Удельная теплота сгорания нафталина. Определение удельной теплоты сгорания керосина, сравнение с нефтью

Сегодня люди крайне зависимы от топлива. Без него не обходится обогрев жилищ, приготовление пищи, работа оборудования и транспортных средств. Большинство видов используемого топлива - углеводороды. Для оценки их эффективности используют значения удельной теплоты сгорания. Керосин обладает сравнительно внушительным показателем. Благодаря этому качеству он используется в двигателях ракет и самолётов.

Благодаря своим свойствам, керосин используется в двигателях ракет

Свойства, получение и применение

История керосина насчитывает более 2 тыс. лет и начинается с тех пор, когда арабские учёные придумали метод перегонки нефти на отдельные компоненты. Официально он был открыт в 1853 году, когда канадский врач Абрахам Геснер разработал и запатентовал метод извлечения прозрачной горючей жидкости из битумов и горючих сланцев.

После бурения первой нефтяной скважины в 1859 году нефть стала основным сырьём для керосина. Из-за повсеместного использования в лампах он десятилетиями считался главным продуктом нефтеперегонки. Лишь появление электричества снизило его значение для освещения. Производство керосина упало также с ростом популярности автомобилей - это обстоятельство существенно повысило важность бензина как нефтепродукта. Тем не менее и сегодня во многих частях мира керосин применяется для отопления и освещения, а современное реактивное топливо - это тот же продукт, но более высокого качества.

С повышением количества использования автомобилей – упала популярность керосина

Керосин - лёгкая прозрачная жидкость, химически представляющая собой смесь органических соединений. Его состав во многом зависит от сырья, но, как правило, состоит из десятка различных углеводородов, молекула каждого из которых содержит от 10 до 16 атомов углерода. Керосин менее летуч, чем бензин. Сравнительная температура возгорания керосина и бензина, при которой они выделяют воспламеняющиеся пары возле поверхности, составляет 38 и -40°C, соответственно.

Это свойство позволяет рассматривать керосин как относительно безопасное топливо с точки зрения хранения, использования и транспортировки. На основании температуры кипения (от 150 до 350°C) он классифицируется как один из так называемых средних дистиллятов сырой нефти.

Керосин может быть получен прямогонным способом, то есть физически отделён от нефти, путём дистилляции или с помощью химического разложения более тяжёлых фракций в результате крекинг процесса.

Характеристика керосина как топлива

Горением называют процесс бурного окисления веществ с выделением тепла. Как правило, в реакции участвует кислород, содержащийся в воздухе. Во время сжигания углеводородов образуются такие основные продукты горения:

  • углекислый газ;
  • водяной пар;
  • сажа.

Количество энергии, генерируемое во время сгорания топлива, зависит от его вида, условий сжигания, массы или объёма. Энергия измеряется в джоулях или калориях. Удельной (на единицу измерения количества вещества) теплотой сгорания называют энергию, полученную при сжигании единицы топлива:

  • молярная (например, Дж/моль);
  • массовая (например, Дж/кг);
  • объёмная (например, ккал/л).

В большинстве случаев для оценки газообразных, жидких и твёрдых топлив оперируют показателем массовой теплоты сгорания, выраженной в Дж/кг.


Во время сжигания углевода образуется несколько элементов, например, сажа

Значение теплоты сгорания будет зависеть от того, брались ли в учёт процессы, происходящие с водой во время сгорания. Испарение влаги - энергоёмкий процесс , а учёт теплоотдачи при конденсации этих паров также способен повлиять на результат.

Результат замеров, производимых до того, как сконденсированный пар вернёт энергию в систему, называют низшей теплотой сгорания, а показатель, полученный после конденсации паров, называется высшей теплотой. Углеводородные двигатели не могут использовать дополнительную энергию водяного пара в выхлопе, поэтому показатель нетто актуален для производителей моторов и встречается в справочниках чаще.

Нередко при указании теплотворной способности не уточняют о том, какая из величин имеется в виду, что может привести к путанице. Сориентироваться помогает знание того, что в РФ традиционно принято указывать низшую.

Низшая теплота сгорания – важный показатель

Следует отметить, что для некоторых видов топлива разделение на энергию нетто и брутто не имеет смысла, так как они не образуют воду во время горения. В отношении керосина это неактуально, поскольку содержание углеводородов в нём велико. При сравнительно невысокой плотности (между 780 кг/м³ и 810 кг/м³) его теплотворная способность аналогична этому же показателю у дизельного топлива и составляет:

  • низшая - 43,1 МДж/кг;
  • высшая - 46,2 МДж/кг.

Сравнение с другими видами горючего

Рассматриваемый показатель очень удобен для оценки потенциального количества тепла, содержащегося в топливе. Например, теплота сгорания бензина на единицу массы сопоставима с таким же показателем у керосина, но первый значительно плотнее. Как следствие, в таком же сравнении литр бензина содержит меньше энергии.

Удельная теплота сгорания нефти как смеси углеводородов зависит от её плотности, которая непостоянна для различных месторождений (43-46 МДж/кг). Расчётные методы позволяют с высокой точностью определить это значение, если есть исходные данные о её составе.

Усреднённо показатели для некоторых видов горючих жидкостей, входящих в состав нефти, выглядят так (в МДж/кг):

Калорийность твёрдых видов горючего, таких как торф и уголь, имеет больший разбег. Это связано с тем, что их состав может сильно отличаться как по содержанию несгораемых веществ, так и по калорийности углеводородов. Например, теплотворная способность торфа различных типов может колебаться в пределах 8-24 МДж/кг, а каменного угля - 13-36 МДж/кг. Среди распространённых газов большой теплотворностью отличается водород - 120 МДж/кг. Следующий по удельной теплоте сгорания - метан (50 МДж/кг).

Можно сказать, что керосин - топливо, выдержавшее испытание временем именно благодаря сравнительно высокой энергоёмкости при низкой цене. Его применение не только экономически оправдано, но и в некоторых случаях безальтернативно.

Важная теплотехническая характеристика топлива – его удельная теплота сгорания.

Удельной теплотой сгорания топлива

Различают удельную высшую и низшую теплоту сгорания. Удельная теплота сгорания рабочего топлива с учетом дополнительной теплоты, которая выделяется при конденсации водяных паров, находящихся а продуктах сгорания, называется высшей удельной теплотой сгорания рабочего топлива . Это дополнительное количество теплоты можно определить путем умножения массы водяных паров, образующихся от испарения влаги топлива /100 и от горения водорода9 /100 , на скрытую теплоту конденсации водяного пара, равную примерно 2500 кДж/кг.

Удельная низшая теплота сгорания топлива то количество теплоты, которая выделяется в обычных практических условиях, т.е. когда водяные пары не конденсируются, а выбрасываются в атмосферу.

Таким образом связь между высшей и низшей удельной теплотой сгорания может быть выражена уравнением - = =25(9 ).

64. Условное топливо.

Топливом называется любое вещество, которое при сгорании (окислении) выделяется значительное количество теплоты на единицу массы или объёма и доступно для массового использования.

В качестве топлива применяют природные и производные органические соединения в твердом, жидком и газообразном состояниях.

Любое органическое топливо состоит из углерода, водорода, кислорода, азота, летучей серы, а твердые и жидкие топлива - из золы (минеральные остатки) и влаги.

Важная теплотехническая характеристика топлива – его удельная теплота сгорания.

Удельной теплотой сгорания топлива называется количество теплоты, которое выделяется при полном сгорании единицы количества вещества топлива.

Чем меньше удельная теплота сгорания топлива, тем больше его расходуется в котельном агрегате. Для сравнения различных видов топлива по их тепловому эффекту введено понятие об условном топливе, удельная теплота сгорания которого принята =29,3 МДж/кг.

Отношение Q Н Р данного топлива к Q уд условного топлива называется эквивалентом Э. Тогда пересчет расхода натурального топлива В Н в условное топливо В УТ осуществляется по формуле:

Условное топливо - принятая при расчетах единица учёта органического топлива, то есть нефти и ее производных, природного и специально получаемого при перегонке сланцев и каменного угля, газа, торфа – которая используется для счисления полезного действия различных видов топлива в их суммарном учёте.

В СССР и России за единицу условного топлива (у.т.) принималась теплотворная способность 1 кг каменного угля = 29,3 МДж или 7000 ккал.Международное энергетическое агентство (IEA ) приняло за единицу нефтяной эквивалент, обычно обозначаемый аббревиатурой TOE (англ. Tonne of oil equivalent ). Одна тонна нефтяного эквивалента равняется 41,868 ГДж или 11,63 МВт·ч. Применяется также единица - баррель нефтяного эквивалента (BOE ).

65. Коэффициент избытка воздуха.

Число, показывающее, во сколько раз действительный рас­ход воздуха больше теоретически необходимого количества воз­духа, называется коэффициентом избытка воздуха, т. е. дейст­вительный расход воздуха L (в кг/кг) или V (м 3 /м 3) равен тео­ретически необходимому его количеству L o или V o > умноженно­му на коэффициент избытка воздуха а

V = aV 0 .

В таблицах представлена массовая удельная теплота сгорания топлива (жидкого, твердого и газообразного) и некоторых других горючих материалов. Рассмотрено такое топливо, как: уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ и т. д.

Перечень таблиц:

При экзотермической реакции окисления топлива его химическая энергия переходит в тепловую с выделением определенного количества теплоты. Образующуюся тепловую энергию принято называть теплотой сгорания топлива. Она зависит от его химического состава, влажности и является основным . Теплота сгорания топлива, отнесенная на 1 кг массы или 1 м 3 объема образует массовую или объемную удельную теплоты сгорания.

Удельной теплотой сгорания топлива называется количество теплоты, выделяемое при полном сгорании единицы массы или объема твердого, жидкого или газообразного топлива. В Международной системе единиц эта величина измеряется в Дж/кг или Дж/м 3 .

Удельную теплоту сгорания топлива можно определить экспериментально или вычислить аналитически. Экспериментальные методы определения теплотворной способности основаны на практическом измерении количества теплоты, выделившейся при горении топлива, например в калориметре с термостатом и бомбой для сжигания. Для топлива с известным химическим составом удельную теплоту сгорания можно определить по формуле Менделеева .

Различают высшую и низшую удельные теплоты сгорания. Высшая теплота сгорания равна максимальному количеству теплоты, выделяемому при полном сгорании топлива, с учетом тепла затраченного на испарение влаги, содержащейся в топливе. Низшая теплота сгорания меньше значения высшей на величину теплоты конденсации , который образуется из влаги топлива и водорода органической массы, превращающегося при горении в воду.

Для определения показателей качества топлива, а также в теплотехнических расчетах обычно используют низшую удельную теплоту сгорания , которая является важнейшей тепловой и эксплуатационной характеристикой топлива и приведена в таблицах ниже.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

В таблице представлены значения удельной теплоты сгорания сухого твердого топлива в размерности МДж/кг. Топливо в таблице расположено по названию в алфавитном порядке.

Наибольшей теплотворной способностью из рассмотренных твердых видов топлива обладает коксующийся уголь — его удельная теплота сгорания равна 36,3 МДж/кг (или в единицах СИ 36,3·10 6 Дж/кг). Кроме того высокая теплота сгорания свойственна каменному углю, антрациту, древесному углю и углю бурому.

К топливам с низкой энергоэффективностью можно отнести древесину, дрова, порох, фрезторф, горючие сланцы. Например, удельная теплота сгорания дров составляет 8,4…12,5, а пороха — всего 3,8 МДж/кг.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)
Топливо
Антрацит 26,8…34,8
Древесные гранулы (пиллеты) 18,5
Дрова сухие 8,4…11
Дрова березовые сухие 12,5
Кокс газовый 26,9
Кокс доменный 30,4
Полукокс 27,3
Порох 3,8
Сланец 4,6…9
Сланцы горючие 5,9…15
Твердое ракетное топливо 4,2…10,5
Торф 16,3
Торф волокнистый 21,8
Торф фрезерный 8,1…10,5
Торфяная крошка 10,8
Уголь бурый 13…25
Уголь бурый (брикеты) 20,2
Уголь бурый (пыль) 25
Уголь донецкий 19,7…24
Уголь древесный 31,5…34,4
Уголь каменный 27
Уголь коксующийся 36,3
Уголь кузнецкий 22,8…25,1
Уголь челябинский 12,8
Уголь экибастузский 16,7
Фрезторф 8,1
Шлак 27,5

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Приведена таблица удельной теплоты сгорания жидкого топлива и некоторых других органических жидкостей. Следует отметить, что высоким тепловыделением при сгорании отличаются такие топлива, как: бензин, дизельное топливо и нефть.

Удельная теплота сгорания спирта и ацетона существенно ниже традиционных моторных топлив. Кроме того, относительно низким значением теплоты сгорания обладает жидкое ракетное топливо и — при полном сгорании 1 кг этих углеводородов выделится количество теплоты, равное 9,2 и 13,3 МДж, соответственно.

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)
Топливо Удельная теплота сгорания, МДж/кг
Ацетон 31,4
Бензин А-72 (ГОСТ 2084-67) 44,2
Бензин авиационный Б-70 (ГОСТ 1012-72) 44,1
Бензин АИ-93 (ГОСТ 2084-67) 43,6
Бензол 40,6
Дизельное топливо зимнее (ГОСТ 305-73) 43,6
Дизельное топливо летнее (ГОСТ 305-73) 43,4
Жидкое ракетное топливо (керосин + жидкий кислород) 9,2
Керосин авиационный 42,9
Керосин осветительный (ГОСТ 4753-68) 43,7
Ксилол 43,2
Мазут высокосернистый 39
Мазут малосернистый 40,5
Мазут низкосернистый 41,7
Мазут сернистый 39,6
Метиловый спирт (метанол) 21,1
н-Бутиловый спирт 36,8
Нефть 43,5…46
Нефть метановая 21,5
Толуол 40,9
Уайт-спирит (ГОСТ 313452) 44
Этиленгликоль 13,3
Этиловый спирт (этанол) 30,6

Удельная теплота сгорания газообразного топлива и горючих газов

Представлена таблица удельной теплоты сгорания газообразного топлива и некоторых других горючих газов в размерности МДж/кг. Из рассмотренных газов наибольшей массовой удельной теплотой сгорания отличается . При полном сгорании одного килограмма этого газа выделится 119,83 МДж тепла. Также высокой теплотворной способностью обладает такое топливо, как природный газ — удельная теплота сгорания природного газа равна 41…49 МДж/кг (у чистого 50 МДж/кг).

Удельная теплота сгорания газообразного топлива и горючих газов (водород, природный газ, метан)
Топливо Удельная теплота сгорания, МДж/кг
1-Бутен 45,3
Аммиак 18,6
Ацетилен 48,3
Водород 119,83
Водород, смесь с метаном (50% H 2 и 50% CH 4 по массе) 85
Водород, смесь с метаном и оксидом углерода (33-33-33% по массе) 60
Водород, смесь с оксидом углерода (50% H 2 50% CO 2 по массе) 65
Газ доменных печей 3
Газ коксовых печей 38,5
Газ сжиженный углеводородный СУГ (пропан-бутан) 43,8
Изобутан 45,6
Метан 50
н-Бутан 45,7
н-Гексан 45,1
н-Пентан 45,4
Попутный газ 40,6…43
Природный газ 41…49
Пропадиен 46,3
Пропан 46,3
Пропилен 45,8
Пропилен, смесь с водородом и окисью углерода (90%-9%-1% по массе) 52
Этан 47,5
Этилен 47,2

Удельная теплота сгорания некоторых горючих материалов

Приведена таблица удельной теплоты сгорания некоторых горючих материалов ( , древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен.

Удельная теплота сгорания некоторых горючих материалов
Топливо Удельная теплота сгорания, МДж/кг
Бумага 17,6
Дерматин 21,5
Древесина (бруски влажностью 14 %) 13,8
Древесина в штабелях 16,6
Древесина дубовая 19,9
Древесина еловая 20,3
Древесина зеленая 6,3
Древесина сосновая 20,9
Капрон 31,1
Карболитовые изделия 26,9
Картон 16,5
Каучук бутадиенстирольный СКС-30АР 43,9
Каучук натуральный 44,8
Каучук синтетический 40,2
Каучук СКС 43,9
Каучук хлоропреновый 28
Линолеум поливинилхлоридный 14,3
Линолеум поливинилхлоридный двухслойный 17,9
Линолеум поливинилхлоридный на войлочной основе 16,6
Линолеум поливинилхлоридный на теплой основе 17,6
Линолеум поливинилхлоридный на тканевой основе 20,3
Линолеум резиновый (релин) 27,2
Парафин твердый 11,2
Пенопласт ПХВ-1 19,5
Пенопласт ФС-7 24,4
Пенопласт ФФ 31,4
Пенополистирол ПСБ-С 41,6
Пенополиуретан 24,3
Плита древесноволокнистая 20,9
Поливинилхлорид (ПВХ) 20,7
Поликарбонат 31
Полипропилен 45,7
Полистирол 39
Полиэтилен высокого давления 47
Полиэтилен низкого давления 46,7
Резина 33,5
Рубероид 29,5
Сажа канальная 28,3
Сено 16,7
Солома 17
Стекло органическое (оргстекло) 27,7
Текстолит 20,9
Толь 16
Тротил 15
Хлопок 17,5
Целлюлоза 16,4
Шерсть и шерстяные волокна 23,1

Источники:

  1. ГОСТ 147-2013 Топливо твердое минеральное. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания.
  2. ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания.
  3. ГОСТ 22667-82 Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
  4. ГОСТ 31369-2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
  5. Земский Г. Т. Огнеопасные свойства неорганических и органических материалов: справочник М.: ВНИИПО, 2016 — 970 с.

Тепловые машины в термодинамике — это периодически действующие тепловые двигатели и холодильные машины (термокомпрессоры). Разновидностью холодильных машин являются тепловые насосы.

Устройства, совершающие механическую работу за счёт внутренней энергии топлива, называются тепловыми машинами (тепловыми двигателями). Для функционирования тепловой машины необходимы следующие составляющие: 1) источник тепла с более высоким температурным уровнем t1, 2) источник тепла с более низким температурным уровнем t2, 3) рабочее тело. Иначе сказать: любые тепловые машины (тепловые двигатели) состоят из нагревателя, холодильника и рабочего тела .

В качестве рабочего тела используются газ или пар, поскольку они хорошо сжимаются, и в зависимости от типа двигателя может быть топливо (бензин, керосин), водяной пар и пр. Нагреватель передаёт рабочему телу некоторое количество теплоты (Q1), и его внутренняя энергия увеличивается, за счёт этой внутренней энергии совершается механическая работа (А), затем рабочее тело отдаёт некоторое количество теплоты холодильнику (Q2) и охлаждается при этом до начальной температуры. Описанная схема представляет цикл работы двигателя и является общей, в реальных двигателях роль нагревателя и холодильника могут выполнять различные устройства. Холодильником может служить окружающая среда.

Поскольку в двигателе часть энергии рабочего тела передается холодильнику, то понятно, что не вся полученная им от нагревателя энергия идет на совершение работы. Соответственно, коэффициент полезного действия двигателя (КПД) равен отношению совершенной работы (А) к количеству теплоты, полученному им от нагревателя (Q1):

Двигатель внутреннего сгорания (ДВС)

Существует два типа двигателей внутреннего сгорания (ДВС): карбюраторный и дизельный . В карбюраторном двигателе рабочая смесь (смесь топлива с воздухом) готовится вне двигателя в специальном устройстве и из него поступает в двигатель. В дизельном двигателе горючая смесь готовится в самом двигателе.

ДВС состоит из цилиндра , в котором перемещается поршень ; в цилиндре имеются два клапана , через один из которых горючая смесь впускается в цилиндр, а через другой отработавшие газы выпускаются из цилиндра. Поршень с помощью кривошипно-шатунного механизма соединяется с коленчатым валом , который приходит во вращение при поступательном движении поршня. Цилиндр закрыт крышкой.

Цикл работы ДВС включает четыре такта : впуск, сжатие, рабочий ход, выпуск. Во время впуска поршень движется вниз, давление в цилиндре уменьшается, и в него через клапан поступает горючая смесь (в карбюраторном двигателе) или воздух (в дизельном двигателе). Клапан в это время закрыт. В конце впуска горючей смеси закрывается клапан.

Во время второго такта поршень движется вверх, клапаны закрыты, и рабочая смесь или воздух сжимаются. При этом температура газа повышается: горючая смесь в карбюраторном двигателе нагревается до 300- 350 °С, а воздух в дизельном двигателе - до 500-600 °С. В конце такта сжатия в карбюраторном двигателе проскакивает искра, и горючая смесь воспламеняется. В дизельном двигателе в цилиндр впрыскивается топливо, и образовавшаяся смесь самовоспламеняется.

При сгорании горючей смеси газ расширяется и толкает поршень и соединенный с ним коленчатый вал, совершая механическую работу. Это приводит к тому, что газ охлаждается.

Когда поршень придёт в нижнюю точку, давление в нём уменьшится. При движении поршня вверх открывается клапан, и происходит выпуск отработавшего газа. В конце этого такта клапан закрывается.


Паровая турбина

Паровая турбина представляет собой насаженный на вал диск, на котором укреплены лопасти. На лопасти поступает пар. Пар, нагретый до 600 °С, направляется в сопло и в нём расширяется. При расширении пара происходит превращение его внутренней энергии в кинетическую энергию направленного движения струи пара. Струя пара поступает из сопла на лопасти турбины и передаёт им часть своей кинетической энергии, приводя турбину во вращение. Обычно турбины имеют несколько дисков, каждому из которых передаётся часть энергии пара. Вращение диска передаётся валу, с которым соединён генератор электрического тока.

При сгорании различного топлива одинаковой массы выделяется разное количество теплоты. Например, хорошо известно, что природный газ является энергетически более выгодным топливом, чем дрова. Это значит, что для получения одного и того же количества теплоты, масса дров, которые нужно сжечь, должна быть существенно больше массы природного газа. Следовательно, различные виды топлива с энергетической точки зрения характеризуются величиной, называемой удельной теплотой сгорания топлива .

Удельная теплота сгорания топлива - физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг.

Различные виды топлива (твёрдое, жидкое и газообразное) характеризуются общими и специфическими свойствами. К общим свойствам топлива относятся удельная теплота сгорания и влажность, к специфическим - зольность, сернистость (содержание серы), плотность, вязкость и другие свойства.

Удельная теплота сгорания топлива - это количество теплоты, которое выделяется при полном сгорании \(1\) кг твёрдого или жидкого топлива или \(1\) м³ газообразного топлива.

Энергетическая ценность топлива в первую очередь определяется его удельной теплотой сгорания.

Удельная теплота сгорания обозначается буквой \(q\). Единицей удельной теплоты сгорания является \(1\) Дж/кг для твёрдого и жидкого топлива и \(1\) Дж/м³ для газообразного топлива.

Удельную теплоту сгорания на опыте определяют довольно сложными методами.

Таблица 2. Удельная теплота сгорания некоторых видов топлива.

Твёрдое топливо

Вещество

Удельная теплота сгорания,

Бурый уголь
Древесный уголь
Дрова сухие
Древесные чурки

Каменный уголь

Каменный уголь

марки А-II

Кокс
Порох
Торф

Жидкое топливо

Газообразное топливо

(при нормальных условиях)

Вещество

Удельная теплота сгорания,

Водород
Генераторный газ
Коксовый газ
Природный газ
Светильный газ

Из этой таблицы видно, что наибольшей является удельная теплота сгорания водорода, она равна \(120\) МДж/м³. Это значит, что при полном сгорании водорода объёмом \(1\) м³ выделяется \(120\) МДж \(=\)\(120\) ⋅ 10 6 Дж энергии.

Водород - один из высокоэнергетических видов топлива. Кроме того, продуктом сгорания водорода является обычная вода, в отличие от других видов топлива, где продуктами сгорания являются углекислый и угарный газы, зола и топочные шлаки. Это делает водород экологически наиболее чистым топливом.

Однако газообразный водород взрывоопасен. К тому же он имеет самую малую плотность в сравнении с другими газами при равной температуре и давлении, что создаёт сложности со сжижением водорода и его транспортировкой.

Общее количество теплоты \(Q\), выделяемое при полном сгорании \(m\) кг твёрдого или жидкого топлива, вычисляется по формуле:

Общее количество теплоты \(Q\), выделяемое при полном сгорании \(V\) м³ газообразного топлива, вычисляется по формуле:

Влажность (содержание влаги) топлива снижает его теплоту сгорания, так как увеличивается расход теплоты на испарение влаги и увеличивается объём продуктов сгорания (из-за наличия водяного пара).
Зольность - это количество золы, образующейся при сгорании минеральных веществ, содержащихся в топливе. Минеральные вещества, содержащиеся в топливе, понижают его теплоту сгорания, так как уменьшается содержание горючих компонентов (основная причина) и увеличивается расход тепла на нагрев и плавление минеральной массы.
Сернистость (содержание серы) относится к отрицательному фактору топлива, так как при его сгорании образуются сернистые газы, загрязняющие атмосферу и разрушающие металл. Кроме того, сера, содержащаяся в топливе, частично переходит в выплавляемый металл, сваренную стекломассу, снижая их качество. Например, для варки хрустальных, оптических и других стёкол нельзя использовать топливо, содержащее серу, так как сера значительно понижает оптические свойства и колер стекла.

gastroguru © 2017