через 10-15 лет после того, как они были полностью исчерпаны. И откуда берутся гигантские месторождения нефти в древних гранито-гнейсах изначально магматического генезиса, в которых никогда не было нефтематеринских толщ, но присутствуют углеродсодержащие минералы.
По всей вероятности, обнаруженная нами дегазация глубинного водорода заставит пересмотреть в сторону увеличения прогнозные оценки запасов нефти и газа на планете.

Негативные последствия

Карст на выходах водорода
По мнению геоэкологов 15% территории Москвы находится в зоне риска по карсту, и провалы на этих площадях могут произойти в любой момент. Специалисты про это знают, говорят и предупреждают, но не проявляют особой активности в понуждении властей к принятию соответствующих мер. Видимо, успокаивающим фактором является бытующее мнение о “неспешном” образовании карстовых полостей, но оно справедливо только тогда, когда пустоты образуются за счет просачивания дождевых и снеговых вод. Эти воды холодные и, по сути, дистиллированные. Поэтому у них очень малая способность растворять карбонаты.
Однако в свете существования водородных потоков динамика образования карстовых полостей может быть совершенно иной. Зоны истечения водорода непременно должны обводняться. В верхних горизонтах осадочного чехла в порах и трещинах присутствует захороненный кислород, а также много кислорода слабо связанного химически (в гидроокислах железа, марганца и др.). Водород (в буквальном смысле “рождающий воду ”) непременно будет продуцировать ювенильную воду, которая должна быть тёплой (из-за геотермического градиента) и подкисленной разнообразными кислотами. Но такая вода весьма охотно “съедает” карбонаты, и таким образом, карст может быть быстрым явлением (“быстрым” в рамках продолжительности человеческой жизни, а не геологического времени).
Решения о строительстве небоскребов в Москве принимались без учета фактора водорода. Но если есть водородные струи в черте города (а они есть!), способные продуцировать воду (“тёплую” и химически агрессивную), то эта вода, прежде всего, будет размывать породы, находящиеся в напряженном состоянии, т.е. будет размывать породы под фундаментами небоскребов. И не нужно ссылаться на высотные здания сталинской постройки, которые стоят уже более полувека. Во-первых, их строили иначе; а во-вторых, истечение водорода, по всей видимости, со временем усиливалось. В последние годы средства массовой информации все чаще сообщают о провалах грунта в Москве. Раньше такого вроде бы не было.

Разрушение подземных металлических конструкций
Сейчас во многих местах измеренная нами концентрация водорода достигает 1.5-1.7%. Однако при отборе проб подпочвенного газа мы не можем исключить подмес атмосферного воздуха, где водорода практически нет. С учетом этого разбавления реальная концентрация водорода в подпочвенном воздухе может достигать 2.5-3%. Технологам хорошо известно явление катастрофической хрупкости металлов, возникающей при их длительной (месяцы) выдержке в такой газовой смеси. В результате подземные металлические конструкции и коммуникации могут становиться столь хрупкими, что будут разрушаться от собственного веса инженерных сооружений или при подвижках грунта, даже весьма незначительных. До сих пор при проектировании и строительстве объектов типа АЭС, разрушение которых чревато катастрофическими последствиями, возможность водородного охрупчивания металлов никак не учитывалась. Однако высокое содержание водорода в подпочвенном воздухе обнаружено, и этот фактор необходимо учитывать.

Взрывы в шахтах
Одно направление в будущих исследованиях хотелось бы наметить прямо сейчас. Речь идет о взрывах метана в угольных шахтах, которые в последнее время стали случаться все чаще и чаще. В метане (СН4) - на один атом углерода приходится 4 атома водорода, т.е. по числу атомов природный газ – это, прежде всего, водород. И если струи водорода идут с глубины и попадают в угольные пласты, то, непременно, будет образовываться метан. Таким образом, водородные струи прямо сейчас могут формировать очаги скопления метана в угольных бассейнах, и метан в этих очагах может находиться под достаточно высоким давлением. Ситуация усугубляется еще и тем, что некоторое время назад, когда (как положено) проводилось опережающее бурение для определения опасности “по взрыву”, этих очагов могло и не быть, особенно если это бурение проводилось несколько лет назад. Короче говоря, если выяснится, что очаги скопления метана в угольных бассейнах продуцируются струями водорода, то станет гораздо проще построить эффективную систему профилактических мер, которая позволит уменьшить возможные риски и потери.

Объемно-вакуумные взрывы на поверхности
В Рязанской области в апреле 1991 года случился взрыв, от которого сильно пострадал город Сасово. По оценке специалистов мощность взрыва была порядка 25-30 тонн в тротиловом эквиваленте. Однако размеры обнаруженной воронки (диаметр - 28 метров и глубина – 4 м) оказались несопоставимо малыми с энергией взрыва. Такую воронку можно сделать двумя тоннами тротила. Кроме того трава и кусты в непосредственной близости от воронки не пострадали ни от ударной волны, ни от высокой температуры. По характеру ущерба, причиненного городу (вырванные окна и двери зачастую находили снаружи строений), взрыв был “объемно-вакуумный”. Такие взрывы возможны только в атмосфере.
Мы выявили весьма интенсивные выходы водорода на этой территории, и в данной связи объясняем это явление следующим образом. Воронка образовалась в результате прорыва на поверхность эндогенной струи водорода. В атмосфере из-за смешения с кислородом образовалось облако гремучего газа, и произошел “объемно-вакуумный взрыв”. В данной связи воронку следует называть “прорывной”.
В июне 1992 года, в 5,5 км к северо-западу от Сасово, на засеянном кукурузном поле была обнаружена еще одна прорывная воронка (диаметр – 12 м, глубина – 4 м). При этом взрыва никто не слышал (но когда сеяли, ее еще не было). Прорывной (не провальный) характер установлен по кольцевому выбросу, обрамляющему воронку в виде валика. Кроме того, по свидетельствам очевидцев, наблюдавших воронку в свежем виде, вокруг были разбросаны куски и глыбы грунта. Во время нашего посещения (осень 2005 года) она была совершенно сухой и концентрация водорода в ней оказалась в несколько раз выше по сравнению с прилегающей территорией.
Сначала нам казалось, что Сасовский взрыв - явление редкое (исключительное и маловероятное). Но теперь, когда мы видим масштабы истечения водорода, когда все чаще зашкаливают наши приборы, мы уже совершенно иначе оцениваем вероятность событий такого рода. Сейчас мы вынуждены признать, что объемно-вакуумные взрывы такого типа, могут стать рядовым событием ближайшего будущего. Более того, эти грядущие взрывы могут иметь гораздо большую мощность, в десятки и сотни раз, что сопоставимо с тактическим ядерным оружием. А теперь представьте, что будет, если это случится в густонаселенном районе или над мегаполисом?

Водородное отбеливание
На космических снимках хорошо дешифрируются “кольцевые структуры проседания”: они проявляются в виде светлых колец и кругов в местах выходов водородных потоков и струй. И особенно четко они видны в черноземной зоне. Мы специально копали шурфики и проводили ручное бурение, чтобы выяснить причину этого осветления. И оказалось – истекающий водород уничтожает черную гумусовую органику (самую ценную часть чернозема). В черноземах гумуса 8-10% – это длинные органические молекулы сложного состава. Их длина обеспечивается химическими связями атомов углерода друг с другом. Но когда они попадают в среду с водородом, то водородные атомы встраиваются между атомами углерода, длинные молекулы расщепляются на более короткие, которые оказываются летучими газами, и улетают. Черный почвенный слой осветляется и становится светло-серым или бежевым. Разумеется, при этом резко снижается его продуктивность. Можно видеть брошенные поля, на которых агрономы потеряли всякую надежду что-либо вырастить.
Кроме того, водород губительно влияет на живую флору непосредственно. В местах выходов водородных потоков гибнут деревья и подлесок, а местами даже перестает расти трава. Когда видишь все это, то поневоле задаешься вопросом – а как действует водород на живую фауну? Мы ведь тоже состоим из длинных органических молекул.

Заключение
Собранные нами данные не позволяют сомневаться в том, что истечение водорода из глубоких недр планеты происходит в настоящее время. Мы также отчетливо видим, как это явление захватывает новые территории, где совсем недавно не было никаких признаков негативных последствий, связанных с водородом, т.е. процесс истечения водорода из недр планеты еще не стабилизировался, и явно идет с нарастанием. Проведенное нами изучение космических снимков Земли показало глобальную распространенность этого явления. Некоторые факты свидетельствуют о его циклическом характере и, по всей вероятности, в настоящее время мы живем в начале нового цикла. Человечество не в силах его “отключить”, но может попытаться (хотя бы местами) обратить истекающий водород себе на пользу.

Что делать?
Нужно научиться выявлять скрытые на глубине водородо-проводы (положительный опыт у нас наработан).
Необходимо бурить скважины и перехватывать потоки водорода на глубине 1-1,5-2-х км, с тем, чтобы не давать им растекаться в более высоких горизонтах. Этим можно предотвращать негативное воздействие водорода. По нашим оценкам потоки водорода из недр планеты будут существовать весьма продолжительное (геологическое) время. Соответственно дебит водорода в пробуренных скважинах будет поддерживаться очень долго (тысячи лет, как минимум).
Дешевый водород из скважины (не в пример водороду, полученному электролизом воды) крайне выгодно использовать в качестве энергоносителя. К тому же при сжигании водорода получается только чистая вода, что весьма актуально для многих территорий.
Микробиологам хорошо известны водородные бактерии. Они давно привлекают к себе большое внимание в связи с возможностью получения кормовых белков, которые полноценны по аминокислотному составу и хорошо усваиваются животными. По сравнению с другими микроорганизмами водородные бактерии характеризуются очень высокой скоростью роста и могут давать большие урожаи биомассы. До сих пор этот способ производства кормов не применялся из-за отсутствия дешевого водорода. Но возможно ситуация изменится и следует предусмотреть разработку такой технологии.
Это далеко не полный перечень того, что можно и нужно сделать…

В.Ларин:
Н.Ларин: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

P.S. При знакомстве с нашими данными обычно возникает вопрос – “А почему такое масштабное явление обнаружено только сейчас, разве 25-30 лет назад его не было ”? Разумеется, оно было, и 30 лет назад дегазация уже была, может быть не столь интенсивная, как сейчас. И кольцевые структуры проседания уже существовали, но, по всей вероятности, их было существенно меньше, меньше было и “водородного отбеливания” черноземов. Однако причина не в том, что было меньше свидетельств, а в другом. В рамках бытующих представлений о составе и строении планеты, водородной дегазации на древней платформе не должно быть. Обычно исследователи не имеют привычки искать что-то такое, чего (с их точки зрения) не может быть в принципе. Поэтому и не искали. Но мы (авторы этого текста) уже давно работаем в рамках принципиально новой глобальной геологической концепции , согласно которой дегазация глубинного водорода быть обязана. И как только появились анализаторы водорода, пригодные для полевых работ, мы их закупили и поехали искать водородные потоки на Русской равнине. Нашли сразу, но нужно честно сказать – на первых порах мы даже не подозревали, каковы будут реальные масштабы этого явления и его последствия.

По моему мнению, опирающемуся на знания из разных источников , Земля при вращении как бы наворачивает на себя "одеяло" космического эфира. В результате такого укутывания в своеобразную невидимую обертку слои эфира непрерывно увеличиваются, и в центре вертящейся планеты получается чудовищное уплотнение эфира. Образно этот процесс можно представить отжимом белья.

Таким образом Земля является постоянным генератором водорода в своем ядре.

На этом процесс волшебного проявления материи из "ничего" не прекращается. В результате дальнейшего нарастания количества водорода в ядре Земли, он уплотняется и переходит в следующий элемент таблицы Менделеева. И так далее с образованием новых элементов.

В последующих природных процессах порождаемые "материалы" начинают взаимодействовать между собой в качестве реактивов, образуя вещества.

Посмотрите на эту схему яйца - мне видится здесь подсказка того, о чем сказано выше:

Вещества в нашем физическом мире уже подчиняются физическим и химическим законам. Об этом пишут в обычных учебниках по физике и химии.

Избыточное количество водорода и эфира стремится покинуть плотное тело Земли через разломы и другие "дефекты" тела планеты. То же самое происходит и на других планетах.

Выходящий наружу эфир и водород действуют на атмосферу Земли и на поверхность планеты. Визуально это заметно - создаются облака (об этом есть видео здесь - http://velemudr.blogspot.ru/2017/01/blog-post.html).
Даже землетрясения происходят от этого выхода из Земли эфира и водорода.

От выбросов водорода в атмосферу птицы гибнут стаями, от выброса в воду косяками гибнут рыбы, а крупные животные выбрасываются на берег. Об этом упоминается в видео ниже.

Программа Русский космос №29. Глубинная дегазация.
Владимир Сывороткин - старший научный сотрудник геологического факультета МГУ, доктор геолого-минералогических наук. рассказывает:

вот другая ссылка.
---

Дело в том, что водород окисляется до образования воды, забирая кислород из атмосферы и воды. Животные сразу задыхаются. Думаю, что и человек может почувствовать временное недомогание. К счастью, водород очень легкий газ и быстро уносится ввысь, к облакам.

Замечу, что "плотные" вещества неустойчивы в нашем физическом мире и распадаются с разной скоростью. Вплоть до первоначального эфира. Ничто не вечно. Радиоактивные вещества самые "плотные" и тяжелые, поэтому распадаются резче и чувствительнее для окружающей природы.

Из-за того, что Землю распирают вновь образующиеся внутри ядра вещества, периодически наша планета скачкообразно расширяется с катастрофическими последствиями для обитателей Земли.
Об этом говорит в своей лекции Андрей Скляров "Сколько лет планете Земля? ":

Если ролик вдруг не открывается, вот другая ссылка.
---

Не заостряю внимание на вулканах.

В дополнение разговор о всемирном потеплении и о всемирном похолодании.
Докладывает Владимир Сывороткин - старший научный сотрудник геологического факультета МГУ, доктор геолого-минералогических наук.

Рокфеллеры, Ротшильды, глобализация, фреон, озон и люди науки на службе у проходимцев:

Владимир Сывороткин

Если ролик вдруг не открывается, вот другая ссылка.
---

ВТО нам ни к чему . И озоновые дыры ерунда. "Планетарный лохотрон".
К слову - "16 сентября весь мир отмечает «День защиты озонового слоя» ". Это праздник лохов.

Американцы заставили весь Мир сменить в холодильниках хладоагрегат . От этого стало опаснее, дороже и неудобнее эксплуатировать холодильники, но замена оказалась очень выгодной операцией для американцев. Отказ от фреона оказался глобальной финансовой афёрой.

Навел на мысль рассказать обо всём этом sibved

Так нас пугают глобальным потеплением:

Говорят, что промышленные выбросы катастрофически разрушают озоновый слой.

  • Наука и техника
  • Необычные явления
  • Мониторинг природы
  • Авторские разделы
  • Открываем историю
  • Экстремальный мир
  • Инфо-справка
  • Файловый архив
  • Дискуссии
  • Услуги
  • Инфофронт
  • Информация НФ ОКО
  • Экспорт RSS
  • Полезные ссылки




  • Важные темы


    1. Озонная методика и результаты изучения глобальной дегазации.

    Предлагаемая методика позволяет на экране компьютера увидеть выделение водорода на планете в режиме реального времени (Сывороткин, 2006а). Методика базируется на «водородной» концепция разрушения озонового слоя, подразумевающей синхронность процесса усиления водородной дегазации и снижения общего содержания озона (ОСО) над центром дегазации (Сывороткин, 1993, 2002). Таким образом, отрицательные аномалии общего содержания озона на картах ОСО рассматриваются как следы водородных выбросов.

    Водородная концепция разрушения озонового слоя основана на предположении о возможности взаимодействия эндогенных флюидов - водорода и метана со стратосферным озоном. Легкие газы, выделившиеся из глубин Земли на ее поверхность, быстро поднимаются до стратосферных высот, где активно реагируют с озоном. Водород и метан - озоноразрушающие газы. Водородный цикл разрушения озона, открытый в 1965г., включает в себя более 40 реакций и прерывается с образованием воды. Вода на стратосферных высотах застывает с образованием стратосферных облаков. С точки зрения химии, наша гипотеза не является оригинальной. Мы лишь привлекаем внимание специалистов к геологическим источникам озоноразрушающих газов, которые ранее не учитывались специалистами в области химии атмосферы. Глубинные потоки водорода, метана, азота и часто сопровождающего их гелия и других газов - объективная реальность, подтверждаемая инструментальными измерениями. Важной особенностью процесса глубинной дегазации является неравномерность его, как во времени, так и в пространстве. Основной поток глубинных восстановленных газов разгружается в рифтовых зонах срединно-океанических хребтов (Войтов1986), что дает нам право называть их главными каналами дегазации Земли (рис 1).

    Рис. 1. Основные стволы Мировой рифтовой системы - главные каналы глубинной дегазации (Сывороткин, 1997).

    Рассмотрим размещение наиболее устойчивых планетарных озоновых аномалий и их геологическую позицию. Веским аргументом в пользу водородной концепции разрушения озонового слоя является местоположение озоновых аномалий, а точнее их геологическая позиция. Географический параметр прекрасно задокументирован, т.к. ИСЗ с озонометрической аппаратурой на борту практически ежедневно поставляют планетарные карты общего содержания озона (ОСО). Измерения ОСО из космоса проводятся с 1978г. со спутников Nimbus-7 по 1993г, Метеор-3 (1991-1994), ADEOS (1996-1997г.г.), EarthProbe (1996г. - 2005г. OMI (2006г. - настоящее время) приборами ТОМС по поглощению солнечного света в ультрафиолетовом диапазоне.

    Кроме того, мониторинг ведется приборами SBUV GOME со спутников NOAA и ERWS-2, определяющими ОСО по поглощению в инфракрасной области солнечного спектра. Измерение ОСО также регулярно производится более чем на 150 наземных озонометрических станциях, причем наблюдения на швейцарской станции Ароза были начаты в 1926г. Сказанное выше означает, что к настоящему времени накоплен огромный массив данных о конфигурации планетарного поля озона и его ежесуточных трансформациях, однако с геологической точки зрения эти карты никто не рассматривал.

    Напомним, что в рамках нашего метода особенности планетарного поля ОСО интерпретируется как временные и пространственные характеристики водородной дегазации.

    Общеизвестно, что Антарктика - регион, над которым озоновый слой испытывает наиболее сильное и частое разрушение. Мы объясняем это тем, что срединно-океанские хребты (рифты) максимально сближаются возле Антарктиды, где и сливаются в единый Циркумантарктический рифт (сливаются, обращаем особое внимание) своими южными, т.е. более активными, более разогретыми сегментами (см. рис. 1). Таким образом, Антарктида - это участок планеты, над которым суммируются наиболее обильные потоки восстановленных флюидов. Другими словами, атмосфера над Антарктидой подвержена максимальной в земных условиях продувке природными озоноразрушающими газами, поэтому эффект разрушения озонового слоя выражен наиболее сильно именно здесь. Внутри самой Антарктиды также можно ожидать эффекта разгрузки (подледной) глубинных флюидов. Наибольшая эндогенная активность Антарктиды отмечается на продолжении основных стволов океанских рифтов (рис. 2).

    Рис. 2. Южное полярное сочленение основных стволов мировой рифтовой системы (Черное - материки; белое - океаны; крапом - рифтовые зоны).

    Принципиально важные для водородной концепции результаты были получены в ЦАО Росгидромета под руководством В.И.Бекорюкова (Атлас…, 1990). Здесь были проанализированы все ряды наблюдений мировой наземной сети озонометрических станций с целью выявления тех из них, где наиболее часто регистрировались пониженные значения ОСО. В результате проведенных исследований установлены три наиболее устойчивых озоновых минимума Северного полушария - о.Исландия, Красное море, Гавайские острова (рис.3). Нетрудно заметить, что все названные пункты максимально удалены от промышленных районов, но являются наиболее активными участками рифтовых систем - центрами толеитового вулканизма. Они отличаются интенсивной современной вулканической деятельностью, которая сопровождается потоками восстановленных газов.

    Рис.3. Области минимального содержания озона в атмосфере Северного полушария Земли в октябре (усредненные данные мировой сети озонометрических станций (по В.И. Бекорюкову и др.). 1 - области минимального содержания озона: I - Исландия, II - Гавайские острова, III- Красное море; 2 - общее содержание озона в Д.Е.

    Важная особенность этих центров - чрезвычайно высокие отношения изотопов гелия 3 He/ 4 He, равные n.10 -5 (Поляк и др., 1979), что указывает на глубинную природу газовых потоков и (или) молодость дегазирующей системы.

    Долгое время считалось, что озоновый слой в экваториальной зоне планеты отличается стабильностью, а разрушение его происходит только в полярных районах. В начале 1998г. специалистами ЦАО Росгидромета при обработке спутниковых данных был выявлен целый ряд отрицательных аномалий поля ОСО в экваториальной зоне (рис.4).

    Рис. 4. Области аномально низкого содержания озона в близэкваториальной зоне в январе 1998г. (Воздействие…, 1998). 1 - области отрицательных аномалий ОСО; 2 - отклонение ОСО от среднемесячной нормы в единицах стандартного отклонения.

    Центр наиболее мощной озоновой аномалии, где среднемесячный дефицит ОСО достигал 30%, абсолютно точно расположился над наиболее активной зоной Восточно-Тихоокеанского поднятия (ВТП). Здесь в 15-20 градусах южнее экватора на дне океана еще в 1979г. были обнаружены 9 водородных источников (Welham , Graig, 1989), в осевой части ВТП фиксируется аномально высокий даже для срединно-океанских хребтов тепловой поток. Это участок высокой сейсмической активности, здесь же инструментально измерена самая высокая скорость спрединга, достигающая 15-24 см/год(Walker, 1995). Отношения изотопов гелия в газовых эманациях достигают здесь величин n х 10-5 (Поляк и др., 1979).

    Уникальность этого участка ВТП привлекает внимание ученых. В 1994 году американо - французско - японская экспедиция обнаружила здесь самую мощную в мире действующую парогидротермальную систему. В районе 17°ю.ш. выполнен Международный геофизический эксперимент MELT - (Электромагнетизм и томография мантии) (Forsyth, 1998). Сейсмические исследования показали, что зона аномально низких скоростей распространяется до глубин 150-200км. Электромагнитные исследования установили электропроводность мантии до глубин 180-200км. Низкоскоростной район прослеживается на запад от хребта на расстояние 250км, а на восток только на 100км. Самые низкие скорости наблюдаются не точно на оси хребта, а несколько западнее его. Приведенные данные указывают на присутствие здесь огромного мантийного магматического очага.

    Озоновые аномалии над территорией России образуют пять обособленных групп, четыре из которых имеют явно выраженную меридиональную ориентировку. Перечислим их с запада на восток: Урало-Каспийская, Западно-Сибирско-Памирская, Восточно-Сибирская, Сахалино-Индигирская. Пятая обособленная группа центров расположена над северо-западом европейской части России. Она относительно изометрична в плане. Ее можно назвать Беломоро-Балтийской или Скандинавской. Основная часть центров аномалий ОСО расположена здесь над Белым морем и Кольским полуостровом.

    На рис. 5 а изображены центры озоновых аномалий. Анализ данной карты позволяет сделать вывод о тектоническом контроле положения центров отрицательных аномалий поля ОСО. Контролирующие структуры - дегазирующие зоны субмеридиональных разломов. В их пределах разными авторами, в разное время и разными методами были зафиксированы повышенные потоки глубинных газов: водорода, метана, гелия, радона и др. Водородно-метановые источники обнаружены на Кольском полуострове, вокруг оз. Байкал, в кимберлитовых трубках Якутии, на Урале, в Прикаспии, на плато Устюрт и других местах. Сравнение этих данных с картой центров озоновых аномалий убедительно показывает наличие источников водорода в регионах, над которыми наиболее интенсивно разрушается озоновый слой. Об этом говорят данные по Восточной Сибири, где большие концентрации водорода обнаружены в кимберлитовых трубках Удачной, Юбилейной, Айхал, Мир. Трубки эти приурочены к системе глубинных субмеридиональных разломов (Геология и генезис…, 1989).

    Рис. 5 а) Центры озоновых аномалий над территорией России. b). Разломные зоны меридионального простирания на территории бывшего СССР

    Особенно интенсивно происходит выделение водорода в трубке Удачная. Здесь его дебит достигал 10 5 м 3 /сут (1150л/с), причем в составе струи на долю водорода приходилось до 56%, а остальное на метан, так что совокупный дебит озоноразрушающих газов был еще больше (Кривцов, 1968). Описанное явление водородно-метановой дегазации кимберлитовых трубок объясняет процессы интенсивного разрушения озонового слоя над данной территорией. К югу от этих районов интенсивные выделения водорода известны вокруг оз. Байкал. Так, в Тункинской долине и на р. Селенге на его долю в составе газовых струй приходится до 70-95 об.% (Щербаков, Козлова, 1988), что также объясняет феномен обширнейшей озоновой аномалии, которая была зарегистрирована над Россией в феврале 1995г. Ее центр располагался над Байкалом, а западный край достигал Крымского полуострова.

    Таким образом центры наиболее мощных озоновых аномалий планеты располагаются над зонами и центрами водородно-метановой дегазации: рифтовыми и разломными зонами или узлами их пересечения, а также центрами современного толеитового и щелочного вулканизма, или древнего ультращелочного (кимберлитового) вулканизма.

    2. Экспериментальная проверка водородной концепции, лежащей в основе методики

    Любая гипотеза имеет право претендовать на звание научной только в том случае, если может быть сформулирован метод ее экспериментальной проверки (принцип верификации). Для проверки вышеописанной гипотезы предложено (Сывороткин, 1996) организовать мониторинг выделения водорода в известных центрах дегазации, с тем, чтобы установить корреляцию между выбросом водорода и падением содержания озона над данной территорией. Синхронность этих процессов - усиления водородной дегазации и падения общего содержания озона должна означать правоту водородной концепции. Для такой проверки нами, при помощи старшего научного сотрудника Геологического института КНЦ РАН (г. Апатиты) В.А. Нивина был организован мониторинг концентрации подпочвенного водорода.

    Хибинский щелочной массив является идеальным местом для постановки такого эксперимента, он давно известен как активный центр метановой и водородной дегазации (Икорский и др.,1992) и легко доступен, т.к. на нем ведется добыча полезных ископаемых.

    Кольский полуостров по данным Мурманской озонометрической станции и спутникового мониторинга ОСО, является регионом, над которым часто разрушается озоновый слой. Так за период с 1991г. по 2000г. с дефицитом озона оказались 17 месяцев, при этом суммарная потеря озона составила 257% (Сывороткин, 2002). Среди 42-х озонометрических станций России и сопредельных территорий Мурманская по этому показателю стала 4-ой после Якутска, Иркутска и Ханты-Мансийска. Для измерения концентрации подпочвенного водорода использовался газоанализатор, разработанный в МИФИ под руководством профессора И.Н.Николаева. Прибор установлен в помещении сейсмостанции на руднике Кукисвумчорр, что обеспечивает стабильный режим температуры и влажности, устойчивое питание и сохранность. Место выбрано с учетом данных о дегазации Хибинского массива, полученных в результате водородной съемки, проведенной нами в 2002-2004г.г. в рамках проекта ИНТАС 01-244 (Сывороткин, 2006). Сейсмостанция находится в зоне пересечения концентрической разломной структуры - «Апатитового кольца» и радиального разлома, что обеспечивает здесь наиболее интенсивную дегазацию.

    26-27 апреля 2005г. в полнолуние водородный датчик показал значительные пики концентрации водорода. В эти же дни значимое (до 375 Д.Е.) снижение ОСО было зафиксировано на озонометрической станции Мурманск.

    Узкая зеленая полоса идущая из С.Атлантики через Кольский п-ов до Урала и есть наша аномалия. Линейность прямо указывает на приуроченность к тектонической дегазирующей структуре. В пределах европейской России на протяжении 1800 км ей отвечает Варангер-Канино-Тиманский складчатый пояс позднедокембрийского (байкальский) времени заложения, а точнее, отделяющий его от остальной части Восточно-Европейской платформы, долгоживущий глубинный разлом.

    Таким образом, концепция подтверждена экспериментально, т.к. получен результат, вытекающий из основных ее постулатов и предсказанный 10 лет назад. И «водородная» гипотеза разрушения озонового слоя в апреле 2005г. стала претендовать на право называться теорией.

    3. Количественные оценки выделяемого водорода.

    Наиболее полным обобщением эмпирических данных о газовых потоках в различных геологических структурах Земли является работа Войтова (Войтов Г.И. Химизм и масштабы современного потока природных газов в различных геоструктурных зонах Земли // Журнал Всесоюзн. хим. общества. - 1986. - Т.31. - № 5. - С.533-539.). В ней суммарный годовой поток водорода с поверхности Земли оценивается в 6,084Тг, причем 4,48Тг, или три четверти, выделяется в срединно-океанских хребтах. Несомненно, что вышеприведенная оценка суммарного потока водорода является заниженной, т.к. водородная дегазация в океане изучалась всего лишь в нескольких пунктах. При этом наиболее активной дегазация должна быть в рифтовых зонах на дне океанов в высоких южных широтах, т.е. вблизи Антарктиды, где по данным геофизических исследований (Андерсен, Дзевонский, 1984) мантия наиболее разогрета. Изученность же водородной дегазации именно здесь нулевая.

    Надо также иметь ввиду, что глубинная дегазация процесс импульсный, т.е. для его количественной оценки нужны долговременные ряды наблюдений. Однако о масштабах водородной дегазации можно судить по оценкам дегазации метана, который в сопоставимых количествах является спутником водорода в глубинных потоках, но в отличие от последнего, изучен намного лучше.

    Годовой поток глубинного метана оценен Г.И. Войтовым в 223,51Тг. В 1993 году в журнале «Природа», мы указали на существенную недооценку эндогенной составляющей метанового потока в атмосферу и завышенную оценку биогенного метана. Там же были приведены наши оценки годового потока глубинного метана (4500Тг) и 500Тг биогенного, основанные на соотношении изотопов углерода в атмосферном метане, которые позднее (Сывороткин, 2002) были скорректированы с учетом новейших изотопных данных до 2500-3000Тг/год. В более поздней работе Г.И. Войтов также на основании изотопии углерода атмосферного метана тоже пришел к выводу о том, что общепринятые оценки общего потока метана занижены в сотни раз. Подчеркнем, что сказанное относится и к потоку водорода, естественному спутнику метана в реальных газовых струях. Модельные расчеты, выполненные В.В. Адушкиным с коллегами (1997) показали, что глобальная скорость образования метана должна быть равна 2500 - 9000Тг, что, по их мнению, в среднем в 5-6 раз превышает поток биогенного метана, «…что заставляет искать более мощные источники метана в Земле».

    Итак, по вышепроанализированным данным эндогенный поток озоноразрушающих газов (водорода и метана) в атмосферу исчисляется первыми тысячами террограммов (миллионов тонн).

    4. Временные закономерности водородной дегазации Земли.

    Процесс выделение глубинных газов крайне неравномерен не только в пространстве, но и во времени, т.е. эндогенная дегазация имеет импульсный характер. Мощность газовых выбросов может спонтанно увеличиваться в миллионы раз, а площадь такого газодинамического возмущения может охватывать сотни тысяч квадратных километров (Осика, 1980; Маракушев, 2004; Карпов и др, 1998). Часто усиления газовых выбросов связаны с сейсмическими событиями (Тертышников, 1999). Примером может служить озоновыые аномалий над Зондским архипелагом в момент катастрафического цунамигенного землетрясения.

    Рис.7. Центры озоновых аномалий над Зондским архипелагом в момент катастрафического цунамигенного землетрясения в Индийском океане 26.12.2004г. (Крайний западный центр расположен непосредственно над эпицентром землетрясения).

    Общепланетарная временная закономерность (по данным спутниковых карт ОСО) - усиление выделения водорода в конце года, что можно объяснить гравитационным влиянием Солнца на жидкое ядро Земли в перигелии околосолнечной орбиты. Интересно, что в афелии максимально проявлена частота вулканических извержений (Белов, 1986), т.е. «горячая» дегазация планеты. Возможно, что в крайних точках элиптической орбиты не только наиболее значима разница в гравитационном воздействии, но и происходит «коробление» планеты с раскрытием разломных структур из-за смены знака ускорения.

    Наблюдается так же связь дегазации с другими космическими ритмами, связанными с характером движения Земли в околосолнечном пространстве - суточный и полусуточный (вращение Земли вокруг собственной оси); (7.2 и 13,9 суток) - лунные фазы. Объясняются они гравитационным воздействием Луны на земное ядро - главный резервуар планетарного водорода. «Шевеление» внутреннего твердого ядра в жидком приводит к усилению выбросов водорода. Короткопериодные вариации усиления импульсов дегазации коррелируют также с вариациями скорости вращения планеты.

    5. Вероятный источник глубинного водорода.

    Проблема источника потоков глубинного водорода крайне важна с точки зрения поисков его месторождений, а, главное, перспектив его добычи. Однако вопрос этот дискуссионный, в литературе представлены три точки зрения о глубинности источников водорода:

    А) Коровая, относительно недавно отечественные ученые обратили внимание на выделение свободного водорода на срединно-океанических хребтах. Объяснение - процессы серпентинизации (ГИН РАН, ГЕОХИ РАН), реакции железосодержащих минералов с морской водой (ИО РАН).

    Б) Мантийная - водород, также как и другие газы выделяется в процессе «зонной плавки» мантии (Виноградов, 1964).

    В) Ядерная - источником водорода является внешнее ядро Земли Земли (Ларин, 1991; Маракушев, 1999; Ритманн, 1964 и др.).

    Озонная методика позволяет прояснить и этот вопрос. В Антарктике часто синхронно возникают несколько линейных аномалий, идущих от Южного полюса до тропических широт над срединно-океанскими хребтами, что указывает на источник водорода - жидкое ядро Земли. Это очевидно, т.к. ни один из вышеперечисленных механизмов образования глубинного водорода (зонная плавка, серпентинизация, реакции с железом) не способен синхронно «включаться и выключаться» в течение часов и первых суток в рифтовых структурах сразу в двух-трех океанах и на протяжении тысяч километров. Такой эффект способен вызвать только единый источник, т.е. ядро Земли. О том же говорят и космические ритмы газового дыхания планеты, выявленные нами на Хибинах.

    Ограничения озонного метода изучения водородной дегазации связаны, в первую очередь, с разнообразием процессов формирующих озоновый слой планеты, как конструктивных, так и деструктивных. Главными из них являются динамика атмосферы, флуктуации магнитного поля Земли (Кондратович и др., 1988), флуктуации солнечной активности, вулканические извержения.

    При количественной оценке газового дыхания планеты они являются помехами, их нужно (и можно) учитывать. Но на качественную картину они существенно не влияют. Исключением является только зона внутритропической конвергенции, где интенсивные пассатные потоки часто «размазывают» водородные выбросы, маскируя их локализацию, т.е. местоположение центров дегазации. Однако среди тысяч карт ОСО присутствует много таких, где эта локализация отчетливо проявлена.

    Нужно понимать, что водородный след в озоновом слое это результат сочетания мощности выброса и интенсивности воздушной динамики. Крайние случаи: мощный выброс + спокойная атмосфера = отчетливая отрицательная аномалия ОСО; слабый выброс + сильный ветер = отсутствие аномалии. Все остальные случаи - вариации между крайними.

    Технологически обусловленным недостатком спутниковых карт является отсутствие данных для полярных регионов в зимний (темный) период, т.к. приборы ТОМС работают «по солнечному свету». Но этот недостаток покрываются картами ОСО, составленными по данным наземных станций, большинство которых (зарубежных) оснащено приборами, работающими и по лунному свету.

    6. Выводы

    В озонном поле Земли находят четкое отображение тектонические структуры различного масштаба. Планетарные, протяженностью в несколько тысяч километров, например, участки срединно-океанических рифтов; региональные - сотни километров (разломы, рифты, грабены, зоны кимберлитового магматизма). Минимальными различимыми геологическими объектами являются отдельные магматические массивы, например, Печенга на Кольском полуострове.

    Информация, которую дает предлагаемая методика, заключается в локализации центров глубинной дегазации, возможности оценки ее (дегазации) интенсивности, выявление временных закономерностей в масштабе планеты. Регионы наиболее интенсивной (по частоте выбросов) дегазации - Зондский архипелаг и Тихий океан, Антарктика, особенно приантартический участок ВТП, северный участок САХ, северный (континентальный) участок ВТП, Северо-Восточная котловина Тихого океана.

    По мощности газовых выбросов (глубине озоновых аномалий) лидирует Антарктида, затем Северная Атлантика, рифтовые структуры Северного ледовитого океана и Западная Европа. Здесь активно дегазирующими структурами являются Рейско-Ливийская рифтовая зона и, особенно, рифтовые структуры Балтийского моря, в первую очередь, Ботнический залив.

    Наиболее перспективными регионами для добычи водорода являются: в мире - Антарктида, в З. Европе (Ботнический залив, грабены Осло, Рейнский, Рона). В России - алмазные трубки Сибири, в первую очередь трубка Удачная, на которой, как отмечалось выше, уже регистрировались аномально высокие потоки водорода; в европейской части - магматические массивы Кольского полуострова, в первую очередь, Печенга (Никель), далее Хибинский и Лавоозерский и Кандагубский. Перспективным для поисков является и северная часть Воронежской антиклизы (сопредельные районы Воронежской и Липецкой областей). Этот район выделяется как центр разрушения озонового слоя, по частоте образования аномалий ОСО, т.е. по выбросам водорода он занимает второе место после Якутского центра! Источником водородных выбросов здесь могут быть погребенные кимберлитовые трубки.

    По материалам Отчёта в рамках программы фундаментальных исследований Президиума РАН № 14 за 2009 год
    Раздел 1.3.1 «Оценка перспектив выявления промышленных скоплений эндогенного водорода в литосфере» . Руководитель проекта: директор ГГМ РАН, доктор г.-м.н. Белов С.В.

    gastroguru © 2017