Расчёт вентиляции. Порядок расчета потерь давления в воздуховодах Расчет сопротивления системы вентиляции

Такие потери пропорциональны динамическому давлению pд = ρv2/2, где ρ — плотность воздуха, равная примерно 1,2 кг/м3 при температуре около +20 °C, а v — его скорость [м/с], как правило, за сопротивлением. Коэффициенты пропорциональности ζ, называемые коэффициентами местного сопротивления (КМС), для различных элементов систем В и КВ обычно определяются по таблицам, имеющимся, в частности, в и в ряде других источников. Наибольшую сложность при этом чаще всего вызывает поиск КМС для тройников или узлов ответвлений, поскольку в этом случае необходимо принимать во внимание вид тройника (на проход или на ответвление) и режим движения воздуха (нагнетание или всасывание), а также отношение расхода воздуха в ответвлении к расходу в стволе Loʹ = Lo/Lc и площади сечения прохода к площади сечения ствола fnʹ = fn/fc. Для тройников при всасывании нужно учитывать еще и отношение площади сечения ответвления к площади сечения ствола foʹ = fo/fc. В руководстве соответствующие данные приведены в табл. 22.36-22.40.

Однако, при больших относительных расходах в ответвлении КМС меняются весьма резко, поэтому в этой области рассматриваемые таблицы вручную интерполируются с трудом и со значительной погрешностью. Кроме того, в случае использования электронных таблиц MS Excel опять-таки желательно иметь формулы для непосредственного вычисления КМС через отношения расходов и сечений. При этом такие формулы должны быть, с одной стороны, достаточно простыми и удобными для массового проектирования и использования в учебном процессе, но, в то же время, не должны давать погрешность, превышающую обычную точность инженерного расчета. Ранее подобная задача была решена автором применительно к сопротивлениям, встречающимся в водяных системах отопления . Рассмотрим теперь данный вопрос для механических систем В и КВ. Ниже приведены результаты аппроксимации данных для унифицированных тройников (узлов ответвлений) на проход. Общий вид зависимостей выбирался, исходя из физических соображений с учетом удобства пользования полученными выражениями при обеспечении допустимого отклонения от табличных данных:

❏ для приточных тройников, при Loʹ ≤ 0,7 и fnʹ ≥ 0,5:а при Loʹ ≤ 0,4 можно пользоваться упрощенной формулой:

❏ для вытяжных тройников:

Нетрудно заметить, что относительная площадь прохода fnʹ при нагнетании или соответственно ответвления foʹ при всасывании влияет на КМС одинаковым образом, а именно с увеличением fnʹ или foʹ сопротивление будет уменьшаться, причем числовой коэффициент при указанных параметрах во всех приведенных формулах один и тот же, а именно (-0,25). Кроме того, и для приточных, и для вытяжных тройников при изменении расхода воздуха в ответвлении относительный минимум КМС имеет место при одинаковом уровне Loʹ = 0,2. Данные обстоятельства говорят о том, что полученные выражения, несмотря на свою простоту, в достаточной мере отражают общие физические закономерности, лежащие в основе влияния исследуемых параметров на потери давления в тройниках любого типа. В частности, чем больше fnʹ или foʹ, т.е. чем ближе они к единице, тем меньше меняется структура потока при прохождении сопротивления, а значит, и меньше КМС. Для величины Loʹ зависимость является более сложной, но и здесь она будет общей обоих режимов движения воздуха.

Представление о степени соответствия найденных соотношений и исходных значений КМС дает рис. 1, где показаны результаты обработки таблицы 22.37 для КМС унифицированных тройников (узлов ответвлений) на проход круглого и прямоугольного сечения при нагнетании. Примерно такая же картина получается и для аппроксимации табл. 22.38 с помощью формулы (3). Заметим, что, хотя в последнем случае речь идет о круглом сечении, нетрудно убедиться, что выражение (3) достаточно удачно описывает и данные табл. 22.39, относящиеся уже к прямоугольным узлам.

Погрешность формул для КМС в основном составляет 5-10 % (максимально до 15 %). Несколько более высокие отклонения может давать выражение (3) для тройников при всасывании, но и здесь это можно считать удовлетворительным с учетом сложности изменения сопротивления в таких элементах. Во всяком случае, характер зависимости КМС от влияющих на него факторов здесь отражается очень хорошо. При этом полученные соотношения не требуют никаких иных исходных данных, кроме уже имеющихся в таблице аэродинамического расчета. В самом деле, в ней в явном виде должны быть указаны и расходы воздуха, и сечения на текущем и на соседнем участке, входящие в перечисленные формулы. Особенно это упрощает вычисления при использовании электронных таблиц MS Excel.

В то же время формулы, приведенные в настоящей работе, весьма просты, наглядны и легко доступны для инженерных расчетов, особенно в MS Excel, а также в учебном процессе. Их применение позволяет отказаться от интерполяции таблиц при сохранении точности, требуемой для инженерных расчетов, и непосредственно вычислять КМС тройников на проход при самых разнообразных соотношениях сечений и расходов воздуха в стволе и ответвлениях. Этого вполне достаточно для проектирования систем В и КВ в большинстве жилых и общественных зданий.

1. А.Д. Альтшуль, Л.С. Животовский, Л.П. Иванов. Гидравлика и аэродинамика. — М.: Стройиздат, 1987.
2. Справочник проектировщика. Внутренние санитарно-технические устройства. Ч. 3. Вентиляция и кондиционирование воздуха. Кн. 2 / Под ред. Н.Н. Павлова и Ю.И. Шиллера. — М.: Стройиздат, 1992.
3. О.Д. Самарин. О расчете потерь давления в элементах систем водяного отопления // Журнал С.О.К., №2/2007.

Лекция 2. Потери давления в воздуховодах

План лекции. Массовый и объемный потоки воздуха. Закон Бернулли. Потери давления в горизонтальном и вертикальном воздуховодах: коэффициент гидравлического сопротивления, динамический коэффициент, число Рейнольдса. Потери давления в отводах, местных сопротивлениях, на разгон пылевоздушной смеси. Потери давления в высоконапорной сети. Мощность пневмотранспортной системы.

2. Пневматические параметры течения воздуха
2.1. Параметры воздушного потока

Под действием вентилятора в трубопроводе создается воздушный поток. Важными параметрами воздушного потока являются его скорость, давление, плотность, массовый и объемный расходы воздуха. Расходы воздуха объемный Q , м 3 /с, и массовый М , кг/с, связаны между собой следующим образом:

;
, (3)

где F – площадь поперечного сечения трубы, м 2 ;

v – скорость воздушного потока в заданном сечении, м/с;

ρ – плотность воздуха, кг/м 3 .

Давление в воздушном потоке различают статическое, динамическое и полное.

Статическим давлением Р ст принято называть давление частиц движущегося воздуха друг на друга и на стенки трубопровода. Статическое давление отражает потенциальную энергию воздушного потока в том сечении трубы, в котором оно измерено.

Динамическое давление воздушного потока Р дин , Па, характеризует его кинетическую энергию в сечении трубы, где оно измерено:

.

Полное давление воздушного потока определяет всю его энергию и равно сумме статического и динамического давлений, измеренных в одном и том же сечении трубы, Па:

Р = Р ст + Р д .

Отсчет давлений можно вести либо от абсолютного вакуума, либо относительно атмосферного давления. Если давление отсчитывается от нуля (абсолютного вакуума), то оно называется абсолютным Р . Если давление измерять относительно давления атмосферы, то это будет относительное давление Н .

Н = Н ст + Р д .

Атмосферное давление равно разности полных давлений абсолютного и относительного

Р атм = Р Н .

Давление воздуха измеряют Па (Н/м 2), мм водяного столба или мм ртутного столба:

1 мм вод. ст. = 9,81 Па; 1 мм рт. ст. = 133,322 Па. Нормальное состояние атмосферного воздуха соответствует следующим условиям: давление 101325 Па (760 мм рт. ст.) и температура 273К.

Плотность воздуха есть масса единицы объема воздуха. По уравнению Клайперона плотность чистого воздуха при температуре 20ºС

кг/м 3 .

где R – газовая постоянная, равная для воздуха 286,7 Дж/(кг  К); T – температура по шкале Кельвина.

Уравнение Бернулли. По условию неразрывности воздушного потока расход воздуха постоянен для любого сечения трубы. Для сечений 1, 2 и 3 (рис. 6) это условие можно записать так:

;

При изменении давления воздуха в пределах до 5000 Па плотность его остается практически постоянной. В связи с этим

;

Q 1 = Q 2 = Q 3 .

Изменение давления воздушного потока по длине трубы подчиняется закону Бернулли. Для сечений 1, 2 можно написать

где р 1,2 – потери давления, вызванные сопротивлением потока о стенки трубы на участке между сечениями 1 и 2, Па.

С уменьшением площади поперечного сечения 2 трубы скорость воздуха в этом сечении увеличится, так что объемный расход останется неизменным. Но с увеличением v 2 возрастет динамическое давление потока. Для того, чтобы равенство (5) выполнялось, статическое давление должно упасть ровно на столько, на сколько увеличится динамическое давление.

При увеличении площади сечения динамическое давление в сечении упадет, а статическое ровно на столько же увеличится. Полное же давление в сечении останется величиной неизменной.

2.2. Потери давления в горизонтальном воздуховоде

Потеря давления на трение пылевоздушного потока в прямом воздуховоде с учетом концентрации смеси, определяется по формуле Дарси-Вейсбаха, Па

где l – длина прямолинейного участка трубопровода, м;

 - коэффициент гидравлического сопротивления (трения);

d

р дин – динамическое давление, исчисляемое по средней скорости воздуха и его плотности, Па;

К – комплексный коэффициент; для трасс с частыми поворотами К = 1,4; для трасс прямолинейных с небольшим количеством поворотов
, где d – диаметр трубопровода, м;

К тм – коэффициент, учитывающий вид транспортируемого материала, значения которого приведены ниже:

Коэффициент гидравлического сопротивления  в инженерных расчетах определяют по формуле А.Д. Альтшуля

, (7)

где К э – абсолютная эквивалентная шероховатость поверхности, К э = (0,0001… 0,00015) м;

d внутренний диаметр трубы, м;

R е – число Рейнольдса.

Число Рейнольдса для воздуха

, (8)

где v средняя скорость воздуха в трубе, м/с;

d – диаметр трубы, м;

 - плотность воздуха, кг/м 3 ;

1 – коэффициент динамической вязкости, Нс/м 2 ;

Значение динамического коэффициента вязкости для воздуха находят по формуле Милликена, Нс/м2

 1 = 17,11845  10 -6 + 49,3443  10 -9 t , (9)

где t – температура воздуха, С.

При t = 16 С  1 = 17,11845  10 -6 + 49,3443  10 -9 16 =17,910 -6 .

2.3. Потери давления в вертикальном воздуховоде

Потери давления при перемещении аэросмеси в вертикальном трубопроводе, Па:

, (10)

где - плотность воздуха, = 1,2 кг/м 3 ;

g = 9,81 м/с 2 ;

h – высота подъема транспортируемого материала, м.

При расчете аспирационных систем, в которых концентрация аэросмеси  0,2 кг/кг значение р под учитывают только при h  10 м. Для наклонного трубопровода h = l sin, где l – длина наклонного участка, м;  - угол наклона трубопровода.

2.4. Потери давления в отводах

В зависимости от ориентации отвода (поворота воздуховода на некоторый угол) в пространстве различают два вида отводов: вертикальные и горизонтальные.

Вертикальные отводы обозначают начальными буквами слов, отвечающих на вопросы по схеме: из какого трубопровода, куда и в какой трубопровод направляется аэросмесь. Различают следующие отводы:

– Г-ВВ – транспортируемый материал движется из горизонтального участка вверх в вертикальный участок трубопровода;

– Г-НВ – то же из горизонтального вниз в вертикальный участок;

– ВВ-Г – то же из вертикального вверх в горизонтальный;

– ВН-Г – то же из вертикального вниз в горизонтальный.

Горизонтальные отводы бывают только одного типа Г-Г.

В практике инженерных расчетов потерю давления в отводе сети находят по следующим формулам.

При значениях расходной концентрации  0,2 кг/кг

где
- сумма коэффициентов местного сопротивления отводов ветви (табл. 3) при R / d = 2, где R – радиус поворота осевой линии отвода; d – диаметр трубопровода; динамическое давление воздушного потока .

При значениях   0,2 кг/кг

где - сумма условных коэффициентов, учитывающих потери давления на поворот и разгон материала за отводом.

Значения о усл находят по величине табличных т (табл. 4) с учетом коэффициента на угол поворота К п

о усл = т К п . (13)

Поправочные коэффициенты К п берут в зависимости от угла поворота отводов :

К п

Таблица 3

Коэффициенты местного сопротивления отводов о при R / d = 2

Конструкция отводов

Угол поворота, 

Отводы гнутые, штампованные, сварные из 5 звеньев и 2 стаканов

Распределение давлений в системе вентиляции необходимо знать при наладке и регулировании системы, при определении расходов на отдельных участках системы и при решении многих других вентиляци­онных задач.

Распределение давлений в системах вентиляции с механическим побуждением движения воздуха. Рассмотрим воздуховод с вентилято­ром (рис. XI.3). В сечении 1-/ статическое давление равно нулю (т. е. равно давлению воздуха на уровне расположения воздуховода). Полное давление в этом сечении равно динамическому давлению рді, определяемому по формуле (XI.1). В сечении II-II статическое давле­ние рстіі>0 (численно равно потерям давления на трение между сече­ниями II-II и I-/). При постоянном сечении воздуховода линия ста­тического давления - прямая. Линия полного давления также прямая,

Параллельная линии рст. Расстояние между этими линиями по вертика­ли определяет динамическое давление рДі.

В диффузоре, расположенном между сечениями II-II и III-III, происходит изменение скорости потока. Динамическое давление по ходу воздуха уменьшается. В связи с этим статическое давление изменяется и может даже возрасти, как это показано на рисунке (рстіі>рстііі).

Полное давление в сечении III-III, создаваемое вентилятором, те­ряется на трение Дртр и в местных сопротивлениях (диффузоре Лрдиф, при выходе Арных). Общие потери давления со стороны нагнета­ния равны:

Статическое давление вне воздуховода со стороны всасывания рав­но нулю. В непосредственной близости от отверстия в пределах всасы­вающего факела поток воздуха уже обладает кинетической энергией. Разрежение в пределах всасывающего факела незначительно.

На входе в воздуховод скорость потока увеличивается, а значит увеличивается и кинетическая энергия потока. Следовательно, по зако­ну сохранения энергии потенциальная энергия потока должна умень­шиться. С учетом потерь давления Л/?ПОт в любом сечении со стороны всасывания

Per = 0 - рд - Дрпот - (XI. 24)

Во всасывающем воздуховоде так же, как и со стороны нагнетания, полное давление равно разности давления в начале воздуховода и по­терь давления до рассматриваемого сечения:

Рп = 0-ДрпОт. (XI.25)

Из формул (XI.24) и (XI.25) следует, что в каждом сечении воз­духовода со стороны всасывания величины р0т и рп меньше нуля. По абсолютному значению статическое давление больше полного давле­ния, однако формула (XI.2) справедлива и для этого случая.

Линия статического давления идет ниже линии полного давления. Резкое понижение линии статического давления после сечения VI-VI объясняется сужением потока на входе в воздуховод вследствие обра­зования вихревой зоны. Между сечениями V-V и IV-IV на схеме по­казан конфузор с поворотом. Снижение линии статического давления между этими сечениями происходит вследствие увеличения как скоро­сти потока в конфузоре, так и потерь давления. Эпюры статического давления на рис. XI.3 заштрихованы.

В точке Б наблюдается наименьшее в системе воздуховодов значе­ние полного давления. Численно оно равно потерям давления со сто­роны всасывания:

А - полного и статического в нагнетательном воздуховоде; б - то же, во всасывающем воздухово­де; в - динамического в нагнетательном воздуховоде; г - динамического во всасывающем воздухо­воде

Вентилятор создает перепад давления, равный разности макси­мального и минимального значения полного давления (рлл - Рпб)> увеличивая энергию 1 м3 воздуха, проходящего через него, на величину

Давление, создаваемое вентилятором, затрачивается на преодоле­ние сопротивления движению воздуха по воздуховодам:

Рвеит = ДРвс + Дрнагн. (XI. 27)

Профессор П. Н. Каменев предложил строить эпюры давлений на всасывающем воздуховоде от абсолютного нуля дав"лений (абсолютного вакуума). При этом построение линий рст. абс и рп. абс полностью соот­ветствует случаю нагнетания.

Давления в воздуховодах измеряют микроманометром. Для изме­рения статического давления шланг от микроманометра присоединяют к штуцеру, прикрепленному к стенке воздуховода, а для измерения пол­ного давления - к пневмометрической трубке Пито, отверстие которой направлено навстречу потоку (рис. XI.4, а, б).

Разность полного и статического давлений равна значению динами­ческого давления. Эту разность можно замерить непосредственно ми­кроманометром, как это показано на рис. XI.4, в, г. По значению рд определяют скорость, м/с:

V = V2prfp, (XI. 28)

По которой вычисляют расход воздуха в воздуховоде, м3/ч:

L = ЗбООу/. (XI. 29)

Распределение давлений в системах вентиляции с естественным по­буждением движения воздуха. Особенностями таких систем являются вертикальное расположение их каналов в здании, малые значения рас­полагаемых давлений и, следовательно, небольшие скорости. Работа систем с естественным побуждением движения воздуха зависит от кон­структивных особенностей системы и здания, разности плотности на­ружного и внутреннего воздуха, скорости и направления ветра. Однако при выборе конструктивных размеров отдельных элементов системы вентиляции (сечений каналов и шахт, площадей жалюзийных решеток) достаточно провести расчет для случая, когда здание не оказывает влияния на работу .

А - эпюры абсолютных аэростатичес­ких давлений в канале, закрытом за­глушками 1 - внутри канала; 2 - сна­ружи канала; б - эпюра избыточных давлений в том же канале; в - эпюры избыточных давлений прн движении воздуха по каналу; г - эпюры избыточ­ных давлений в шахте и в присоединен­ном к ней «широком канале»; д-эпюры избыточных давлений в канале и шах­те при наличии ответвления; е - эпюры избыточных давлений при естествен­ном побуждении движения воздуха в системе вентиляции многоэтажного здания; ж - эпюры избыточных давле­ний при механическом побуждении дви­жения воздуха; (рст> Рп~ линии соот­ветственно статического н полного давления внутри канала и шахты; Рн - линия статического давления сна­ружи канала н шахты)

Рассмотрим простейший случай, когда вертикальный канал высо­той Як, заполненный теплым воздухом с температурой tB, закрыт свер­ху и снизу заглушками. Канал окружен наружным воздухом с темпе­ратурой ta.

Предположим, что давление внутри и снаружи канала на уровне его верха равно ра (для обеспечения этого условия достаточно оставить в верхней заглушке небольшое отверстие). Тогда в соответствии с зако­ном Паскаля абсолютное давление на любом уровне (на расстоянии h от верха канала) равно: снаружи рст н=ра4-^рн£, а внутри рстк=ра4- --hpBg. Распределение абсолютных давлений внутри канала (линия 1) и снаружи него (линия 2) показано на рис. XI.5, а.

В системе «канал - окружающий воздух» можно пользоваться ус­ловными значениями избыточных давлений, т. е. условно принять аэро­статическое давление внутри канала на любом уровне за нуль. Эпюра этих давлений снаружи канала имеет форму треугольника (рис. XI.5,6J. Основанием треугольника

Дрк = Нк Дрg

Является располагаемое давление, Па, определяющее движение воздуха по каналу.

При движении воздуха по каналу (рис. XI.5, в) потери давления складываются из потерь на входе, на трение и на выходе. На рис. XI.5, в показано распределение полного и статического давлений (в избыточных относительно условного нуля давлениях). Динамическое давление рд равно разности рп и рст. Статическое давление (эпюра его на рисунке заштрихована) по всей длине канала меньше избыточного аэростати­ческого давления снаружи канала рн. В некоторых случаях в канале могут наблюдаться ЗОНЫ С Рст >рн. Например, в канале перед сужением (рис. XI.5, г) при определенных условиях статическое давление может превышать давление рн. Через неплотности в этой зоне канала будет происходить утечка загрязненного воздуха.

Если вертикальный вентиляционный канал объединяет два (рис. XI, 5,(3) или более (рис. XI.5, е) ответвлений, то рекомендуется присоединять их не на уровне входа воздуха в ответвление, а несколько выше (на один, два этажа и более). Эта рекомендация дана с учетом накопленного опыта эксплуатации. При присоединении ответвления на уровне точки А вместо уровня точки Б увеличивается располагаемое давление Дротв (см. рис. XI.5, д); следовательно, увеличивается также сопротивление канала и устойчивость работы системы.

На рис. XI.5, д, е эпюры статического давления заштрихованы. Пол­ное давление убывает по высоте до значения потерь на выходе, а дина­мическое давление при постоянном сечении канала увеличивается по вы­соте, так как после присоединения ответвления расход в канале увели­чивается.

В последнее время внедряются системы вентиляции с вертикальны­ми каналами и механическим побуждением движения воздуха. В этих системах воздух движется под действием вентилятора и гравитацион­ных сил. Построение распределения давлений в таких системах анало­гично рассмотренному выше. Особенность заключается в том, что ста­тическое давление перед вентилятором определяется разрежением, создаваемым вентилятором (см. схему на рис. XI.5,ж). В этом случае располагаемое давление для движения воздуха в системе

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x - коэффициент сопротивления трения, l - длина воздуховода в метрах, d - диаметр воздуховода в метрах, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q - сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения

Гостиницы

Учреждения

Рестораны

Магазины

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной - его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

Pтр = (x*l/d) * (v*v*y)/2g,

z = Q* (v*v*y)/2g,

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.


Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

В диаграмме потерь напора указаны диаметры круглых воздуховодов . Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды . Как правило, ширина воздуховода в 2 раза больше высоты).

Этим материалом редакция журнала „Мир Климата“ продолжает публикацию глав из книги „Системы вентиляции и кондиционирования. Рекомендации по проектированию для произ-
водственных и общественных зданий“. Автор Краснов Ю.С.

Аэродинамический расчет воздуховодов начинают с вычерчивания аксонометрической схемы (М 1: 100), проставления номеров участков, их нагрузок L (м 3 /ч) и длин I (м). Определяют направление аэродинамического расчета - от наиболее удаленного и нагруженного участка до вентилятора. При сомнениях при определении направления рассчитывают все возможные варианты.

Расчет начинают с удаленного участка: определяют диаметр D (м) круглого или площадь F (м 2) поперечного сечения прямоугольного воздуховода:

Скорость растет по мере приближения к вентилятору.

По приложению Н из принимают ближайшие стандартные значения: D CT или (а х b) ст (м).

Гидравлический радиус прямоугольных воздуховодов (м):

где - сумма коэффициентов местных сопротивлений на участке воздуховодов.

Местные сопротивления на границе двух участков (тройники, крестовины) относят к участку с меньшим расходом.

Коэффициенты местных сопротивлений даны в приложениях.

Схема приточной системы вентиляции, обслуживающей 3-этажное административное здание

Пример расчета

Исходные данные:

№ участков подача L, м 3 /ч длина L, м υ рек, м/с сечение
а × b, м
υ ф, м/с D l ,м Re λ Kmc потери на участке Δр, па
решетка рр на выходе 0,2 × 0,4 3,1 - - - 1,8 10,4
1 720 4,2 4 0,2 × 0,25 4,0 0,222 56900 0,0205 0,48 8,4
2 1030 3,0 5 0,25× 0,25 4,6 0,25 73700 0,0195 0,4 8,1
3 2130 2,7 6 0,4 × 0,25 5,92 0,308 116900 0,0180 0,48 13,4
4 3480 14,8 7 0,4 × 0,4 6,04 0,40 154900 0,0172 1,44 45,5
5 6830 1,2 8 0,5 × 0,5 7,6 0,50 234000 0,0159 0,2 8,3
6 10420 6,4 10 0,6 × 0,5 9,65 0,545 337000 0,0151 0,64 45,7
10420 0,8 ю. Ø0,64 8,99 0,64 369000 0,0149 0 0,9
7 10420 3,2 5 0,53 × 1,06 5,15 0,707 234000 0,0312 ×n 2,5 44,2
Суммарные потери: 185
Таблица 1. Аэродинамический расчет

Воздуховоды изготовлены из оцинкованной тонколистовой стали, толщина и размер которой соответствуют прил. Н из. Материал воздухозаборной шахты - кирпич. В качестве воздухораспределителей применены решетки регулируемые типа РР с возможными сечениями: 100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и максимальной скоростью воздуха на выходе до 3 м/с.

Сопротивление приемного утепленного клапана с полностью открытыми лопастями 10 Па. Гидравлическое сопротивление калориферной установки 100 Па (по отдельному расчету). Сопротивление фильтра G-4 250 Па. Гидравлическое сопротивление глушителя 36 Па (по акустическому расчету). Исходя из архитектурных требований проектируют воздуховоды прямоугольного сечения.

Сечения кирпичных каналов принимают по табл. 22.7 .

Коэффициенты местных сопротивлений

Участок 1. Решетка РР на выходе сечением 200×400 мм (рассчитывают отдельно):

№ участков Вид местного сопротивления Эскиз Угол α, град. Отношение Обоснование КМС
F 0 /F 1 L 0 /L ст f прох /f ств
1 Диффузор 20 0,62 - - Табл. 25.1 0,09
Отвод 90 - - - Табл. 25.11 0,19
Тройник-проход - - 0,3 0,8 Прил. 25.8 0,2
∑ = 0,48
2 Тройник-проход - - 0,48 0,63 Прил. 25.8 0,4
3 Тройник-ответвление - 0,63 0,61 - Прил. 25.9 0,48
4 2 отвода 250 × 400 90 - - - Прил. 25.11
Отвод 400 × 250 90 - - - Прил. 25.11 0,22
Тройник-проход - - 0,49 0,64 Табл. 25.8 0,4
∑ = 1,44
5 Тройник-проход - - 0,34 0,83 Прил. 25.8 0,2
6 Диффузор после вентилятора h=0,6 1,53 - - Прил. 25.13 0,14
Отвод 600 × 500 90 - - - Прил. 25.11 0,5
∑= 0,64
Конфузор перед вентилятором D г =0,42 м Табл. 25.12 0
7 Колено 90 - - - Табл. 25.1 1,2
Решетка жалюзийная Табл. 25.1 1,3
∑ = 1,44
Таблица 2. Определение местных сопротивлений

Краснов Ю.С.,

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x - коэффициент сопротивления трения, l - длина воздуховода в метрах, d - диаметр воздуховода в метрах, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q - сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной - его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

gastroguru © 2017