Самодельный генератор из асинхронного электродвигателя. Ветрогенератор с асинхронным двигателем: полезная энергия ветра Генератор из асинхронного для ветряка

Для самодельного ветряка удобно использовать асинхронный генератор. Он сразу вырабатывает переменный ток, и нет необходимости подключать инвертор, что упрощает схему сборки. Это означает, что всеми бытовыми приборами можно пользоваться прямо от ветряка. Сделать асинхронный генератор своими руками несложно. Достаточно найти старый асинхронный двигатель (АД) от какого-либо бытового прибора и использовать его в качестве основы для ветряка. Понадобится, правда, несложная переделка.

Принцип работы асинхронного двигателя и генератора

Асинхронный двигатель - это электродвигатель переменного тока. Его особенность состоит в том, что магнитное поле, которое производится током обмотки статора, и ротор вращаются с разной частотой. В синхронных двигателях их частота совпадает. Наиболее распространенная конструкция АД включает в себя фазный ротор и статор, между которыми находится воздушный зазор. Но встречаются и двигатели с короткозамкнутым ротором. Активная часть АД - это магнитопровод и обмотки. Остальные элементы обеспечивают жесткость конструкции, возможность вращения и охлаждение. Ток в таком двигателе появляется благодаря электромагнитной индукции, которая возникает при вращении магнитного поля с определенной скоростью.

В свою очередь, асинхронный ветрогенератор - это двигатель, который работает в генераторном режиме. Приводной ветродвигатель вращает ротор и магнитное поле в одном направлении. При этом возникает отрицательное скольжение ротора, на валу появляется тормозящий момент, после чего энергия передается на аккумулятор. Для возбуждения ЭДС в дело идет остаточная намагниченность ротора, а усиление ЭДС происходит за счет конденсаторов.

Чтобы приспособить АД под ветряк, вам нужно создать в нем движущееся магнитное поле. Для этого проведите ряд преобразований:

  1. Подберите неодимовые магниты для ротора. От их силы и количества зависит сила магнитного поля.
  2. Проточите ротор под магниты. Это можно сделать при помощи токарного станка. Снимите пару миллиметров со всей поверхности сердечника и дополнительно сделайте углубления под магниты. Толщина проточки зависит от выбранных магнитов.
  3. Сделайте разметку ротора на четыре полюса. На каждом разместите магниты (от восьми штук на полюс, но лучше больше).
  4. Теперь нужно зафиксировать магниты. Сделать это можно при помощи суперклея, но тогда удерживайте элементы пальцами до тех пор, пока клей не схватится (при контакте с ротором магниты будут менять свое положение). Или закрепите все элементы скотчем.
  5. Следующий шаг - заполнение свободного пространства между магнитами эпоксидной смолой. Для этого обмотайте ротор с магнитами бумагой, поверх нее намотайте скотч, а концы бумажного кокона загерметизируйте пластилином. После изготовления такой защиты внутрь можно заливать смолу. Когда эпоксидка окончательно высохнет, удалите бумагу.
  6. Зачистите поверхность ротора наждачкой. Для этого используйте бумагу средней зернистости.
  7. Определите два роторных провода, которые ведут к рабочей обмотке. Остальные провода обрежьте, чтобы не путаться.

На этом основные преобразования завершены. Дополнительно вы можете приобрести контроллер, а из кремниевых диодов сделать выпрямитель для вашего ветрогенератора. Кроме того, проверьте вращение двигателя. Если ход тугой, замените подшипники. Быстрый совет: если хотите увеличить силу тока, а также снизить напряжение в вашем агрегате, то не поленитесь и перемотайте статор толстой проволокой.

Тестирование генератора

Перед установкой готового генератора на осевую конструкцию или мачту нужно его протестировать. Для тестирования понадобится дрель или шуруповерт, а также какая-нибудь нагрузка, например, обычная лампочка, которую вы используете в быту. Подсоедините их к вашему агрегату и посмотрите, на каких оборотах лампочка горит ярко и ровно.

Если тестирование показывает хорошие результаты, то можно приступать к монтажу ветряка. Для этого необходимо изготовить лопастные элементы, осевую конструкцию, подобрать аккумулятор. Подробнее о том, как собрать ветрогенератор, можно почитать .

Правила эксплуатации асинхронного ветрогенератора

Такой ветряк обладает рядом особенностей, которые нужно учитывать при эксплуатации:

  • Будьте готовы, что КПД готового устройства будет постоянно колебаться (в пределах 50%). Устранить этот недостаток невозможно, это издержки процесса преобразования энергии.
  • Позаботьтесь о качественной изоляции, а также заземлении ветрогенератора. Это обязательное требование безопасности.
  • Сделайте кнопки для управления устройством. Это значительно упростит его использование в дальнейшем.
  • Кроме того, предусмотрите места для подключения измерительных приборов. Это обеспечит вас данными о работе вашего агрегата, позволит проводить диагностику.

Если сравнивать асинхронный и синхронный ветрогенераторы, то у асинхронных есть как преимущества, так и недостатки.

Преимущества заключаются в следующем:

  • Мощные устройства с простой конструкцией, небольшими размерами и весом.
  • Высокий уровень эффективности при выработке энергии.
  • Нет необходимости в инверторе, потому что такой ветрогенератор производит переменный ток (220/380В). Он может непосредственно питать бытовые устройства или работать параллельно с сетью централизованного энергоснабжения.
  • Выходное напряжение очень стабильно.
  • Частота на выходе не зависит от скоростей ротора.
  • Обладает высокой устойчивостью к коротким замыканиям, защищен от влаги и грязи.
  • Может служить многие годы, так как содержит мало изнашивающихся элементов.
  • Работает на конденсаторном возбуждении.

Недостатки такие:

  • При отсутствии аккумулятора асинхронный генератор может затухать в моменты перегрузки. Это является ограничителем для использования такого агрегата. Но для ветряка такой недостаток неактуален, потому что его конструкция предполагает накопитель энергии. О том, как выбрать аккумулятор для ветряка, можно прочитать .
  • Конденсаторные батареи имеют высокую стоимость, поэтому переделка старого АД - это оптимальное решение вопроса.
  • Оборотность генератора находится в обратной зависимости от его массы.

Таким образом, ветрогенератор своими руками из асинхронного трехфазного двигателя - это недорогое и удобное решение для дома.

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от , обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).


Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.


Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.


Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе , а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.


Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают , их используют для мощных мобильных и .

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):


Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.


Рис. 7. Схема подключения конденсаторов

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.

Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.

> Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.

>

> Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно "север", второй полюс "юг". Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.

После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.

>

После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.

>

В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.

>

После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.

>

Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.

>

Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку. Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.

Пока к сожалению никаких подробных данных по мощности ветрогенератора нет, так-как пользователь разместивший свой ветрогенератор вот здесь

Чтобы сделать своими руками ветрогенератор мощностью до 1 кВт, нет необходимости приобретать специальное оборудование. Данную задачу легко решить, имея в наличии асинхронный двигатель . Причем указанной мощности будет вполне достаточно для того, чтобы создать условия для работы отдельных бытовых приборов и подключить уличное освещение в саду на даче.

Если сделать ветряк своими руками , то у вас будет бесплатный источник энергии, которую можно использовать по своему усмотрению. Любой домашний мастер в состоянии изготовить самостоятельно ветрогенератор на основе асинхронного двигателя.

Из чего состоит генератор?

Генераторная установка, которая будет вырабатывать электричество, предусматривает следующие основные элементы:

Принцип работы

Эксплуатация самодельных ветряков осуществляется по аналогии с ветрогенераторными установками , которые применяются в промышленности. Основная цель заключается в выработке переменного напряжения, для чего кинетическая энергия трансформируется в электрическую. Ветер приводит в движение ветроколесо роторного типа, в результате чего получаемая энергия поступает от него к генератору. Причем обычно роль последнего выполняет асинхронный двигатель.

В результате создания генератором тока, последний поступает в аккумулятор, который оснащен модулем и контроллером заряда. Оттуда он направляется в инвертор постоянного напряжения, источником работы которого служит электросеть. В результате удается создать переменное напряжение , характеристики которого подходят для использования в бытовых целях (220 В 50 Гц).

Для трансформации переменного напряжения в постоянное используется контроллер. Именно с его помощью и выполняется зарядка аккумуляторов. В ряде случаев инверторы способны выполнять функции источника бесперебойного питания. Иными словами, в случае проблем с подачей электроэнергии они могут задействовать в качестве источника питания бытовых устройств аккумуляторы либо генераторы.

Материалы и инструменты

Чтобы сделать ветрогенератор, достаточно иметь асинхронный двигатель , который и придется переделывать. В то же время придется запастись рядом материалов:

Характеристики и установка генератора

Генератор имеет следующие характеристики:

Особенности монтажа

Чаще всего установка генератора своими руками выполняется с применением трехлопастного ветроколеса, достигающего в диаметре порядка 2 м. Решение же нарастить число лопастей либо их длину не приводит к улучшению рабочих характеристик. Вне зависимости от выбранного варианта относительно конфигурации, габаритов и формы лопастей, вначале следует выполнить предварительные расчеты.

Во время самостоятельной установки нужно обращать внимание на такой параметр, как состояние почвы участка, где будет размещена опора и растяжки. Мачта устанавливается путем рытья ямы глубиной не более 0,5 м, которую необходимо заполнить бетонным раствором.

Подключение к сети осуществляется в строго определенном порядке : первыми подсоединяют аккумуляторы, а за ними уже следует сам ветрогенератор.

Вращение ветрогенераторной установки может осуществляться в горизонтальной либо вертикальной плоскости. При этом обычно выбор останавливают на вертикальной плоскости, что связано с конструкционным исполнением. В качестве роторов допустимо применять модели Дарье и Савониуса.

В конструкции установки должны использоваться герметизирующие прокладки либо колпак. Благодаря данному решению генератору не навредит влага.

Для размещения мачты и опоры должно быть выбрано открытое место. Подходящей для мачты является высота 15 м. При этом наибольшее распространение получили мачты , чья высота не превышает 5-7 м.

Оптимально, если изготовленный своими руками ветрогенератор выполняет функции резервного источника питания.

Эти установки имеют ограничения по использованию, так как их эксплуатация возможна только в тех регионах, где скорость ветра достигает порядка 7-8 м/с.

Прежде чем приступить к созданию ветряка своими руками, выполняют точные расчеты. В некоторых случаях возникают трудности с обработкой узлов асинхронного двигателя;

Ветряк нельзя создать без электрических модулей, а также проведения серии экспериментов.

Как сделать своими руками асинхронный генератор?

Хотя, всегда можно приобрести готовый асинхронный генератор , можно пойти иным путем и сэкономить, изготовив его своими руками. Сложностей здесь не возникнет. Единственное, что нужно сделать - подготовить необходимые инструменты.

  1. Одна из особенностей работы генератора заключается в том, что он должен вращаться с большей скоростью , нежели двигатель. Добиться этого можно следующим путем. После запуска необходимо выяснить скорость вращения двигателя. В решении этой задачи нам поможет тахогенератор или тахометр
  2. Определив вышеуказанный параметр, к значению следует прибавить 10%. Если, например, его крутящий момент составляет 1200 об/мин, то для генератора он будет равен 1320 об/мин.
  3. Чтобы сделать электрогенератор на основе асинхронного двигателя, потребуется найти подходящую емкость для конденсаторов. Причем следует помнить о том, что все конденсаторы не должны отличаться своими фазами друг от друга.
  4. Рекомендуется использовать емкость средних размеров. Если она окажется слишком большой, то это приведет к нагреву асинхронного двигателя.
  5. Для сборки следует использовать конденсаторы , которые смогут гарантировать нужную скорость вращения. К их установке нужно отнестись с большой серьезностью. Рекомендуется защитить их, используя специальные изолирующие материалы.

Это все операции, которые должны быть выполнены при обустройстве генератора на основе двигателя. Далее можно переходить к его монтажу. Имейте в виду, что при использовании устройства, оснащенного короткозамкнутым ротором, вы получите ток с высоким напряжением. По этой причине, чтобы добиться значения в 220 В, вам потребуется понижающий трансформатор.

Энергетический кризис часто сопровождается перебоями в энергоснабжении, особенно, если проблема касается сельской местности. Иметь резервный генератор не всегда возможно по ряду причин, поэтому можно воспользоваться «дармовым» источником энергии ветра. Для этого необходим ветрогенератор, который проще всего соорудить из обычного асинхронного двигателя.

Принцип действия такого генератора весьма прост: энергия ветра будет передаваться на ротор, который начёт вращаться в том же направлении, что и создаваемое при этом магнитное поле. Поскольку скольжение ротора при этом становится отрицательным, то на валу ротора возникает тормозной момент, а образующаяся электроэнергия будет передана потребителю. Таким образом, намагниченность ротора становится причиной возбуждения эдс в выходной цепи машины.

Преимущества асинхронного генератора:

  1. Конструктивно такой генератор проще, чем синхронный, и к тому же некритичен к внешним неблагоприятным воздействиям: например, к попаданию на него пыли и грязи (что вполне вероятно в условиях сильного ветра).
  2. Напряжение на выходе имеет меньшую степень нелинейных искажений, а потому к такому генератору можно подключать различную нагрузку – от сварочного преобразователя до компьютера.
  3. Коэффициент неравномерности вращения для асинхронных генераторов не опускается ниже 0,98 , что исключает его перегрев в условиях длительной работы.
  4. Вследствие отсутствия вращающихся обмоток долговечность асинхронного генератора ожидается достаточно высокой.

Таким образом изготовить не только принципиально возможно, но и практически целесообразно.

Рассмотрим основные этапы переделки

Вначале подбирается необходимый электродвигатель: он должен быть низкооборотистым (не более 1300 мин -1), имеющим 3 или 4 пары полюсов.

Проточка ротора двигателя под установку магнитов

Заключается в уменьшении диаметра ротора под высоту устанавливаемых магнитов. Здесь возможны варианты: если имеющиеся в распоряжении магниты – недостаточно сильные, то дополнительно необходимо выточить и одеть на ротор переходную металлическую втулку, с помощью которой значение наводимой магнитной индукции окажется достаточным для того, чтобы не допустить рассеивания магнитного поля. В ином случае никаких других работ по переделке ротора производить не нужно. Проточенный под установку магнитов (при наличии втулки) ротор имеет вид, представленный на рис.1.

Расчёт необходимого количества магнитов и их монтаж

Для этого сначала определяется длина окружности ротора после его переточки, которая будет соответствовать высоте втулки:

L=πD , где D – диаметр ротора.

Требуемая толщина магнитов t должна быть в пределах t=(0.1...0.15)D. Далее рассчитывается количество секций n, в каждой из которых магниты будут устанавливаться с одинаковым полюсом:

n=L/p, где p – количество полюсов электродвигателя.

Для окончательного решения вопроса определяют количество магнитов, которое сможет уместиться в одном полюсе, чтобы потом равномерно и с наибольшей плотностью распределить их по всей высоте втулки. Смещение магнитов при их наклейке принимается равным толщине одного магнита. Для приклеивания лучше всего применять эпоксидный клей. Внешний вид втулки с магнитами в сборе, одетой на ротор, представлен на рис.2.

Проверка работоспособности генератора

После сборки ветрогенератора из асинхронного двигателя необходимо проверить на фактически развиваемую выходную мощность, поскольку после наклейки магнитов, а также вследствие увеличения массы ротора, параметры электромашины изменяются. С этой целью ротор генератора необходимо привести во вращение со скоростью, соответствующей номинальной скорости вращения переделанного электродвигателя.

Для этого можно использовать обычную электродрель, а на выходе подключить любую доступную нагрузку, например, электролампочку. Изменяя мощность подключаемых ламп, а также число оборотов дрели, можно установить практическую работоспособность ветрогенератора и зависимость вырабатываемого напряжения от количества оборотов ротора. Контрольная установка в различных вариантах её подключения представлена на рис.3.

Изготовление исполнительной части ветрогенератора

Она должна состоять из лопастей винтов, поворотной оси и стойки, на которой закрепляется вся конструкция. Лопасти (см. рис.4) можно изготавливать из полихлорвиниловой трубы диаметром 150…200 мм. Далее под готовый ветрогенератор из асинхронного двигателя изготавливается стойка, которая должна иметь поворотную ось, собранную на подшипниках качения. Готовая конструкция исполнительной части ветрогенератора с винтом диаметром 1,7 м представлена на рис. 5.

Апробация ветрогенератора из асинхронного двигателя

Заключается в экспериментальном определении мощности готовой установки. Данный параметр будет определяться множеством факторов, причём большинство из них весьма неопределённо: в расчёт следует принимать и высоту мачты, и диапазон изменения скорости ветра и влажность воздуха. Тем не менее принцип остаётся тем же: подключается нагрузка заранее известной мощности, после чего по падению числа оборотов можно сделать вывод о мощности ветрогенератора.

Повысить мощность машины можно, дополнительно осуществив перемотку статора двигателя проводом с большим сечением. Это уменьшает собственное сопротивление генератора, и, соответственно, увеличивает напряжение на выходе. Общий вид переделанного таким образом статора двигателя представлен на рис. 6. Таким путём удаётся увеличить выходную мощность ветрогенератора в несколько раз.

А вот и видео по переделке и показательным запуском:

gastroguru © 2017