Типы зажимных приспособлений. Зажимные устройства приспособлений. Правила выбора зажимных приспособлений

Зажимные элементы - это механизмы, непосредственно используемые для закрепления заготовок, или промежуточные звенья более сложных зажимных систем.

Наиболее простым видом универсальных зажимов являются , которые приводят в действие насаженными на них ключами, рукоятками или маховичками.

Чтобы предотвратить перемещение зажимаемой заготовки и образование на ней вмятин от винта, а также уменьшить изгиб винта при нажиме на поверхность, не перпендикулярную его оси, на концы винтов помещают качающиеся башмаки (рис.68, α).

Комбинации винтовых устройств с рычагами или клиньями называются комбинированными зажимам и, разновидностью которых являются винтовые прихваты (рис. 68, б), Устройство прихватов позволяет отодвигать или поворачивать их, чтобы можно было удобнее устанавливать обрабатываемую заготовку в приспособлении.

На рис. 69 показаны некоторые конструкции быстродействующих зажимов . Для небольших зажимных сил применяют штыковое (рис. 69, α), а для значительных сил - плунжерное устройство (рис. 69, б). Эти устройства позволяют отводить зажимающий элемент на большое расстояние от заготовки; закрепление происходит в результате поворота стержня на некоторый угол. Пример зажима с откидным упором показан на рис. 69, в. Ослабив гайку-рукоятку 2, отводят упор 3, вращая его вокруг оси. После этого зажимающий стержень 1 отводят вправо на расстояние h. На рис. 69, г приведена схема быстродействующего устройства рычажного типа. При повороте рукоятки 4 штифт 5 скользит по планке 6 с косым срезом, а штифт 2 - по заготовке 1, прижимая ее к упорам, расположенным внизу. Сферическая шайба 3 служит шарниром.

Большие затраты времени и значительные силы, требующиеся для закрепления обрабатываемых заготовок, ограничивают область применения винтовых зажимов и в большинстве случаев делают предпочтительными быстродействующие эксцентриковые зажимы . На рис. 70 изображены дисковый (α), цилиндрический с Г-образным прихватом (б) и конический плавающий (в) зажимы.

Эксцентрики бывают круглые, эвольвентные и спиральные (по спирали Архимеда). В зажимных устройствах применяются две разновидности эксцентриков: круглые и криволинейные.

Круглые эксцентрики (рис. 71) представляют собой диск или валик с осью вращения, смещенной на размер эксцентриситета е; условие самоторможения обеспечивается при соотношении D/е≥ 4.

Достоинство круглых эксцентриков заключается в простоте их изготовления; основной недостаток - непостоянство угла подъема α и сил зажима Q. Криволинейные эксцентрики , рабочий профиль которых выполняется по эвольвенте или спирали Архимеда, имеют постоянный угол подъема α, а, следовательно, обеспечивают постоянство силы Q, при зажиме любой точки профиля.

Клиновой механизм применяют как промежуточное звено в сложных зажимных системах. Он прост в изготовлении, легко размещается в приспособлении, позволяет увеличивать и изменять направление передаваемой силы. При определенных углах клиновой механизм обладает свойствами самоторможения. Для односкосного клина (рис. 72, а) при передаче сил под прямым углом может быть принята следующая зависимость (при ϕ1 = ϕ2 = ϕ3 = ϕ где ϕ1…ϕ3 -углы трения):

P = Qtg (α ± 2ϕ),

где Р - осевая сила; Q - сила зажима. Самоторможение будет иметь место при α <ϕ1 + ϕ2.

Для двухскосного клина (рис. 72, б) при передаче сил под углом β>90 зависимость между Р и Q при постоянном угле трения (ϕ1 = ϕ2 = ϕ3 = ϕ) выражается следующей формулой:

P = Qsin(α + 2ϕ)/cos (90° + α — β + 2ϕ).

Рычажные зажимы применяют в сочетании с другими элементарными зажимами, образуя более сложные зажимные системы. С помощью рычага можно изменять величину и направление передаваемой силы, а также осуществлять одновременное и равномерное закрепление заготовки в двух местах. На рис. 73 приведены схемы действия сил в одноплечих и двуплечих прямых и изогнутых зажимах. Уравнения равновесия для этих рычажных механизмов имеют следующий вид; для одноплечего зажима (рис. 73, α):

прямого двуплечего зажима (рис. 73, б):

изогнутого зажима (для l1

где р - угол трения; ƒ - коэффициент трения.

В качестве установочных элементов для наружных или внутренних поверхностей тел вращения применяют центрирующие зажимные элементы: цанги, разжимные оправки, зажимные втулки с гидропластом, а также мембранные патроны.

Цанги представляют собой разрезные пружинящие гильзы, конструктивные разновидности которых показаны на рис. 74 (α - с натяжной трубкой; 6 - с распорной трубкой; в - вертикального типа). Их выполняют из высокоуглеродистых сталей, например, У10А, и термически обрабатывают до твердости НRС 58…62 в зажимной и до твердости НRС 40…44 в хвостовых частях. Угол конуса цанги α = 30…40°. При меньших углах возможно заклинивание цанги.

Угол конуса сжимающей втулки делают на 1° меньше или больше угла конуса цанги. Цанги обеспечивают эксцентричность установки (биение) не более 0,02…0,05 мм. Базовую поверхность заготовки следует обрабатывать по 9…7-му квалитетам точности.

Разжимные оправки различных конструкций (включая конструкции с применением гидропласта) относятся к установочно-зажимным приспособлениям.

Мембранные патроны используют для точного центрирования заготовок по наружной или внутренней цилиндрической поверхности. Патрон (рис. 75) состоит из круглой, привертываемой к планшайбе станка мембраны 1 в форме пластины с симметрично расположенными выступами-кулачками 2, количество которых выбирают в пределах 6…12. Внутри шпинделя проходит шток 4 пневмоцилиндра. При включении пневматики мембрана прогибается, раздвигая кулачки. При отходе штока назад мембрана, стремясь вернуться в исходное положение, сжимает своими кулачками заготовку 3.

Реечно-рычажный зажим (рис. 76) состоит из рейки 3, зубчатого колеса 5, сидящего на валу 4, и рычага рукоятки 6. Вращая рукоятку против часовой стрелки, опускают рейку и прихватом 2 закрепляют обрабатываемую заготовку 1. Зажимная сила Q зависит от значения силы Р, приложенной к рукоятке. Устройство снабжается замком, который, заклинивая систему, предупреждает обратный поворот колеса. Наиболее распространены следующие виды замков. Роликовый замок (рис. 77, а) состоит из поводкового кольца 3 с вырезом для ролика 1, соприкасающегося со срезанной плоскостью валика. 2 зубчатого колеса. Поводковое кольцо 3 скреплено с рукояткой зажимного устройства. Вращая рукоятку по стрелке, передают вращение на вал зубчатого колеса через ролик 1*. Ролик заклинивается между поверхностью расточки корпуса 4 и срезанной плоскостью валика 2 и препятствует обратному вращению.

Роликовый замок с прямой передачей момента от поводка на валик показан на рис. 77, б. Вращение от рукоятки через поводок передается непосредственно на вал 6 колеса. Ролик 3 через штифт 4 поджат слабой пружиной 5. Так как зазоры в местах касания ролика с кольцом 1 и валом 6 при этом выбирают, система мгновенно заклинивается при снятии силы с рукоятки 2. Поворотом рукоятки в обратную сторону ролик расклинивается и вращает вал по часовой стрелке.

Конический замок (рис. 77, в) имеет коническую втулку 1 и вал с конусом 3 и рукояткой 4. Спиральные зубья на средней шейке вала находятся в зацеплении с рейкой 5. Последняя связана с исполнительным зажимающим механизмом. При угле наклона зубьев 45° осевая сила на валу 2 равна (без учета трения) зажимной силе.

* Замки этого типа выполняют с тремя роликами, расположенными под углом 120°.

Эксцентриковый замок (рис. 77, г) состоит из вала 2 колеса, на котором заклинен эксцентрик 3. Вал приводится во вращение кольцом 1, скрепленным с рукояткой замка; кольцо вращается в расточке корпуса 4, ось которой смещена от оси вала на расстояние е. При обратном вращении рукоятки передача на вал происходит через штифт 5. В процессе закрепления кольцо 1 заклинивается между эксцентриком и корпусом.

Комбинированные зажимные устройства представляют собой сочетание элементарных зажимов различного типа. Их применяют для увеличения зажимной силы и уменьшения габаритов приспособления, а также для создания наибольших удобств управления. Комбинированные зажимные устройства могут также обеспечивать одновременное крепление заготовки в нескольких местах. Виды комбинированных зажимов приведены на рис. 78.

Сочетание изогнутого рычага и винта (рис. 78, а) позволяет одновременно закреплять заготовку в двух местах, равномерно повышая зажимные силы до заданного значения. Обычный поворотный прихват (рис, 78, б) представляет собой сочетание рычажного и винтового зажимов. Ось качания рычага 2 совмещена с центром сферической поверхности шайбы 1, которая разгружает шпильку 3 от изгибающих усилий, Показанный на рис, 78, в прихват с эксцентриком является примером быстродействующего комбинированного зажима. При определенном соотношении плеч рычага можно увеличить зажимную силу или ход зажимающего конца рычага.

На рис. 78, г показано устройство для закрепления в призме цилиндрической заготовки посредством накидного рычага, а на рис. 78, д - схема быстродействующего комбинированного зажима (рычаг и эксцентрик), обеспечивающего боковое и вертикальное прижатие заготовки к опорам приспособления, так как сила зажима приложена под углом. Аналогичное условие обеспечивается устройством, изображенным на рис. 78, е.

Шарнирно-рычажные зажимы (рис. 78, ж, з, и) являются примерами быстродействующих зажимных устройств, приводимых в действие поворотом рукоятки. Для предотвращения самооткрепления рукоятку переводят через мертвое положение до упора 2. Сила зажима зависит от деформации системы и ее жесткости. Желаемую деформацию системы устанавливают регулировкой нажимного винта 1. Однако наличие допуска на размер Н (рис. 78, ж) не обеспечивает постоянства зажимной силы для всех заготовок данной партии.

Комбинированные зажимные устройства приводятся в действие вручную или от силовых узлов.

Зажимные механизмы для многоместных приспособлений должны обеспечивать одинаковую силу зажима на всех позициях. Простейшим многоместным приспособлением является оправка, на которую устанавливают пакет заготовок «кольца, диски), закрепляемых по торцевым плоскостям одной гайкой (последовательная схема передачи зажимной силы). На рис. 79, α показан пример зажимного устройства, работающего по принципу параллельного распределения зажимной силы.

Если необходимо обеспечить концентричность базовой и обрабатываемой поверхностей и предотвратить деформирование обрабатываемой заготовки, применяют упругие зажимные устройства, где зажимное усилие посредством заполнителя или другого промежуточного тела равномерно передается на зажимный элемент приспособления в пределах упругих деформаций).

В качестве промежуточного тела применяют обычные пружины, резину или гидропласт. Зажимное устройство параллельного действия с использованием гидропласта показано на рис. 79, б. На рис. 79, в приведено устройство смешанного (параллельно-последовательного) действия.

На станках непрерывного действия (барабанно-фрезерные, специальные многошпиндельные сверлильные) заготовки устанавливают и снимают, не прерывая движения подачи. Если вспомогательное время перекрывается машинным, то для закрепления заготовок можно применять зажимные устройства различных типов.

В целях механизации производственных процессов целесообразно использовать зажимные устройства автоматизированного типа (непрерывного действия), приводимые в действие механизмом подачи станка. На рис. 80, α приведена схема устройства с гибким замкнутым элементом 1 (трос, цепь) для закрепления цилиндрических заготовок 2 на барабанно-фрезерном станке при обработке торцевых поверхностей, а на рис. 80, 6 - схема устройства для закрепления заготовок поршней на многошпиндельном горизонтально-сверлильном станке. В обоих устройствах операторы только устанавливают и снимают заготовку, а закрепление заготовки происходит автоматически.

Эффективным зажимным устройством для удержания заготовок из тонколистового материала при их чистовой обработке или отделке является вакуумный прижим. Сила зажима определяется по формуле:

где А - активная площадь полости устройства, ограниченной уплотнением; р= 10 5 Па - разность атмосферного давления и давления в полости устройства, из которого удаляется воздух.

Электромагнитные зажимные устройства применяются для закрепления обрабатываемых заготовок из стали и чугуна с плоской базовой поверхностью. Зажимные устройства обычно выполняют в виде плит и патронов, при конструировании которых в качестве исходных данных принимают размеры и конфигурацию обрабатываемой заготовки в плане, ее толщину, материал и необходимую удерживающую силу. Удерживающая сила электромагнитного устройства в значительной степени зависит от толщины обрабатываемой детали; при малых толщинах не весь магнитный поток проходит через поперечное сечение детали, и часть линий магнитного потока рассеивается в окружающее пространство. Детали, обрабатываемые на электромагнитных плитах или патронах, приобретают остаточные магнитные свойства - их размагничивают, пропуская их через соленоид, питаемый переменным током.

В магнитных зажимных устройствах основными элементами являются постоянные магниты, изолированные один от другого немагнитными прокладками и скрепленные в общий блок, а заготовка представляет собой якорь, через который замыкается магнитный силовой поток. Для открепления готовой детали блок сдвигают с помощью эксцентрикового или кривошипного механизма, при этом магнитный силовой поток замыкается на корпус устройства, минуя деталь.


СОДЕРЖАНИЕ

Стр.

ВВЕДЕНИЕ………………….…………………………………… ……..…….....2

ОБЩИЕ СВЕДЕНИЯ О ПРИСПОСОБЛЕНИЯХ…………………………... …3

ОСНОВНЫЕ ЭЛЕМЕНТЫ ПРИСПОСОБЛЕНИЙ……………….…………...6

Зажимные элементы приспособлений……………………………….……. …..6
1 Назначение зажимных элементов……………………………… ………...6
2 Виды зажимных элементов……………………………………….…..…. .7
СПИСОК ЛИТЕРАТУРЫ………………………………… ……………………..17

ВВЕДЕНИЕ

Основную группу технологической оснастки составляют приспособления механосборочного производства. Приспособлениями в машиностроении называют вспомогательные устройства к технологическому оборудованию, используемые при выполнении операций обработки, сборки и контроля.
Применение приспособлений позволяет: устранить разметку заготовок перед обработкой, повысить ее точность, увеличить производительность труда на операции, снизить себестоимость продукции, облегчить условия работы и обеспечить ее безопасность, расширить технологические возможности оборудования, организовать многостаночное обслуживание, применить технически обоснованные нормы времени, сократить число рабочих, необходимых для выпуска продукции.
Частая смена объектов производства, связанная с нарастанием темпов технологического прогресса в эпоху научно-технической революции, требует от технологической науки и практики создания конструкций и систем приспособлений, методов их расчета, проектирования и изготовления, обеспечивающих сокращение сроков подготовки производства. В серийном производстве необходимо использовать специализированные быстропереналаживаемые и обратимые системы приспособлений. В мелкосерийном и единичном производствах все более широко применяют систему универсально-сборных (УСП) приспособлений.
Новые требования, предъявляемые к приспособлениям, определены расширением парка станков с ЧПУ, переналадка которых на обработку новой заготовки сводится к замене программы (что занимает очень мало времени) и к замене или переналадке приспособления для базирования и закрепления заготовки (что также должно занимать мало времени).
Изучение закономерностей влияния приспособления на точность и производительность выполняемых операций позволит проектировать приспособления, интенсифицирующие производство и повышающие его точность. Работа по унификации и стандартизации элементов приспособлений создает основу для автоматизированного проектирования приспособлений с использованием электронно-вычислительной техники и автоматов для графического изображения. Это ускоряет технологическую подготовку производства.

ОБЩИЕ СВЕДЕНИЯ О ПРИСПОСОБЛЕНИЯХ.
ВИДЫ ПРИСПОСОБЛЕНИЙ

В машиностроении широко применяется разнообразная технологическая оснастка, в которую входят приспособления, вспомогательный, режущий и измерительный инструмент.
Приспособлениями называются дополнительные устройства, используемые для механической обработки, сборки и контроля деталей, сборочных единиц и изделий. По назначению приспособления подразделяют на следующие виды:
1. Станочные приспособления, применяемые для установки и закрепления на станках обрабатываемых заготовок. В зависимости от вида механической обработки эти приспособления, в свою очередь, делят на приспособления для сверлильных, фрезерных, расточных, токарных, шлифовальных станков и др. Станочные приспособления составляют 80...90% общего парка технологической оснастки.
Использование приспособлений обеспечивает:
а) повышение производительности труда благодаря сокращению времени на установку и закрепление заготовок при частичном или полном перекрытии вспомогательного времени машинным и уменьшении последнего посредством многоместной обработки, совмещения технологических переходов и повышения режимов резания;
б) повышение точности обработки благодаря устранению выверки при установке и связанных с ней погрешностей;
в) облегчение условий труда станочников;
г) расширение технологических возможностей оборудования;
д) повышение безопасности работы.
2.Приспособления для установки и закрепления рабочего инструмента, осуществляющие связь между инструментом и станком, в то время как первый вид осуществляет связь заготовки со станком. С помощью приспособлений первого и второго видов выполняют наладку технологической системы.
3. Сборочные приспособления для соединения сопрягаемых деталей в сборочные единицы и изделия. Их применяют для крепления базовых деталей или сборочных единиц собираемого изделия, обеспечения правильной установки соединяемых элементов изделия, предварительной сборки упругих элементов (пружин, разрезных колец и др.), а также для выполнения соединений с натягом.
4. Контрольные приспособления для промежуточного и окончательного контроля деталей, а также для контроля собранных частей машин.
5. Приспособления для захвата, перемещения и перевертывания обрабатываемых заготовок и сборочных единиц, используемые при обработке и сборке тяжелых деталей и изделий.
По эксплуатационной характеристике станочные приспособления подразделяются на универсальные, предназначенные для обработки разнообразных заготовок (машинные тиски, патроны, делительные головки, поворотные столы н пр.); специализированные, предназначенные для обработки заготовок определенного вида и представляющие собой сменные устройства (специальные губки для тисков, фасонные кулачки к патронам и т.п.), и специальные, предназначенные для выполнения определенных операций механической обработки данной детали. Универсальные приспособления применяют в условиях единичного или мелкосерийного производства, а специализированные и специальные - в условиях крупносерийного и массового производства.
Единой системой технологической подготовки производства станочные приспособления классифицируют по определенным признакам (рис. 1).
Универсально-сборные приспособления (УСП) компонуют из заранее изготовленных стандартных элементов, деталей и сборочных единиц высокой точности. Их применяют в качестве специальных приспособлений краткосрочного действия для определенной операции, после выполнения которой их разбирают, а доставляющие элементы в дальнейшем многократно используют в новых компоновках и сочетаниях. Дальнейшее развитие УСП связано с созданием агрегатов, блоков, отдельных специальных деталей и сборочных единиц, обеспечивающих компоновку не только специальных, но и специализированных и универсально-наладочных приспособлений краткосрочного действия,
Сборно-разборные приспособления (СРП) компонуют также из стандартных элементов, но менее точных, допускающих местную доработку по посадочным местам. Эти приспособления используются как специальные приспособления долгосрочного действия. После разборки из элементов можно создавать новые компоновки.

Рис. 1 – Классификация станочных приспособлений

Неразборные специальные приспособления (НСП) компонуют из стандартных деталей и сборочных единиц общего назначения, как необратимые приспособления долгосрочного действия. Конструктивные элементы компоновок, входящие в состав системы, как правило, эксплуатируются до полного износа и не применяются повторно. Компоновка может производиться также построением приспособления из двух основных частей: унифицированной базовой части (УБ) и сменной наладки (СН). Такая конструкция НСП делает его устойчивым к изменениям конструкций обрабатываемых заготовок и к корректировкам технологических процессов. В этих случаях в приспособлении заменяют только сменную наладку.
Универсальные безналадочные приспособления (УБП) общего назначения наиболее распространены в условиях серийного производства. Их применяют для закрепления заготовок из профильного проката и штучных заготовок. УБП представляют собой универсальные регулируемые корпуса с постоянными (несъемными) базовыми элементами (патронами, тисками и т. п.), входящие в комплект станка при его поставке.
Специализированными наладочными приспособлениями (СНП) оснащают операции обработки деталей, сгруппированных по конструкторским признакам и схемам базирования; компоновка по схеме агрегатирования представляет собой базовую конструкцию корпуса со сменными наладками для групп деталей.
Универсальные наладочные приспособления (УНП), так же как СНП, имеют постоянные (корпус) и сменные части. Однако сменная часть пригодна для выполнения только одной операции по обработке только одной детали. При переходе с одной операции на другую приспособления системы УНП оснащают новыми сменными частями (наладками).
Агрегатные средства механизации зажима (АСМЗ) представляют собой комплекс универсальных силовых устройств, выполненных в виде обособленных агрегатов, позволяющих в сочетании с приспособлениями механизировать и автоматизировать процесс зажима обрабатываемых заготовок.
Выбор конструкции приспособления во многом зависит от характера производства. Так, в серийном производстве применяют сравнительно простые приспособления, предназначенные в основном для достижения заданной точности обработки заготовки. В массовом производстве к приспособлениям предъявляют высокие требования и в отношении производительности. Поэтому такие приспособления, снабжаемые быстродействующими зажимами, представляют собой более сложные конструкции. Однако применение даже самых дорогих приспособлений экономически вполне оправдано.

ОСНОВНЫЕ ЭЛЕМЕНТЫ ПРИСПОСОБЛЕНИЙ

Существуют следующие элементы приспособлений:
установочные - для определения положения обрабатываемой поверхности заготовки относительно режущего инструмента;
зажимные - для закрепления обрабатываемой заготовки;
направляющие - для придания требуемого направления движению режущего инструмента относительно обрабатываемой поверхности;
корпуса приспособлений - основная часть, на которой размещены все элементы приспособлений;
крепежные - для соединения отдельных элементов между собой;
делительные или поворотные, - для точного изменения положения обрабатываемой поверхности заготовки относительно режущего инструмента;
механизированные приводы - для создания усилия зажима. В некоторых приспособлениях установку и зажим обрабатываемой заготовки выполняют одним механизмом, называемым установочно-зажимным.

Зажимные элементы приспособлений

1 Назначение зажимных элементов
Основное назначение зажимных устройств - обеспечить надежный контакт заготовки с установочными элементами и предотвратить ее смещение относительно них и вибрацию в процессе обработки. Введением дополнительных зажимных устройств увеличивают жесткость технологической системы и этим достигают повышения точности и производительности обработки, уменьшения шероховатости поверхности. На рис. 2 показана схема установки заготовки 1, которую помимо двух основных зажимов Q1 крепят дополнительным устройством Q2, сообщающим системе большую жесткость. Опора 2 самоустанавливающаяся.

Рис. 2 - Схема установки заготовки

Зажимные устройства в ряде случаев используют, чтобы обеспечить правильность установки и центрирования заготовки. В этом случае они выполняют функцию установочно-зажимных устройств. К ним относятся самоцентрирующиеся патроны, цанговые зажимы и др.
Зажимные устройства не применяют при обработке тяжелых, устойчивых заготовок, по сравнению с массой которых силы, возникающие в процессе резания, относительно невелики и приложены так, что не могут нарушить установку заготовки.
Зажимные устройства приспособлений должны быть надежны в работе, просты по конструкции и удобны в обслуживании; они не должны вызывать деформаций закрепляемой заготовки и порчи ее поверхности, не должны сдвигать заготовку в процессе ее закрепления. На закрепление и открепление заготовок станочник должен затрачивать минимум времени н сил. Для упрощения ремонта наиболее изнашиваемые детали зажимных устройств целесообразно делать сменными. При закреплении заготовок в многоместных приспособлениях их зажимают равномерно; при ограниченном перемещении зажимного элемента (клин, эксцентрик) его ход должен быть больше допуска на размер заготовки от установочной базы до места приложения зажимной силы.
Зажимные устройства конструируют с учетом требований техники безопасности.
Место приложения зажимной силы выбирают по условию наибольшей жесткости и устойчивости крепления и минимальной деформации заготовки. При повышении точности обработки необходимо соблюдать условия постоянного значения зажимной силы, направление которой должнo сознавать с расположением опор.

2 Виды зажимных элементов
Зажимные элементы - это механизмы, непосредственно используемые для закрепления заготовок, или промежуточные звенья более сложных зажимных систем.
Наиболее простым видом универсальных зажимов являются зажимные винты, которые приводят в действие насаженными на них ключами, рукоятками или маховичками.
Чтобы предотвратить перемещение зажимаемой заготовки и образование на ней вмятин от винта, а также уменьшить изгиб винта при нажиме на поверхность, не перпендикулярную его оси, на концы винтов помещают качающиеся башмаки (рис. 3, а).
Комбинации винтовых устройств с рычагами или клиньями называются комбинированными зажимами, разновидностью которых являются винтовые прихваты (рис. 3, б). Устройство прихватов позволяет отодвигать или поворачивать их, чтобы можно было удобнее устанавливать обрабатываемую заготовку в приспособлении.

Рис. 3 – Схемы винтовых прихватов

На рис. 4 показаны некоторые конструкция быстродействующих зажимов. Для небольших зажимных сил применяют штыковое (рис. 4, а), а для значительных сил - плунжерное устройство (рис. 4, б). Эти устройства позволяют отводить зажимающий элемент на большое расстояние от заготовки; закрепление происходит в результате поворота стержня на некоторый угол. Пример зажима с откидным упором показан на рис. 4, в. Ослабив гайку-рукоятку 2, отводят упор 3, вращая его вокруг оси. После этого зажимающий стержень 1 отводят вправо на расстояние h. На рис. 4, г приведена схема быстродействующего устройства рычажного типа. При повороте рукоятки 4 штифт 5 скользит по планке 6 с косым срезом, а штифт 2 - по заготовке 1, прижимая ее к упорам, расположенным внизу. Сферическая шайба 3 служит шарниром.

Рис. 4 - Конструкции быстродействующих зажимов

Большие затраты времени и значительные силы, требующиеся для закрепления обрабатываемых заготовок, ограничивают область применения винтовых зажимов и в большинстве случаев делают предпочтительными быстродействующие эксцентриковые зажимы. На рис. 5 изображены дисковый (а), цилиндрический с Г-образным прихватом (б) и конический плавающий (в) зажимы.

Рис. 5 – Различные конструкции зажимов
Эксцентрики бывают круглые, эвольвентные и спиральные (по спирали Архимеда). В зажимных устройствах применяются две разновидности эксцентриков: круглые и криволинейные.
Круглые эксцентрики (рис. 6) представляют собой диск или валик с осью вращения, смещенной на размер эксцентриситета е; условие самоторможения обеспечивается при соотношении D/e ? 4.

Рис. 6 – Схема круглого эксцентрика

Достоинство круглых эксцентриков заключается в простоте их изготовления; основной недостаток - непостоянство угла подъема a и сил зажима Q. Криволинейные эксцентрики, рабочий профиль которых выполняется по эвольвенте или спирали Архимеда, имеют постоянный угол подъема a, а, следовательно, обеспечивают постоянство силы Q при зажиме любой точки профиля.
Клиновой механизм применяют как промежуточное звено в сложных зажимных системах. Он прост в изготовлении, легко размещается в приспособлении, позволяет увеличивать и изменять направление передаваемой силы. При определенных углах клиновой механизм обладает свойствами самоторможения. Для односкосного клина (рис. 7, а) при передаче сил под прямым углом может быть принята следующая зависимость (при j1=j2=j3=j, где j1...j3 - углы трения):
P=Qtg(a±2j),

Где Р - осевая сила;
Q - сила зажима.
Самоторможение будет иметь место при a Для двухскосного клина (рис.7, б) при передаче сил под углом b>90° зависимость между Р и Q при постоянном угле трения (j1=j2=j3=j) выражается следующей формулой

Р = Q sin (a + 2j/cos (90°+a-b+2j).

Рычажные зажимы применяют в сочетании с другими элементарными зажимами, образуя более сложные зажимные системы. С помощью рычага можно изменять величину и направление передаваемой силы, а также осуществлять одновременное и равномерное закрепление заготовки в двух местах.

Рис.7 – Схемы односкосного клина (а) и двухскосного клина (б)

На рис.8 приведены схемы действия сил в одноплечих и двуплечих прямых и изогнутых зажимах. Уравнения равновесия для этих рычажных механизмов имеют следующий вид:
для одноплечего зажима (рис.8, а)
,
для прямого двуплечего зажима (рис. 8, б)
,
для двуплечего изогнутого зажима (для l1 ,
где r - угол трения;
f - коэффициент трения.

Рис. 8 - Схемы действия сил в одноплечих и двуплечих прямых и изогнутых зажимах

В качестве установочных элементов для наружных или внутренних поверхностей тел вращения применяют центрирующие зажимные элементы: цанги, разжимные оправки, зажимные втулки с гидропластом, а также мембранные патроны.
Цанги представляют собой разрезные пружинящие гильзы, конструктивные разновидности которых показаны на рис. 9 (а - с натяжной трубкой; б - с распорной трубкой; в - вертикального типа). Их выполняют из высокоуглеродистых сталей, например У10А, и термически обрабатывают до твердости HRC 58...62 в зажимной и до твердости HRC 40...44 в хвостовой частях. Угол конуса цанги a=30. . .40°. При меньших углах возможно заклинивание цанги. Угол конуса сжимающей втулки делают на 1° меньше или больше угла конуса цанги. Цанги обеспечивают эксцентричность установки (биение) не более 0,02...0,05 мм. Базовую поверхность заготовки следует обрабатывать по 9...7-му квалитетам точности.
Разжимные оправки различных конструкций (включая конструкции с применением гидропласта) относятся к установочно-зажимным приспособлениям.
Мембранные патроны используют для точного центрирования заготовок по наружной или внутренней цилиндрической поверхности. Патрон (рис. 10) состоит из круглой, привертываемой к планшайбе станка мембраны 1 в форме пластины с симметрично расположенными выступами-кулачками 2, количество которых выбирают в пределах 6...12. Внутри шпинделя проходит шток 4 пневмоцилиндра. При включении пневматики мембрана прогибается, раздвигая кулачки. При отходе штока назад мембрана, стремясь вернуться в исходное положение, сжимает своими кулачками заготовку 3.

Рис. 10 – Схема мембранного патрона

Реечно-рычажный зажим (рис. 11) состоит из рейки 3, зубчатого колеса 5, сидящего на валу 4, и рычага рукоятки 6. Вращая рукоятку против часовой стрелки, опускают рейку и прихватом 2 закрепляют обрабатываемую заготовку 1. Зажимная сила Q зависит от значения силы Р, приложенной к рукоятке. Устройство снабжается замком, который, заклинивая систему, предупреждает обратный поворот колеса. Наиболее распространены следующие виды замков.

Рис. 11 - Реечно-рычажный зажим

Роликовый замок (рис. 12, а) состоит из поводкового кольца 3 с вырезом для ролика 1, соприкасающегося со срезанной плоскостью валика 2 зубчатого колеса. Поводковое кольцо 3 скреплено с рукояткой зажимного устройства. Вращая рукоятку по стрелке, передают вращение на вал зубчатого колеса через ролик 1. Ролик заклинивается между поверхностью расточки корпуса 4 и срезанной плоскостью валика 2 и препятствует обратному вращению.

Рис. 12 – Схемы различных конструкций замков

Роликовый замок с прямой передачей момента от поводка на валик показан на рис. 12, б. Вращение от рукоятки через поводок передается непосредственно на вал 6 колеса. Ролик 3 через штифт 4 поджат слабой пружиной 5. Так как зазоры в местах касания ролика с кольцом 1 и валом 6 при этом выбирают, система мгновенно заклинивается при снятии силы с рукоятки 2. Поворотом рукоятки в обратную сторону ролик расклинивается и вращает вал по часовой стрелке.
Конический замок (рис. 12, в) имеет коническую втулку 1 и вал 2 с конусом 3 и рукояткой 4. Спиральные зубья на средней шейке вала находятся в зацеплении с рейкой 5. Последняя связана с исполнительным зажимающим механизмом. При угле наклона зубьев 45° осевая сила на валу 2 равна (без учета трения) зажимной силе.
Эксцентриковый замок (рис. 12, г) состоит из вала 2 колеса, на котором заклинен эксцентрик 3. Вал приводится во вращение кольцом 1, скрепленным с рукояткой замка; кольцо вращается в расточке корпуса 4, ось которой смещена от оси вала на расстояние е. При обратном вращении рукоятки передача на вал происходит через штифт 5. В процессе закрепления кольцо 1 заклинивается между эксцентриком и корпусом.
Комбинированные зажимные устройства представляют собой сочетание элементарных зажимов различного типа. Их применяют для увеличения зажимной силы и уменьшения габаритов приспособления, а также для создания наибольших удобств управления. Комбинированные зажимные устройства могут также обеспечивать одновременное крепление заготовки в нескольких местах. Виды комбинированных зажимов приведены на рис. 13.
Сочетание изогнутого рычага и винта (рис. 13, а) позволяет одновременно закреплять заготовку в двух местах, равномерно повышая зажимные силы до заданного значения. Обычный поворотный прихват (рис. 13, б) представляет собой сочетание рычажного и винтового зажимов. Ось качания рычага 2 совмещена с центром сферической поверхности шайбы 1, которая разгружает шпильку 3 от изгибающих усилий. Показанный на рис. 13, в прихват с эксцентриком является примером быстродействующего комбинированного зажима. При определенном соотношении плеч рычага можно увеличить зажимную силу или ход зажимающего конца рычага.

Рис. 13 - Виды комбинированных зажимов

На рис. 13, г показано устройство для закрепления в призме цилиндрической заготовки посредством накидного рычага, а на рис. 13, д - схема быстродействующего комбинированного зажима (рычаг и эксцентрик), обеспечивающего боковое и вертикальное прижатие заготовки к опорам приспособления, так как сила зажима приложена под углом. Аналогичное условие обеспечивается устройством, изображенным на рис. 13, е.
Шарнирно-рычажные зажимы (рис. 13, ж, з, и) являются примерами быстродействующих зажимных устройств, приводимых в действие поворотом рукоятки. Для предотвращения самооткрепления рукоятку переводят через мертвое положение до упора 2. Сила зажима зависит от деформации системы и ее жесткости. Желаемую деформацию системы устанавливают регулировкой нажимного винта 1. Однако наличие допуска на размер Н (рис. 13, ж) не обеспечивает постоянства зажимной силы для всех заготовок данной партии.
Комбинированные зажимные устройства приводятся в действие вручную или от силовых узлов.
Зажимные механизмы для многоместных приспособлений должны обеспечивать одинаковую силу зажима на всех позициях. Простейшим многоместным приспособлением является оправка, на которую устанавливают пакет заготовок (кольца, диски), закрепляемых по торцевым плоскостям одной гайкой (последовательная схема передачи зажимной силы). На рис. 14, а показан пример зажимного устройства, работающего по принципу параллельного распределения зажимной силы.
Если нужно обеспечить концентричность базовой и обрабатываемой поверхностей и предотвратить деформирование обрабатываемой заготовки, применяют упругие зажимные устройства, где зажимное усилие посредством заполнителя или другого промежуточного тела равномерно передается на зажимный элемент приспособления (в пределах упругих деформаций).

Рис. 14 - Зажимные механизмы для многоместных приспособлений

В качестве промежуточного тела применяют обычные пружины, резину или гидропласт. Зажимное устройство параллельного действия с использованием гидропласта показано на рис. 14, б. На рис. 14, в приведено устройство смешанного (параллельно- последовательного) действия.
На станках непрерывного действия (барабанно-фрезерные, специальные многошпиндельные сверлильные) заготовки устанавливают и снимают, не прерывая движения подачи. Если вспомогательное время перекрывается машинным, то для закрепления заготовок можно применять зажимные устройства различных типов.
В целях механизации производственных процессов целесообразно использовать зажимные устройства автоматизированного типа (непрерывного действия), приводимые в действие механизмом подачи станка. На рис. 15, а приведена схема устройства с гибким замкнутым элементом 1 (трос, цепь) для закрепления цилиндрических заготовок 2 на барабанно-фрезерном станке при обработке торцевых поверхностей, а на рис. 15, б - схема устройства для закрепления заготовок поршней на многошпиндельном горизонтально-сверлильном станке. В обоих устройствах операторы только устанавливают и снимают заготовку, а закрепление заготовки происходит автоматичес

Рис. 15 - Зажимные устройства автоматизированного типа

Эффективным зажимным устройством для удержания заготовок из тонколистового материала при их чистовой обработке или отделке является вакуумный прижим. Сила зажима определяется по формуле

Q=Ap,
где A - активная площадь полости устройства, ограниченной уплотнением;
p=10 5 Па - разность атмосферного давления и давления в полости устройства, из которого удаляется воздух.
Электромагнитные зажимные устройства применяют для закрепления обрабатываемых заготовок из стали и чугуна с плоской базовой поверхностью. Зажимные устройства обычно выполняют в виде плит и патронов, при конструировании которых в качестве исходных данных принимают размеры и конфигурацию обрабатываемой заготовки в плане, ее толщину, материал и необходимую удерживающую силу. Удерживающая сила электромагнитного устройства в значительной степени зависит от толщины обрабатываемой детали; при малых толщинах не весь магнитный поток проходит через поперечное сечение детали, и часть линий магнитного потока рассеивается в окружающее пространство. Детали, обрабатываемые на электромагнитных плитах или патронах, приобретают остаточные магнитные свойства - их размагничивают, пропуская их через соленоид, питаемый переменным током.
В магнитных зажимных устройствах основными элементами являются постоянные магниты, изолированные один от другого немагнитными прокладками и скрепленные в общий блок, а заготовка представляет собой якорь, через который замыкается магнитный силовой поток. Для открепления готовой детали блок сдвигают с помощью эксцентрикового или кривошипного механизма, при этом магнитный силовой поток замыкается на корпус устройства, минуя деталь.

СПИСОК ЛИТЕРАТУРЫ

    Автоматизация проектно-конструкторских работ и технологической
    подготовки производства в машиностроении /Под общ. ред. О. И. Семенкова.
    Т. I, II. Минск, Вышэйшая школа, 1976. 352 с.
    Ансеров М: А. Приспособления для металлорежущих станков. М.:
    Машиностроение, 1975. 656 с.
    Блюмберг В. А., Близнюк В. П. Переналаживаемые станочные приспособления. Л.: Машиностроение, 1978. 360 с.
    Болотин X. Л., Костромин Ф. П. Станочные приспособления. М.:
    Машиностроение, 1973. 341 с.
    Горошкин А. К. Приспособления для металлорежущих станков. М.;
    Машиностроение, 1979. 304 с.
    Капустин Н. М. Ускорение технологической подготовки механосборочного производства. М.: Машиностроение, 1972. 256 с.
    Корсаков В. С. Основы конструирования приспособлений в машиностроении. М.: Машиностроение,-1971. 288 с.
    Косов Н. П. Станочные приспособления для деталей, сложной формы.
    М.: Машиностроение, 1973, 232 с.
    Кузнецов В. С, Пономарев В, А. Универсально-сборные приспособления в машиностроении. М.: Машиностроение, 1974, 156 с.
    Кузнецов Ю. И. Технологическая оснастка к станкам с программным
    управлением. М.: Машиностроение, 1976, 224 с.
    Основы технологии машиностроения./Под ред. В. С. Корсакова. М.:
    Машиностроение. 1977, с. 416.
    Фираго В. П. Основы проектирования технологических процессов и приспособлений, M.: Машиностроение, 1973. 467 с.
    Терликова Т.Ф. и др. Основы конструирования приспособлений: Учеб. пособие для машиностроительных вузов. / Т.Ф. Терликова, А.С. Мельников, В.И. Баталов. М.: Машиностроение, 1980. – 119 с., ил.
    Станочные приспособления: Справочник. В 2-х т. / ред. Совет: Б.Н. Вардашкин (пред.) и др. – М.: Машиностроение, 1984.
[Введите текст]

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Донбасская государственная академия строительства

и архитектуры

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по курсу "Технологические основы машиностроения" по теме "Расчет приспособлений"

Утверждена на заседании кафедры "Автомобили и автомобильное хозяйство" протокол №_ от 2005

Макеевка 2005

Методические указания к практическим занятиям по курсу "Технологические основы машиностроения" по теме "Расчет приспособлений" (для студентов специальности 7.090258 Автомобили и автомобильное хозяйство) / Сост. Д.В. Попов, Э.С. Савенко. - Макеевка: ДонГАСА, 2002. -24с.

Изложены основные сведения о станочных приспособлениях, конструкция, основные элементы, представлена методика расчета приспособлений.

Составители: Д.В. Попов, ассистент,

Э.С. Савенко, ассистент.

Ответственный за выпуск С.А. Горожанкин, доцент

Приспособления4

Элементы приспособлений5

    Установочные элементы приспособлений6

    Зажимные элементы приспособлений9

    Расчет сил для закрепления заготовок12

    Устройства для направления и определения положения 13 режущих инструментов

    Корпуса и вспомогательные элементы приспособлений14

Общая методика расчета приспособлений15

Расчет кулачковых патронов на примере точения16

Литература19

Приложения20

ПРИСПОСОБЛЕНИЯ

Все приспособления по технологическому признаку возможно разделить на следующие группы:

1. Станочные приспособления для установки и закрепления обрабатываемых заготовок в зависимости от вида механической обработки подразделяют на приспособления для токарных, сверлильных, фрезерных, шлифовальных, многоцелевых и других станков. Эти приспособления осуществляют связь заготовки со станком.

2. Станочные приспособления для установки и закрепления рабочего инструмента (их называют также вспомогательным инструментом) осуществляют связь между инструментом и станком. К ним относятся патроны для сверл, разверток, метчиков; многошпиндельные сверлильные, фрезерные, револьверные головки; инструментальные державки, блоки и т. п.

С помощью приспособлений указанных выше групп осуществляют наладку системы станок - заготовка - инструмент.

    Сборочные приспособления используют для соединения сопрягаемых деталей изделия, применяют для крепления базовых деталей, обеспечения правильной установки соединяемых элементов изделия, предварительной сборки упругих элементов (пружин, разрезных колец) и др.;

    Контрольные приспособления применяют для проверки отклонения размеров, формы и взаимного расположения поверхностей, сопряжении сборочных единиц и изделий, а также для контроля конструктивных параметров, получающихся в процессе сборки.

    Приспособления для захвата, перемещения и переворота тяжелых, а в автоматизированном производстве и ГПС и легких обрабатываемых заготовок и собираемых изделий. Приспособления являются рабочими органами промышленных роботов, встраиваемых в автоматизированных производствах и в ГПС.

К захватным приспособлениям предъявляют ряд требований:

надежность захвата и удержание заготовки; стабильность базирования; универсальность; высокая гибкость (легкая и быстрая переналадка); малые габаритные размеры и масса. В большинстве случаев применяют механические захватные устройства. Примеры схем схватов различных захватных устройств показаны на рис. 18.3. Широкое применение также находят захватные приспособления магнитные, вакуумные и с эластичными камерами.

Все описанные группы приспособлений в зависимости от типа производства могут быть ручными, механическими, полуавтоматическими и автоматическими, а в зависимости от степени специализации - универсальными, специализированными и специальными.

В зависимости от степени унификации и стандартизации в машиностроении и приборостроении в соответствии с требованиями Единой системы технологической подготовки производства (ЕСТПП) утверждено

семь стандартных систем станочных приспособлений.

В практике со временного производства сложились следующие системы приспособлений.

Универсально-сборные приспособления (УСП) компонуют из окончательно обработанных взаимозаменяемых стандартных универсальных элементов. Их используют в качестве специальных обратимых приспособлений кратковременного действия. Они обеспечивают установку и фиксацию различных деталей в пределахгабаритных возможностей комплекта УСП.

Специальные сборно-разборные приспособления (СРП) компонуют из стандартных элементов в результате дополнительной их механической обработки и используют как специальные необратимые приспособления долгосрочного действия из обратимых элементов.

Неразборные специальные приспособления (НСП) компонуют с применением стандартных деталей и узлов общего назначения как необратимые приспособления долгосрочного действия из необратимых деталей и узлов. Они состоят из двух частей: унифицированной базовой части и сменной насадки. Приспособления этой системы используют при ручной обработке деталей.

Универсально-безналадочные приспособления (УБП)-наиболее распространенная система в условиях серийного производства. Эти приспособления обеспечивают установку и фиксацию обрабатываемых деталей любых изделий малых и средних габаритов. При этом установка детали связана с необходимостью контроля и ориентации в пространстве. Такие приспособления обеспечивают выполнение широкой номенклатуры операций обработки.

Универсально-наладочные приспособления (УНП) обеспечиваютустановку при помощи специальных наладок, фиксацию обрабатываемых деталей малых и средних габаритов и выполнение широкой номенклатуры операций обработки.

Специализированные наладочные приспособления (СНП) обеспечивают по определенной схеме базирования при помощи специальных наладок и фиксацию родственных по конструкциям деталей для осуществления типовой операции. Все перечисленные системы приспособлений относятся к категории унифицированных.

ЭЛЕМЕНТЫ ПРИСПОСОБЛЕНИЙ

Основными элементами приспособлений являются установочные, зажимные, направляющие, делительные (поворотные), крепежные детали, корпуса и механизированные приводы. Их назначение следующее:

    установочные элементы - для определения положения обрабатываемой заготовки относительно приспособления и положения обрабатываемой поверхности относительно режущего инструмента;

    зажимные элементу - для закрепления обрабатываемой заготовки;

направляющие элементы - для осуществления требуемого направления движения инструмента;

    делительные или поворотные элементы - для точного изменения положения обрабатываемой поверхности заготовки относительно режущего инструмента;

    крепежные элементы - для соединения отдельных элементов между собой;

    корпуса приспособлений (как базовых деталей) - для размещения на них всех элементов приспособлений;

    механизированные приводы - для автоматического закрепления обрабатываемой заготовки.

К элементам приспособлений относятся также захватные устройства различных устройств (роботов, транспортных устройств ГПС) для захвата, зажима (разжима) и перемещения обрабатываемых заготовок или собираемых сборочных единиц.

1 Установочные элементы приспособлений

Установка заготовок в приспособлениях или на станках, а также сборка деталей включает в себя их базирование и закрепление.

Необходимость закрепления (силового замыкания) при обработке заготовки в приспособлениях очевидна. Для точной обработки заготовок необходимо: осуществлять ее правильное расположение по отношению к устройствам оборудования, определяющим траектории движения инструмента или самой заготовки;

обеспечивать постоянство контакта баз с опорными точками и полную неподвижность заготовки относительно приспособления в процессе ее обработки.

Для полной ориентации во всех случаях при закреплении заготовка должна быть лишена всех шести степеней свободы (правило шести точек в теории базирования); в некоторых случаях возможно отступление от этого правила.

С этой целью применяют основные опоры, число которых должно быть равно числу степеней свободы, которых лишается заготовка. Для повышения жесткости и виброустойчивости обрабатываемых заготовок в приспособлениях применяют вспомогательные регулируемые и самоустанавливающиеся опоры.

Для установки заготовки в приспособлении плоской поверхностью применяют стандартизованные основные опоры в виде штырей со сферической, насеченной и плоской головками, шайб, опорных пластин. Если невозможно установить заготовку только на основные опоры, применяют вспомогательные опоры. В качестве последних могут быть использованы стандартизованные регулируемые опоры в виде винтов со сферической опорной поверхностью и самоустанавливающиеся опоры.

Рисунок 1 Стандартизованные опоры:

а -е - постоянные опоры (штыри): а - плоская поверхность; б - сферическая; в - насеченная; г - плоская с установкой в переходную втулку; д - опорная шайба; е - опорная пластина; ж - регулируемая опора з -самоустанавливающаяся опора

Сопряжения опор со сферической, насеченной и плоской головками скорпусом приспособления выполняют по посадкеили . Применяютустановку таких опор и через промежуточные втулки, которые сопрягаются сотверстиями корпуса по посадке.

Примеры стандартизованных основных и вспомогательных опор приведены на рисунке 1.

Для установки заготовки по двум цилиндрическим отверстиям и перпендикулярной к их осям плоской поверхности применяют


Рисунок 2. Схема базирования по торцу и отверстию:

а – на высокий палец; б – на низкий палец


стандартизованные плоские опоры и установочные пальцы. Чтобы избежать заклинивания заготовок при установке их на пальцы по точным двум отверстиям (Д7) один из установочных пальцев должен быть срезанным, а другой - цилиндрическим.

Установка деталей на два пальца и плоскость нашла широкое применение при обработке заготовок на автоматических и поточных линиях, многоцелевых станках и в ГПС.

Схемы базирования по плоскости и отверстиям с применением установочных пальцев можно разделить на три группы: по торцу и отверстию (рис. 2); по плоскости, торцу и отверстию (рис. 3); по плоскости и двум отверстиям (рис. 4).

Рис. 19.4. Схема базирования по плоскости и двум отверстиям

Рекомендуется установка заготовки на один палец по посадке или , а на два пальца – по.

И
з рис.2 следует, что установка заготовки по отверстию на длинный цилиндрический несрезаный палец лишает еечетырех степеней свободы (двойная направляющая база), а установка на торец-одной степени свободы (опорная база). Установка заготовки на короткий палец лишает ее двух степеней свободы (двойная опорная база), но торец в этом случае является установочной базой и лишает заготовку трех степеней свободы. Для полного базирования необходимо создать силовое замыкание, т. е. приложить силы зажима. Из рис.3 следует, что плоскость основания заготовки является установочной базой, длинное отверстие, в которое входит срезанный палец с параллельной относительно плоскости осью, - направляющей базой (заготовка лишается двух степеней) и торец заготовки - опорной базой.

Рисунок.3. Схема базирования по плоскости, Рисунок 4 Схема базирования по

торцу и отверстию плоскости и двум отверстиям

На рис. 4 показана заготовка, которую устанавливают по плоскости и двум отверстиям. Плоскость является установочной базой. Отверстия, центрируемые цилиндрическим пальцем, являются двойной опорной базой, а срезанным - опорной базой. Приложенные силы (показаны стрелкой на рис. 3 и 4) обеспечивают точность базирования.

Пальцем, являются двойной опорной базой, а срезанным – опорной базой. Приложенные силы (показаны стрелкой на рис. 3 и 4) обеспечивают точность базирования.

Для установки заготовок наружной поверхностью и перпендикулярной к ее оси торцовой поверхностью применяют опорные и установочные призмы (подвижные и неподвижные), а также втулки и патроны.

К элементам приспособлений относятся установи и щупы для настройки станка на необходимый размер. Так, стандартизованные установы для фрез на фрезерных станках могут быть:

высотные, высотные торцовые, угловые и угловые торцовые.

Плоские щупы изготовляют толщиной 3-5 мм, цилиндрические - диаметром 3-5 мм с точностью по 6-му квалитету (h 6) и подвергают закалке 55-60 HRC 3 , шлифуют (параметр шероховатости Ra = 0,63 мкм).

Исполнительные поверхности всех установочных элементов приспособлений должны обладать большой износостойкостью и высокой твердостью. Поэтому их изготовляют из конструкционных и легированных сталей 20, 45, 20Х, 12ХНЗА с последующей цементацией и закалкой до 55-60 HRC3 (опоры, призмы, установочные пальцы, центры) и инструментальных сталей У7 и У8А с закалкой до 50-55 HRG, (опоры с диаметром меньше 12 мм; установочные пальцы с диаметром менее 16 мм; установы и щупы).

Зажимные устройства станков


К атегория:

Металлорежущие станки

Зажимные устройства станков

Процесс питания станков-автоматов заготовками осуществляется при тесном взаимодействии загрузочных устройств и автоматических зажимных приспособлений. Во многих случаях автоматические зажимные устройства являются элементом конструкции станка или его неотъемлемой принадлежностью. Поэтому, несмотря на наличие специальной литературы, посвященной зажимным приспособлениям, представляется необходимым вкратце остановиться на некоторых характерных конструкциях,

Подвижные элементы автоматических зажимных приспособлений получают движение от соответствующих управляемых приводов, в качестве которых могут быть использованы механические управляемые приводы, получающие движение от основного привода рабочего органа или от независимого электродвигателя, кулачковые приводы, гидравлические, пневматические и пневмогидравлические приводы. Отдельные подвижные элементы зажимных приспособлений могут получать движение как от общего, так и от нескольких независимых приводов.

Рассмотрение конструкций специальных приспособлений, которые в основном определяются конфигурацией и размерами конкретной обрабатываемой детали, не входит в задачи настоящей работы, и мы ограничимся ознакомлением с некоторыми зажимными приспособлениями широкого назначения.

Зажимные патроны. Имеется большое число конструкций самоцентрирующих патронов в большинстве случаев с поршневым гидравлическим и пневматическим приводом, которые применяются на токарных, револьверных и шлифовальных станках. Эти патроны, обеспечивая надежный зажим и хорошее центрирование обрабатываемой детали, имеют небольшой расход кулачков, из-за чего при переходе от обработки одной партии деталей к другой патрон необходимо перестраивать и для обеспечения высокой точности центрирования обрабатывать центрирующие поверхности кулачков на месте; при этом закаленные кулачки шлифуются, а сырые - обтачиваются или растачиваются.

Одна из распространенных конструкций зажимного патрона с пневматическим поршневым приводом представлена на рис. 1. Пневматический цилиндр закрепляется с помощью промежуточного фланца на конце шпинделя. Подвод воздуха к пневматическому цилиндру осуществляется через буксу, сидящую на подшипниках качения на хвостовике крышки цилиндра. Поршень цилиндра связан штоком с зажимным механизмом патрона. Пневматический патрон прикрепляется к фланцу, установленному на переднем конце шпинделя. Головка, закрепленная на конце штока, имеет наклонные пазы, в которые входят Г-образные выступы кулачков. При перемещении головки вместе со штоком вперед кулачки сближаются, при движении назад - расходятся.

На основных кулачках, имеющих Т-образные пазы, закрепляются накладные кулачки, которые устанавливаются в соответствии с диаметром зажимаемой поверхности обрабатываемой детали.

Благодаря небольшому числу промежуточных звеньев, передающих движение кулачкам, и значительным размерам трущихся поверхностей патроны описанной конструкции обладают сравнительно высокой жесткостью и долговечностью.

Рис. 1. Пневматическии зажимный патрон.

В ряде конструкций пневматических патронов используются рычажные передачи. Такие патроны обладают меньшей жесткостью и вследствие наличия ряда шарнирных соединений изнашиваются быстрее.

Вместо пневматического цилиндра может быть использован пневмо-мембранный привод или гидравлический цилиндр. Вращающиеся вместе со шпинделем цилиндры, особенно при высоком числе оборотов шпинделя, требуют тщательной балансировки, что является недостатком данного варианта конструкции.

Поршневой привод может быть установлен неподвижно соосно со шпинделем, а шток цилиндра связан с зажимным штоком муфтой, обеспечивающей свободное вращение зажимного штока вместе со шпинделем. Шток неподвижного цилиндра может быть связан с зажимным штоком также системой промежуточных механических передач. Такие схемы применимы при наличии самотормозящихся механизмов в приводе зажимного приспособления, так как в ином случае шпиндельные подшипники будут нагружаться значительными осевыми усилиями.

Наряду с самоцентрирующими патронами применяются также двух-кулачковые патроны со специальными кулачками, получающими движение от указанных выше приводов, и специальные патроны.

Подобные же приводы используются при закреплении деталей на различных разжимных оправках.

Цанговые зажимные устройства. Цанговые зажимные устройства являются элементом конструкции револьверных станков и токарных автоматов, предназначенных для изготовления деталей из прутка. Вместе с тем они находят широкое применение и в специальных зажимных приспособлениях.

Рис. 2. Цанговые зажимные устройства.

В практике встречаются цанговые зажимные устройства трех типов.

Цанга, имеющая несколько продольных надрезов, центрируется задним цилиндрическим хвостом в отверстии шпинделя, а передним коническим - в отверстии колпака. При зажиме труба перемещает цангу вперед и ее передняя коническая часть входит в коническое отверстие колпака шпинделя. При этом цанга сжимается и зажимает пруток или обрабатываемую деталь. Зажимное устройство данного типа имеет ряд существенных недостатков.

Точность центрирования обрабатываемой детали в значительной мере определяется соосностью конической поверхности колпака и оси вращения шпинделя. Для этого необходимо достигнуть соосности конического отверстия колпака и его цилиндрической центрирующей поверхности, соосности центрирующего буртика и оси вращения шпинделя и минимального зазора между центрирующими поверхностями колпака и шпинделя.

Так как выполнение указанных условий представляет значительные трудности, то цанговые устройства данного типа не обеспечивают хорошего центрирования.

Кроме того, в процессе зажима цанга, перемещаясь вперед, захватывает пруток, который перемещается при этом вместе с цангой, что может

привести к изменению размеров обрабатываемых деталей по длине и к появлению больших давлений на упор. В практике имеют место случаи, когда вращающийся пруток, прижатый с большой силой к упору, приваривается к последнему.

Достоинством данной конструкции является возможность использования шпинделя малого диаметра. Однако, поскольку диаметр шпинделя в значительной мере определяется другими соображениями и в первую очередь его жесткостью, то данное обстоятельство в большинстве случаев не имеет существенного значения.

Вследствие указанных недостатков данный вариант цангового зажимного устройства находит ограниченное применение.

Цанга имеет обратный конус, и при зажиме материала труба втягивает цангу в шпиндель. Данная конструкция обеспечивает хорошее центрирование, так как центрирующий конус расположен непосредственно в шпинделе. Недостатком конструкции является перемещение материала вместе с цангой в процессе зажима, что приводит к изменению размеров обрабатываемой детали, однако не вызывает никаких осевых нагрузок на упор. Некоторым недостатком является также слабость сечения в месте резьбового соединения. Диаметр шпинделя увеличивается незначительно по сравнению с предыдущим вариантом.

Вследствие отмеченных достоинств и простоты конструкции данный вариант находит широкое применение на револьверных станках и многошпиндельных токарных автоматах, шпиндели которых должны иметь минимальный диаметр.

Вариант, показанный на рис. 2, в, отличается от предыдущего тем, что в процессе зажима цанга, упирающаяся передней торцовой поверхностью в колпак, остается неподвижной, а под действием трубы перемещается гильза. Коническая поверхность гильзы надвигается на наружную коническую поверхность цанги, и последняя сжимается. Поскольку цанга в процессе зажима остается неподвижной, то при данной конструкции не происходит смещения обрабатываемого прутка. Гильза имеет хорошее центрирование в шпинделе, а обеспечение соосности внутренней конической и наружных центрирующих поверхностей гильзы не представляет технологических трудностей, благодаря чему данная конструкция обеспечивает достаточно хорошее центрирование обрабатываемого прутка.

При освобождении цанги труба отводится влево и гильза перемещается под действием пружины.

Для того чтобы силы трения, возникающие в процессе зажима на торцовой поверхности лепестков цанги, не уменьшали бы усилие зажима, торцовой поверхности придается коническая форма с углом, несколько превышающим угол трения.

Данная конструкция сложнее предыдущей и требует увеличения диаметра шпинделя. Однако вследствие отмеченных достоинств она находит широкое применение на одношпиндельных автоматах, где увеличение диаметра шпинделя не имеет существенного значения, и на ряде моделей револьверных станков.

Размеры наиболее распространенных цанг нормируются соответствующим ГОСТ . Цанги больших размеров выполняются со сменными губками, что позволяет уменьшить количество цанг в комплекте и при износе губок заменять их новыми.

Поверхность губок цанг, работающих при больших нагрузках, имеет насечку, что обеспечивает передачу больших усилий зажимаемой детали.

Зажимные цанги изготовляются из сталей У8А, У10А, 65Г, 9ХС. Рабочая часть цанги закаливается до твердости HRC 58-62. Хвостовая

часть подвергается отпуску до твердости HRC 38-40. Для изготовления цанг применяются также цементируемые стали, в частности сталь 12ХНЗА.

Труба, перемещающая зажимную цангу, сама получает движение от одного из перечисленных видов приводов через ту или иную систему промежуточных передач. Некоторые конструкции промежуточных передач для перемещения зажимной трубы представлены на рис. IV. 3.

Зажимная труба получает движение от сухарей, представляющих собой часть втулки с выступом, заходящим в паз шпинделя. Сухари опираются на хвостовые выступы зажимной трубы, которые удерживают их в требуемом положении. Сухари получают движение от рычагов, Г-образные концы которых заходят в торцовую выточку втулки 6, сидящей на шпинделе. При зажиме цанги втулка перемещается влево и, воздействуя внутренней конической поверхностью на концы рычагов, поворачивает их. Поворот происходит относительно точек контакта Г-образных выступов рычагов с выточкой втулки. При этом пятки рычагов нажимают на сухари. На чертеже механизмы показаны в положении, соответствующем окончанию зажима. В этом положении механизм оказывается замкнутым, а втулка разгружена от осевых усилий.

Рис. 3. Механизм перемещения зажимной трубы.

Регулирование усилия зажима осуществляется гайками, с помощью которых перемещается втулка. Чтобы избежать необходимости увеличения диаметра шпинделя, на него посажено резьбовое кольцо, которое упирается в полукольца, заходящие в канавку шпинделя.

В зависимости от диаметра зажимной поверхности, который может колебаться в пределах допуска, зажимная труба будет занимать различное положение в осевом направлении. Отклонения в положении трубы компенсируются деформацией рычагов. В других конструкциях вводятся специальные пружинные компенсаторы.

Данный вариант находит широкое применение на одношпиндельных токарных автоматах. Имеются многочисленные конструктивные модификации, отличающиеся формой рычагов.

В ряде конструкций рычаги заменяются расклинивающими шариками или роликами. На конце зажимной трубы на резьбе сидит фланец. При зажиме цанги фланец вместе с трубой перемещается влево. Фланец получает движение от гильзы, воздействующей через ролик на диск. При перемещении гильзы влево, ее внутренняя коническая поверхность заставляет бочкообразные ролики перемещаться к центру. При этом ролики, двигаясь по конической поверхности шайбы, смещаются влево, перемещая в этом же направлении диск и фланец с зажимной трубой. Все детали смонтированы на втулке, установленной на конце шпинделя. Усилие зажима регулируется навинчиванием фланца на трубу. В требующемся положении фланец застопоривается с помощью фиксатора. Механизм может быть снабжен упругим компенсатором в виде тарельчатых пружин, что позволяет использовать его для зажима прутков с большими допусками на диаметр.

Подвижные гильзы, осуществляющие зажим, получают движение от кулачковых механизмов токарных автоматов или от поршневых приводов. Зажимная труба может быть также непосредственно связана с поршневым приводом.

Приводы зажимных приспособлений многопозиционных станков. Каждое из зажимных приспособлений многопозиционного станка может иметь свой, обычно поршневой привод, либо подвижные элементы зажимного приспособления могут получать движение от привода, установленного в загрузочной позиции. В последнем случае механизмы зажимного приспособления, попадающие в загрузочную позицию, связываются с механизмами привода. По окончании зажима эта связь прекращается.

Последний вариант широко используется на многошпиндельных токарных автоматах. В позиции, в которой происходит подача и зажим прутка, установлен ползун с выступом. При повороте шпиндельного блока выступ входит в кольцевую канавку подвижной гильзы зажимного механизма и в соответствующие моменты перемещает гильзу в осевом направлении.

Подобный принцип может быть в ряде случаев использован для перемещения подвижных элементов зажимных приспособлений, установленных на многопозиционных столах и барабанах. Серьга зажимается между неподвижной и подвижной призмами зажимного приспособления, установленного на многопозиционном столе. Призма получает движение от ползуна с клиновым скосом. При зажиме плунжер, на котором нарезана зубчатая рейка, перемещается вправо. Через зубчатую шестерню движение передается ползуну, который клиновым скосом перемещает призму к призме. При освобождении зажатой детали вправо перемещается плунжер, который шестерней также связан с ползуном.

Плунжеры могут получать движение от поршневых приводов, установленных в загрузочной позиции, или от соответствующих звеньев кулачковых механизмов. Зажим и освобождение детали может производиться также в процессе поворота стола. При зажиме плунжер, снабженный роликом, набегает на неподвижный кулак, установленный между загрузочной и первой рабочей позициями. При освобождении плунжер набегает на кулак, расположенный между последней рабочей и загрузочной позициями. Плунжеры располагаются в разных плоскостях. Для компенсации отклонений в размерах зажимаемой детали вводятся упругие компенсаторы.

Следует заметить, что подобные простые решения недостаточно используются при проектировании зажимных приспособлений для многопозиционных станков при обработке некрупных деталей.

Рис. 4. Зажимное приспособление многопозиционного станка, работающее от привода, установленного в загрузочной позиции.

При наличии индивидуальных поршневых двигателей у каждого из зажимных приспособлений многопозиционного станка к поворотному столу или барабану должен быть подведен сжатый воздух или масло под давлением. Устройство для подвода сжатого воздуха или масла аналогично описанному выше устройству вращающегося цилиндра. Применение подшипников качения в данном случае излишне, так как скорость вращения мала.

Каждое из приспособлений может иметь индивидуальный распределительный кран или золотник, либо для всех зажимных приспособлений может быть использовано общее распределительное устройство.

Рис. 5. Распределительное устройство поршневых приводов зажимных приспособлений многопозиционного стола.

Индивидуальные краны или распределительные устройства переключаются вспомогательными приводами, установленными в загрузочной позиции.

Общее распределительное устройство последовательно подключает поршневые приводы зажимных приспособлений по мере поворота стола или барабана. Примерная конструкция подобного распределительного устройства изображена на рис. 5. Корпус распределительного устройства, установленный соосно с осью вращения стола или барабана, вращается вместе с последними, а золотники вместе с осью остаются неподвижными. Золотник управляет подачей сжатого воздуха в полости, а золотник в полости зажимных цилиндров.

Сжатый воздух поступает по каналу в пространство между золотниками и направляется с помощью последних в соответствующие полости зажимных цилиндров. Отработанный воздух уходит в атмосферу через отверстия.

В полости сжатый воздух попадает через отверстие, дуговую канавку и отверстия. Пока отверстия соответствующих цилиндров совпадают с дуговой канавкой, в полости цилиндров поступает сжатый воздух. Когда при очередном повороте стола отверстие одного из цилиндров совместится с отверстием, полость этого цилиндра окажется связанной с атмосферой через кольцевую канавку, канал, кольцевую канавку и канал.

Полости тех цилиндров, в полости которых поступает сжатый воздух, должны быть связаны с атмосферой. Полости соединяются с атмосферой через каналы, дуговую канавку, каналы, кольцевую канавку и отверстие.

В полость цилиндра, находящегося в загрузочной позиции, должен поступать сжатый воздух, который подается через отверстие и каналы.

Таким образом, при повороте многопозиционного стола происходит автоматическое переключение потоков сжатого воздуха.

Аналогичный принцип используется и для управления потоками масла, подаваемого к зажимным приспособлениям многопозиционных станков.

Следует заметить, что подобные же распределительные устройства применяются и на станках для непрерывной обработки с вращающимися столами или барабанами.

Принципы определения усилий, действующих в зажимных приспособлениях. Зажимные приспособления, как правило, проектируются таким образом, чтобы усилия, возникающие в процессе резания, воспринимались бы неподвижными элементами приспособлений. Если те или иные силы, возникающие в процессе резания, воспринимаются подвижными элементами, то величина этих сил определяется на основе уравнений статики трения.

Методика определения сил, действующих в рычажных механизмах цанговых зажимных устройств, аналогична методике, применяемой при определении усилий включения фрикционных муфт с рычажными механизмами.


Назначение зажимных приспособлений – это обеспечение надежного контакта заготовки с установочными элементами и предотвращение смещения и вибрации ее в процессе обработки. На рис.7.6 представлены некоторые виды зажимных устройств.

Требования к зажимным элементам:

Надежность в работе;

Простота конструкции;

Удобство обслуживания;

Не должны вызывать деформацию заготовок и порчу их поверхностей;

Не должны сдвигать заготовку в процессе ее закрепления с установочных элементов;

Закрепление и открепление заготовок должно производиться с минимальной затратой труда и времени;

Зажимные элементы должны быть износостойкими и по возможности сменными.

Виды зажимных элементов:

Зажимные винты , которые вращают ключами, рукоятками или маховичками (см. рис. 7.6)

Рис.7.6 Виды зажимов:

а – зажимной винт; б – винтовой прихват

Быстродействующие зажимы, показанные на рис. 7.7.

Рис.7.7. Виды быстродействующих зажимов:

а – с разрезной шайбой; б – с плунжерным устройством; в – с откидным упором; г – с рычажным устройством

Экцентрированные зажимы, которые бывают круглые, эвольвентные и спиральные (по спирали Архимеда) (рис.7.8).

Рис.7.8. Виды экцентриковых зажимов:

а – дисковый; б – цилиндрический с Г-образным прихватом; г – конический плавающий.

Клиновые зажимы – используется эффект расклинивания и применяется как промежуточное звено в сложных зажимных системах. При определенных углах клиновой механизм обладает свойством самоторможения. На рис. 7.9 изображена расчетная схема действия сил в клиновом механизме.

Рис. 7.9. Расчетная схема сил в клиновом механизме:

а- односкосном; б – двухскосном

Рычажные зажимы применяются в сочетании с другими зажимами, образуя более сложные зажимные системы. С помощью рычага можно изменить как величину, так и направление усилия зажатия, а также осуществлять одновременное и равномерное закрепление заготовки в двух местах. На рис. 7.10 показана схема действия сил в рычажных зажимах.

Рис. 7.10. Схема действия сил в рычажных зажимах.

Цанги представляют собой разрезные пружинные гильзы, разновидности которых показаны на рис.7.11.

Рис. 7. 11. Виды цанговых зажимов:

а – с натяжной трубкой; б – с распорной трубкой; в – вертикального типа

Цанги обеспечивают концентричность установки заготовки в пределах 0,02…0,05 мм. Базовую поверхность заготовки под цанговые зажимы следует обрабатывать по 2…3 классам точности. Цанги выполняют из высокоуглеродистых сталей типа У10А с последующей термообработкой до твердости HRC 58…62. Угол конуса цанги d = 30…40 0 . При меньших углах возможно заклинивание цанги.

Разжимные оправки , виды которых изображены на рис. 7.4.

Роликовый замок (рис.7.12)

Рис. 7.12. Виды роликовых замков

Комбинированные зажимы – сочетание элементарных зажимов различного типа. На рис. 7.13 представлены некоторые виды таких зажимных устройств.

Рис. 7.13. Виды комбинированных зажимных устройств.

Комбинированные зажимные устройства приводятся в действие вручную или от силовых устройств.

Направляющие элементы приспособлений

При выполнении некоторых операций механической обработки (сверления, растачивания) жесткость режущего инструмента и технологической системы в целом оказывается недостаточной. Для устранения упругих отжимов инструмента относительно заготовки применяют направляющие элементы (кондукторные втулки при расточке и сверлении, копиры при обработке фасонных поверхностей и т.д. (см. рис.7.14).

Рис.7.14. Виды кондукторных втулок:

а – постоянные; б – сменные; в – быстросменные

Направляющие втулки изготавливают из стали марки У10А или 20Х с закалкой до твердости HRC 60…65.

Направляющие элементы приспособлений - копиры – применяются при обработке фасонных поверхностей сложного профиля, задача которых направлять режущий инструмент по обрабатываемой поверхности заготовки для получения заданной точности траектории их движения.

gastroguru © 2017