Преступление как бифуркация в динамическом хаосе. Бифуркация (теория колебаний). Мягкая и жесткая потеря устойчивости

Эволюционный процесс математически описывается векторным полем в фазовом пространстве (абстрактном пространстве с числом измерений, равном числу переменных, характеризующих состояние системы). Точка фазового пространства задает состояние системы. Приложенный в этой точке вектор указывает скорость изменения состояния. В случае затухания фазовые траектории при любых начальных значениях оканчиваются в одной точке, которая соответствует покою. В таких точках вектор может обращаться в нуль. Такие точки называются положениями равновесия (состояние не меняется с течением времени). Фазовые траектории создают складки внутри фазового пространства.

Область фазового пространства, заполненного хаотическими траекториями, называется странными аттракторами .

Важнейшим свойством странных аттракторов является фрактальность. Фракталы – это объекты, проявляющие по мере увеличения все более число деталей. Хаос порождает фракталы, а фазовая траектория фракталов обладает самоподобием , т.е. при выделении двух близких точек на фазовой траектории фрактала и последующем увеличении масштаба траектория между этими точками окажется столь хаотичной, как и вся в целом. Введение фрактальных множеств позволяет объяснить и предсказать многие явления в самых различных областях.

Математические образы теории катастроф реализуются в волновых полях. Геометрическое место точек, в которых происходит фокусировка волнового поля, называется в оптике каустиками. При пересечении каустик происходит скачкообразное изменение состояния системы. Момент перехода определяется свойствами системы и уровнем флуктуации в ней. При переходе выделяют два принципа: принцип максимального промедления, определяемый существованием устойчивого уровня, и принципом Максвелла, определяющий состояние системы глобальным минимумом.

Последовательность бифуркаций, возникающая при углублении неравновесности в системе, меняется, и процесс пойдет по разным сценариям (например, переход от ламинарного течения к турбулентному).

После прохождения параметра через бифуркационное значение, соответствующее рождению цикла, или мягкому возникновению автоколебаний, система остается в окрестности неустойчивого состояния некоторое время, за которое параметр меняется на конечную величину. После этого система скачком переходит в момент бифуркации в автоколебательный режим (уже ставший жестким).

На рис.4 изображен фазовый портрет системы, описывающей взаимоотношение хищника и жертвы (скажем, щук и карасей). Фазовое пространство – положительный квадрант плоскости. По оси абсцисс отложено число карасей, по оси ординат – щук. Точка Р – положение равновесия. Точка А соответствует равновесному количеству карасей при 16 количестве щук, меньшем равновесного. Видно, что с течением времени в системе устанавливаются колебания; равновесное состояние рис. Неустойчиво. Установившиеся колебания изображаются замкнутой кривой на фазовой плоскости . Эта кривая называется предельным циклом.

В окрестности точки, не являющейся положением равновесия, разбиение фазового пространства на фазовые кривые устроено так же, как разбиение на параллельные прямые: семейство фазовых кривых можно превратить в семейство параллельных прямых заменой координат. В окрестности положения равновесия картина сложнее.

Рис.4. Фазовый портрет эволюции системы «хищник–жертва»

Системы, описывающие реальные эволюционные процессы, как правило, общего положения. Действительно, такая система всегда зависит от параметров, которые никогда не бывают известны точно.

Управление без обратной связи всегда приводит к катастрофам: важно, чтобы лица и организации, принимающие ответственные решения, лично, материально зависели от последствий этих решений.

Трудность проблемы перестройки связана с ее нелинейностью. Привычные методы управления, при которых результаты пропорциональны усилиям, тут не действуют, и нужно вырабатывать специфически нелинейную интуицию, основанную на порой парадоксальных выводах нелинейной теории.

Вот некоторые качественные простейшие выводы из математической теория перестроек применительно к нелинейной системе, находящейся в установившемся устойчивом состоянии, признанном, плохим, поскольку в пределах видимости имеется лучшее, предпочтительное устойчивое состояние системы.

1. Постепенное движение в сторону лучшего состояния сразу же приводит к ухудшению. Скорость ухудшения при равномерном движении к лучшему состоянию увеличивается.

2. По мере движения от худшего состояния к лучшему сопротивление системы изменению ее состояния растет.

3. Максимум сопротивления достигается раньше, чем самое плохое состояние, через которое нужно пройти для достижения лучшего состояния. После прохождения максимума сопротивления состояния продолжает ухудшаться.

4. По мере приближения к самому плохому состоянию на пути перестройки сопротивление, начиная с некоторого момента, начинает уменьшаться, и как только самое плохое состояние пройдено, не только полностью исчезает сопротивление, а система начинает притягиваться к лучшему состоянию.

5. Величина ухудшения, необходимого для перехода в лучшее состояние, сравнима с финальным улучшением и увеличивается по мере совершенствования системы. Слабо развитая система может перейти в лучшее состояние почти без предварительного ухудшения, в то время как развитая система, в силу своей устойчивости, на такое постепенное, непрерывное улучшение неспособна,

6. Если систему удается сразу, скачком, а не непрерывно, перевести из плохого устойчивого состояния достаточно близко к хорошему, то дальше она сама собой будет эволюционировать в сторону хорошего состояния.

Без математической теории перестроек сознательное управление сложными и плохо известными нелинейными системами практически невозможно. Не требуется, однако, специальной математической теории, чтобы понять, что пренебрежение законами природы и общества (будь то закон тяготения, закон стоимости или необходимость обратной связи), падение компетентности специалистов и отсутствие личной ответственности за принимаемые решения приводит рано или поздно к катастрофе.

а) Введение в теорию бифуркаций

Теория бифуркаций динамических систем описывает качественные, скачкообразные изменения фазовых портретов дифференциальных уравнений при непрерывном, плавном изменении параметров. Так, при потере устойчивости особой точкой может возникнуть предельный цикл, а при потере устойчивости предельным циклом – хаос. Такого рода изменения и называются бифуркациями.

В дифференциальных уравнениях, описывающих реальные физические явления, чаще всего встречаются особые точки и предельные циклы общего положения, то есть гиперболические. Однако встречаются и специальные классы дифференциальных уравнений, где дело обстоит иначе. Таковы, например, системы, обладающие симметриями, связанными с природой описываемого явления, а также гамильтоновы уравнения, обратимые системы, уравнения, сохраняющие фазовый объем. Так, например, рассмотрим однопараметрическое семейство динамических систем на прямой с симметрией второго порядка:

Типичная бифуркация симметричного положения равновесия в такой системе(«трезубец») изображена на рис. 1. Она состоит в том, что от теряющего устойчивость симметричного положения равновесия ответвляется два новых, менее симметричных, положения равновесия. При этом симметричное положение равновесия сохраняется, но теряет устойчивость.

Основы математической теории бифуркаций были созданы А. Пуанкаре и A. M. Ляпуновым в начале ХХ века, а затем развиты некоторыми школами. Теория бифуркаций находит приложения в разных науках, начиная от физики и химии, заканчивая биологией и социологией.

Происхождение термина бифуркация (от лат. bifurcus - раздвоенный) связано с тем фактом, что динамическая система, поведение которой в равновесной области описывается системой линейных дифференциальных уравнений, имеющих единственное решение, при изменении параметров до некоторого критического значения, достигает так называемой точки бифуркации – точки ветвления возможных путей эволюции системы.

Этот момент (точка ветвления) соответствует переходу системы в неравновесное состояние, а на уровне математического описания ему соответствует переход к нелинейным дифференциальным уравнениям и ветвление их решений.

Бифуркацией называется приобретение нового качества эволюции (в движении) динамической системы при малом изменении ее параметров. Бифуркация соответствует перестройке характера движения или структуры реальной системы (физической, химической, биологической и т. д.).

С позиций математики, бифуркация – это смена топологической структуры разбиения фазового пространства динамической системы на траектории при малом изменении ее параметров.


Это определение опирается на понятие топологической эквивалентности динамических систем: две системы топологически эквивалентны, если они имеют одинаковую структуру разбиения фазового пространства на траектории, если движения одной из них могут быть сведены к движениям другой непрерывной заменой координат и времени.

Примером такой эквивалентности служат движения маятника при разных величинах коэффициента трения k: при малом трении траектории на фазовой плоскости имеют вид скручивающихся спиралей, а при большом – парабол (рис. на следующем слайде)

Переход от фазового портрета а к б не представляет собой бифуркации, поскольку бифуркации – это переход от данной системы к топологически неэквивалентной.

Пример: В математической модели возникновению ячеек Бенара соответствует бифуркация рождения новых состояний равновесия (соответствующих ячеистой структуре).

Среди различных бифуркаций при анализе моделей физических систем особенно интересны, так называемые, локальные – это бифуркации, при которых происходит перестройка отдельных движений динамической системы.

Простейшими и наиболее важными из них являются:

бифуркации состояний равновесия (ячейки Бенара)

бифуркации периодических движений.

Заключение. Важные черты бифуркации

Бифуркации, в результате которых исчезают статические или периодические режимы (то есть состояния равновесия или предельные циклы), могут приводить к тому, что динамическая система переходит в режим стохастических колебаний.

В приложениях теории бифуркаций ставится задача – для каждой конкретной ситуации найти аналитические выражения для вариантов решений уравнений, возникающих в точках бифуркации, а также определение значений параметров, при которых начинается ветвление решений уравнений. Предварительно необходимо провести анализ устойчивости системы и поиск точек ее неустойчивости. Методы этого анализа основаны на теории устойчивости, они достаточно подробно разработаны и носят чисто технический характер.

В теории бифуркаций описано большое число бифуркационных ситуаций. В развитии реальных природных систем могут наблюдаться не отдельные бифуркации, а целые каскады бифуркаций (классическим примером может служить возникновение турбулентности и других гидродинамических неустойчивостей). Кроме того, различают бифуркации и катастрофы. Существует даже теория катастроф. Однако, анализ связей и различий между ними выходит за пределы данного учебного пособия.

Очень важная черта бифуркаций: В момент времени, когда система находится вблизи точки бифуркации, огромную роль начинают играть малые возмущения значений ее параметров. Эти возмущения могут носить как чисто случайный характер, так и быть целенаправленными. Именно от них зависит, по какой эволюционной ветви пойдет система, пройдя через точку бифуркации. То есть, если до прохождения точки бифуркации, поведение системы подчиняется детерминистским закономерностям, то в самой точке бифуркации решающую роль играет случай.

Вследствие этого, по словам И. Пригожина, мир становится «загадочным, непредсказуемым, неконтролируемым». В определенном отношении это так. Но полностью с этим высказыванием нельзя согласиться, поскольку для любой системы в точке бифуркации имеется не произвольный, а вполне определенный набор путей эволюции. Поэтому даже если работает случайность, то она работает в строго определенном поле возможностей. И, следовательно, говорить о полной неопределенности и, тем более, полной загадочности некорректно. Что же касается неконтролируемости, то, конечно, говорить о тотальном контроле не имеет смысла, но в некоторых процессах возможно вмешательство как подталкивание к желаемым вариантам развития.

4. ХАОС

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос, которое характеризуется сильной чувствительностью поведения системы к начальным условиям; поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной; примерами подобных систем являются атмосфера, турбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы.

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными.

Динамический хаос - явление в теории динамических систем, при котором поведение нелинейной системы выглядит случайным, несмотря на то, что оно определяется детерминистическими законами. Причиной появления хаоса является неустойчивость по отношению к начальным условиям и параметрам: малое изменение начального условия со временем приводит к сколь угодно большим изменениям динамики системы.

Так как начальное состояние физической системы не может быть задано абсолютно точно (например, из-за ограничений измерительных инструментов), то всегда необходимо рассматривать некоторую (пусть и очень маленькую) область начальных условий. При движении в ограниченной области пространства экспоненциальная расходимость с течением времени близких орбит приводит к перемешиванию начальных точек по всей области. После такого перемешивания бессмысленно говорить о координате частицы, но можно найти вероятность ее нахождения в некоторой точке.

Детерминированный хаос - сочетает детерминированность и случайность, ограниченную предсказуемость и непредсказуемость и проявляется в столь разных явлениях как кинетика химических реакций, турбулентность жидкости и газа, геофизические, в частности, погодные изменения, физиологические реакции организма, динамика популяций, эпидемии, социальные явления (например, курс акций).

(от лат. bifurcus - раздвоенный) представляет собой про-цесс качественного перехода от состояния равновесия к хаосу через по-следовательное очень малое изменение (например, удвоение Фейгенбаума при бифуркации удвоения) периодических точек.
Обязательно необходимо отметить, что происходит качественное изменение свойств системы, так называемый катастрофический скачок. Момент скачка (раздвоения при бифуркации удвоения) происходит в точке бифуркации.
Хаос может возникнуть через бифуркацию, что показал Митчел Фей- генбаум. При создании собственной теории о фракталах Фейгенбаум анализировал в основном следующее логистическое уравнение:
X + , = СХ - С(Х у = СХ (1 - X)
п+1 и 4 и7 пу п"
где X - комплексное число; С - внешний параметр.
Из этого уравнения он вывел, что при некоторых ограничениях во всех подобных уравнениях происходит переход от равновесного состояния к хаосу.
Ниже рассмотрен классический биологический пример этого урав-нения.
Например, изолированно живет популяция особей нормированной численностью X. Через год появляется потомство численностью X
и и + 1
Рост популяции описывается первым членом правой части уравнения (CXJ, где коэффициент С определяет скорость роста и является определяющим параметром. Убыль животных (за счет перенаселенности, недос-татка пищи и т.п.) определяется вторым, нелинейным членом С(Хп)2.
Результатом расчетов являются следующие выводы:
при С в области 1 в диапазоне 3 при С > 3.57 количество решений логистического уравнения начинает стремиться к бесконечности, в результате чего происходит перекрывание областей различных решений (они как бы закраши-ваются) и поведение системы становится хаотическим.
С ростом С иногда появляются области, в которых количество решений логистического уравнения вновь снижается до видимых величин. Так, при Сот 3.627 до 3.631 (включительно) количество решений снижается до шести, а при С = 3.632 достигает двенадцати.
Впоследствии, однако, с ростом С количество решений вновь увели-чивается.
Интерес может также представлять значение внешнего параметра С = = 3.67857351. До него решение логистического уравнения для каждого п является или больше, или меньше предыдущего. После достижения этого значения начинает проявляться следующий эффект - вслед за растущим значением Хп иногда начинают появляться растущие значения Хп, хотя ранее за ростом всегда следовало падение.
Подобное поведение логистического уравнения подвигло классиков теории хаоса к выводу о том, что итогом развития всех эволюционирующих физических систем является состояние, похожее на состояние дина-мического хаоса.
Отсюда делаются следующие выводы о хаотических системах:
Хаотические системы - это системы с обратной связью, когда от предыдущего значения зависит последующее. Этот факт прямо указывает на то, что хаотические системы неслучайны, так как одним из свойств случайных блужданий является независимость предыдущих и последующих событий друг от друга.
В хаотических системах много точек равновесия. Так, при достижении параметром С определенного значения наблюдается более чем одна точка равновесия. В нашем примере это свойство проявляется уже при С = 3. До первой точки бифуркации система является ли-нейной и еще не хаотична. Однако уже после первой бифуркации динамика системы становится нелинейной, приобретая все больше хаотических очертаний. И после С > 3.57 количество вариантов решений логистического уравнения приобретает завершенный хаотический характер.
Хаотическая система является фракталом. Как мы помним, главное свойство фракталов - самоподобие. Так и в известной бифуркаци-онной модели малые элементы подобны большим, что очень хорошо видно на рис. 6.11.


Если рассматривать теорию бифуркации в пересечении с теорией эффективных рынков, в точке бифуркации на рынок поступает новая информация, которая приводит к очередному бифуркационному изме-нению. Как только действие информации заканчивается, рынок успокаи-вается. Успокаивается он до появления новой информации, а значит, до новой точки бифуркации.
Динамические переменные Хп принимают значения, которые сильно зависят от начальных условий. При проведенных на компьютере расчетах даже для очень близких начальных значений С итоговые значения могут резко отличаться. Более того, расчеты становятся некорректными, так как начинают зависеть от случайных процессов в самом компьютере (скачки напряжения и т.п.).
Таким образом, состояние системы в момент бифуркации является крайне неустойчивым, а бесконечно малое воздействие может привести к выбору дальнейшего пути движения, а это, как мы уже знаем, является главным признаком хаотической системы (существенная зависимость от начальных условий).
Логистическое уравнение можно свести к следующей системе уравнений при условии, если уп стремится к уп:
Гх„(1-х„) = х„_1(1-хя_1)
[Х„ =СХ„_1(1-ХЯ_1)
Из этой системы выводится простая формула, которую мы уже видели ранее:
X = 1 - 11С.
п
Отсюда видно, что Хп меньше единицы при любых значениях С. Второй вывод: Хп тем больше, чем больше С. Это означает рост точки сходимости (или нахождение точки, в которой логистическое уравнение стремится найти равновесие) вместе с ростом внешнего параметра.
На основании этой формулы можно легко рассчитать, что при С - 3 решение логистического уравнения стремится к 2/3, т.е. к 0.666666... в периоде.
Рассчитать логистическое уравнение можно на персональном компьютере, используя электронную таблицу Excel. Для этого в ячейку А1 по-местите значение внешнего параметра С. Начните, например, с 0.5. В ячейку В1 поместите значение комплексного числа X, например 0.1. Дальше в ячейку В2 необходимо будет ввести следующую формулу, которую продлите на максимально возможное для одного столбца количество значений (например, до 65 536 строки):
=$А$1 X В1 X (1 - В1).
Элементарные расчеты покажут вам, что, действительно, с ростом периодов п результат логистического уравнения стремится к нулю.
При увеличении параметра С до 2 логистическое уравнение уже через п = 5 (при X - 0.1) сходится к 0.5.
При увеличении параметра С до 3 результат логистического уравнения, действительно, сначала словно раздваивается, однако впоследствии он так же, как и при всех предыдущих значениях С, стремится сойтись к одной точке, значение которой мы уже знаем (2/3).
Из формулы логистического уравнения видно, что с ростом п нивелируется разница в первом значении X для итогового решения логистиче-ского уравнения. Что интересно, это верно и для больших значений С. Из этого можно сделать вывод, что в логистическом уравнении самой важной переменной является величина внешнего параметра С. В биоло-гическом примере этим параметром является скорость роста популяции. При небольших значениях скорости роста, как показывают расчеты, она определит период времени п, за который система придет в равновесие.
Фейгенбаум в результате своих исследований нашел следующую зако-номерность в появлении бифуркаций:
F = = 4.669201660910...,
Ow-ь»)
где F -- число Фейгенбаума (универсальная константа, подобно числу Ті);
Ь - значение внешнего параметра С при п-й бифуркации.
Кстати, универсальность константы Фейгенбаума как характеристики многих естественных хаотических процессов оставляет надежду на систе-матизацию и классификацию хаоса.
Используя число Фейгенбаума, можно найти значение С, при котором можно будет ожидать очередной бифуркации решений логистического уравнения:
4.669201609...
Применение этой формулы позволяет предсказывать, какие значения внешнего параметра С являются критическими для возникновения новой бифуркации. Интересно, что проведенные мной расчеты показали, что внешний параметр С для рассматриваемого нами логистического уравнения стремится к пределу 3.569945672, и сколь долго бы я не про-водил расчеты в поиске следующей точки бифуркации, они заканчива лись неудачей. Конечно же, вручную можно ввести и большие значения С, однако приведенная выше формула для определения значения внеш- него параметра С при п-й бифуркации в этом нам уже не поможет. Вместе с тем эта формула дает возможность наглядно понять, как очень малые изменения внешнего параметра С приводят к очень большим изменениям в решении логистического уравнения через большое количество периодов п.
Фейгенбаум также установил универсальные закономерности перехода к динамическому хаосу при удвоении периода. Здесь следует сказать, что в литературе, посвященной теории хаоса, делаются ссылки на экспери-ментальные подтверждения этого перехода для широкого класса механи-ческих, гидродинамических, химических и других систем.
Результатом исследований Фейгенбаума стало так называемое дерево Фейгенбаума (рис. 6.12).


Рис. 6.12. Дерево Фейгенбаума (расчет на основе немного измененной логистической
формулы)

,
Между логистическим уравнением дерева Фейгенбаума {Хп+1 = СХп(1 - XJ) и множеством Мандельброта (Zn+1 - Z2 + С) видна схожесть, которая проявляется в том числе и в простом графическом сопоставлении. Здесь мы видим пересечение бифуркационных моделей с фракталами, что еще раз подтверждает, что бифуркации имеют фрактальную природу, поскольку они тоже самоподобны.
Разница здесь только в том, что дерево Фейгенбаума растет в сторону, противоположную от множества Мандельброта. Это объясняется разницей знаков внутри соответствующих формул, где в первой формуле квадрат числа X отнимается, а во второй - квадрат числа Z прибав-ляется.


.
На рис. 6.13 видно, что каждая бифуркация сопровождается появле-нием новой фрактальной фигуры во множестве Мандельброта.
Что же такое бифуркации в обыденности? Как мы знаем, бифуркации возникают при переходе системы от состояния видимой стабильности и равновесия к хаосу. Примерами таких переходов являются дым, вода и многие другие самые обычные природные явления. Так, поднимающийся вверх дым сигареты сначала выглядит как упорядоченный столб. Однако через некоторое время он начинает претерпевать изменения, которые сна-чала кажутся упорядоченными, а затем становятся хаотически непредска-зуемыми. Фактически первый переход от стабильности к некоторой форме видимой упорядоченности, но уже изменчивости, происходит в первой точке бифуркации. Далее количество бифуркаций увеличивается, достигая огромных величин. С каждой бифуркацией функция турбулентности дыма приближается к хаосу. Причиной бифуркаций здесь является ускорение, которое через некоторое время после появления дыма приводит к тому, что плотность дыма падает ниже плотности воздуха и дым рассеивается.
С помощью теории бифуркаций можно предсказать характер движения, возникающего при переходе системы в качественно иное состояние, а также область существования системы и оценить ее устойчивость.
К сожалению, само существование теории хаоса трудно совместимо с классической наукой. Обычно научные идеи проверяются на основании предсказаний и их сверки с реальными результатами. Однако, как мы уже знаем, хаос непредсказуем, и, когда изучаешь хаотическую систему, можно прогнозировать только модель ее поведения. Поэтому с помощью хаоса не только нельзя построить точный прогноз, но и, соответственно, проверить его. Однако это не должно говорить о неверности теории хаоса, подтвержденной как в математических расчетах, так и в жизни.
Сейчас еще не существует математически точного аппарата применения теории хаоса для исследования рыночных цен, поэтому спешить с применением знаний о хаосе нельзя. Вместе с тем, действительно, это самое перспективное современное направление математики с точки зрения прикладных исследований финансовых рынков.

И средневековый латинский furcatus - раздвоенный, от латинского furca - двузубые вилы), разветвление, раздвоение. В теории колебаний и теории динамических систем бифуркация - это перестройка характера движения реальной системы (физической, химической, биологической), переход её в новое качественное состояние при малом плавном изменении одного или нескольких параметров. Значения параметров, при которых наблюдается бифуркация, называются бифуркационными. Математически бифуркация - это изменение структуры разбиения фазового пространства динамической системы на траектории при малом изменении её параметров.

Теория бифуркации даёт возможность понять как физические явления в механике (поведение частицы в потенциальной яме), оптике (условие возникновения лазерной генерации), теории колебаний (автоколебания), так и некоторые химические процессы (например, колебательные реакции типа реакции Белоусова - Жаботинского). Кроме того, теория бифуркации применима для описания ряда явлений в экологии и динамике популяций, условий сосуществования видов (хищник - жертва), процессов эволюции и мутаций в биологии, взаимодействия и развития социальных систем и др.

Простейшим примером бифуркации является рассмотренное Л. Эйлером выпучивание в ту или иную сторону вертикально нагруженного стержня при превышении критической нагрузки (рис. 1). Теория бифуркации универсальна. Знание основных типов бифуркации позволяет существенно облегчить исследование реальных систем, предсказать характер новых движений, возникающих в момент перехода системы в качественно другое состояние, оценить их устойчивость и область существования.

Основы теории бифуркации заложены А. Пуанкаре и А. М. Ляпуновым в начале 20 века. Важнейший вклад в её развитие сделан А. А. Андроновым и Л. С. Понтрягиным, которые ввели понятие грубости (структурной устойчивости) динамических систем на плоскости. Грубые системы сохраняют качественную структуру разбиения фазового пространства на траектории при малых изменениях параметров. Нарушение условий грубости происходит при бифуркационных значениях параметров, когда система становится негрубой. Наиболее распространёнными типами поведения систем различного происхождения являются состояния равновесия и периодического движения. Математическим образом периодического движения является предельный цикл. Теория бифуркации для систем, обладающих состояниями равновесия и предельными циклами, разработана в основном А. А. Андроновым и его учениками.

Система находится в устойчивом состоянии (состоянии устойчивого равновесия), если при малом отклонении от него она возвращается вновь к этому состоянию (рис. 2а). В этом смысле такие положения равновесия словно притягивают к себе, поэтому они называются аттракторами (от английский attract - притягивать). Каждый аттрактор имеет свою область притяжения - множество начальных условий (координат и скоростей шарика, как на рисунке 2а), при отклонении от которых система с течением времени возвращается в это же состояние. Система находится в состоянии неустойчивого равновесия, если при малом отклонении от него она не возвращается в это состояние (рис. 2б).

Система, находящаяся в устойчивом стационарном состоянии, может испытывать бифуркацию, когда оно теряет устойчивость, например сливается с неустойчивым (рис. 3а-в). В этом случае с переходом параметра через бифуркационное значение (рис. 3б) система скачком переходит в другую область, удалённую от исходной (рис. 3в).

Бифуркация, при которой состояние устойчивого равновесия системы, наблюдаемое до перехода параметра через точку бифуркации, сменяется устойчивым периодическим движением, была исследована А. А. Андроновым и Э. Хопфом и носит их имя. Другой тип бифуркации Андронова - Хопфа - это жёсткое возбуждение, когда параметр системы изменяется так, что неустойчивый предельный цикл стягивается к стационарному устойчивому состоянию и в момент бифуркации сливается с ним. При этом область притяжения стационарного состояния системы и размеры предельного цикла уменьшаются до нуля, так что система теряет устойчивость и скачком переходит на другой режим движения.

Устойчивое периодическое движение также может претерпеть бифуркацию, либо слившись с неустойчивым периодическим движением, либо потеряв свою устойчивость. В последнем случае из периодических движений могут возникнуть периодические движения удвоенного периода или квазипериодические колебания (так называемый двумерный инвариантный тор). Квазипериодические колебания - это движения с двумя или более несоизмеримыми (рационально независимыми) частотами. Такие колебания наблюдаются, например, в системе двух связанных маятников с частотами ω 1 и ω 2 при ω 1 /ω 2 ≠ k/m, где k и m целые числа.

В нелинейных системах при изменении параметров допустима конечная (или даже бесконечная) последовательность бифуркаций, приводящая к появлению динамического хаоса (смотри также Странный аттрактор).

Лит.: Андронов А. А. и др. Теория бифуркаций динамических систем на плоскости. М., 1967; Арнольд В. И. и др. Теория бифуркаций // Современные проблемы математики. Фундаментальные направления. М., 1986. Т. 5; Лоскутов А.Ю., Михайлов А. С. Введение в синергетику. М., 1990.

Теория бифуркаций проявляется повсеместно в естествознании. Дифференциальные уравнения, описывающие реальные физические системы, всегда содержат параметры, точные значения которых, не известны. Если уравнение, моделирующее физическую систему, оказывается структурно неустойчивым, то есть поведении его решении может качественно измениться при сколь угодно малом изменении правой части, то необходимо определить, какие бифуркации фазового портрета происходят при изменении параметров

Весьма важным и продуктивным понятием естествознания является понятие динамической системы. Под динамической системой понимают математическую модель того или иного реального процесса, обладающую следующими свойствами. Во-первых, должен быть известен некоторый набор величин, который однозначно задает состояние системы. Во-вторых, должен быть известен закон, по которому можно однозначно определить состояние системы в любой момент времени, если известно ее начальное состояние. Это понятие является очень широким и поэтому примеры динамических систем можно найти практически во всех областях физики, биологии, химии и т.д.

Поведение динамической системы, в частности, установившиеся с течением времени режимы, могут зависеть от некоторых параметров. Оказывается, что при медленном изменении параметра могут происходить качественные перестройки установившихся режимов. Изучение таких перестроек при вариации параметров в динамических системах (причем, не только в отображениях, но и в дифференциальных уравнениях) составляет предмет теории бифуркаций. Она выявляет типичные бифуркации, изучает и классифицирует их. Теория бифуркаций является математической наукой.

Слово «бифуркация» означает «раздвоение» и употребляет как название любого скачкообразного изменения, происходящего при плавном изменении параметров в любо системе: динамической, экологической и т. д. Статья посвящена бифуркациям нелинейных динамических систем.

Часто при моделировании физических процессов часть переменных, изменения которых незначительны в рамках моделируемых процессов, принимают константами. В результате получается система более низкого порядка, чем исходная, но учесть влияние изменения членов, принятых за постоянные, становится невозможно. В этом случае члены можно рассматривать, как возмущения и описывать модель средствами теории бифуркаций.

Бифуркации допускают определенную классификацию. Во-первых, по минимальной величине размерности системы, для которой возможна данная бифуркация. А, во-вторых, по минимальному количеству параметров, необходимых для данного типа перестройки.

1. Понятие бифуркации

Бифуркации имеют фундаментальное значение при исследовании поведения динамических систем. Часто именно бифуркации определяют механизм возникновения многих сложных процессов. Остановимся на некоторых основных положениях теории бифуркации.

Пусть нелинейная модель автономной системы, представленная ДУ

\begin{equation} {dx \over dt} = F(x,\lambda) \end{equation}

характеризуется изменением параметра \(\lambda\). В реальной системе таким параметром может быть температура, давление, концентрация, коэффициент роста популяции и т. д. Следует подчеркнуть, что изучению подлежит не конкретная модель с фиксированным параметром, а семейство динамических моделей, поведение которых зависит от \(\lambda\).

При некотором значении параметра, называемым критическим значением, процессы в системе претерпевают качественное изменение. В этом случае структура (топология) разбиения фазового пространства (фазовой плоскости при размерности 2) на траектории также качественно изменяется. Такое свойство нелинейной системы принято называть бифуркацией (от латинского слова bifurcus – раздвоенный), а варьируемый параметр \(\lambda\), при котором наблюдается бифуркация – бифуркационным параметром.

Более строго, бифуркационным (критическим) значением параметра \(\lambda\) называется такое его значение, при котором динамическая система становится негрубой (структурно-неустойчивой).

Понятие грубости динамической системы было введено А.А. Андроновым и Л.С. Понтрягиным. Динамическая система, представленная ДУ следующего вида

\[{dx_i \over dt} = F(x), x = 1, …, n \]

называется грубой в области \(G \subset {{\bf{R}}^n}\), если для любого \(\varepsilon > 0\) можно указать такое \(\delta > 0\), что при произвольных аналитических функциях \({Q_i}({x_1},\; \ldots ,\;{x_n}) = {Q_i}({\bf{x}})\) изменённой (другими словами – возмущённой) системы

\[\frac{{d{x_i}}}{{dt}} = {F_i}({\bf{x}}) + {Q_i}({\bf{x}}),i = 1,\; \ldots ,\;n\]

удовлетворяющих неравенству

\[\sum\limits_{i = 1}^n {\left[ {\left| {{Q_i}({\bf{x}})} \right| + \sum\limits_{j = 1}^n {\left| {\frac{{\partial {Q_i}({\bf{x}})}}{{\partial {x_j}}}} \right|} } \right] < \delta } \]

существует такое взаимно однозначное и взаимно непрерывное отображение области в себя, при котором каждая траектория исходной (невозмущённой) системы отображается в соответствующую траекторию системы и обратно. При этом соответствующие друг другу точки находятся на расстоянии, меньшем \(\varepsilon \). Другими словами, грубыми являются такие динамические системы, у которых качественная структура фазовых траекторий не меняется при произвольном малом изменении правых частей исходного ДУ.

Для грубых динамических систем второго порядка выполняются следующие условия:

  1. в области \(G \subset {{\bf{R}}^2} \)могут располагаться только простые особые точки (состояния равновесия) типа «узел», «фокус», «седло», т. е. такие, для которых действительные части корней характеристического уравнения линеаризованной системы отличны от нуля. Такие особые точки (их конечное число) называются грубыми;
  2. в области \(G\) могут располагаться только простые предельные циклы, число которых конечно;
  3. в области \(G\) отсутствуют сепаратрисы, идущие из седла в седло. Возможно существование сепаратрис сёдел, в одну сторону стремящиеся к узлу, фокусу, предельному циклу или при некотором значении \(t\) выходящие из области \(G\).

При нарушении этих условий динамическая система становится негрубой.

В соответствии с теорией бифуркаций в пространстве координат и параметра из точки бифуркации могут исходить несколько ветвей решения уравнения равновесия

\[{\bf{0}} = {\bf{F}}({\bf{x}},\;\lambda)\]

как устойчивых, так и неустойчивых. Графики зависимости координат положений равновесия от \(\lambda\) представляют собой бифуркационные диаграммы.

Простейшим примером бифуркации может служить следующая система

\[\frac{{dx}}{{dt}} = \lambda x\]

которая имеет решение \(x(t) = {x_0}{e^{\lambda t}}\), определяющее экспоненциальный рост (убывание), если \(\lambda > 0(\lambda < 0)\) соответственно. Заметим, что приведенное выше уравнение определяет динамику цепной реакции \(\lambda > 0\) и распада ядра \(\lambda < 0\). Единственное состояние равновесия уравнения \(x = 0\) устойчиво при \(\lambda < 0\) и неустойчиво при \(\lambda > 0\).

Рис. 1.1 - Временная характеристика системы при различных значениях бифуркационного параметра

2. Классификация

Бифуркации принято классифицировать по числу нарушений условий гиперболичности собственных значений матрицы

\[{\bf{J}}({\bf{x}},\;{\lambda _1},\; \ldots ,\;{\lambda _m}) = \left\| {\frac{{\partial {F_i}({\bf{x}},\;{\lambda _1},\; \ldots ,\;{\lambda _m})}}{{\partial {x_j}}}} \right\|\]

Неподвижная точка называется гиперболической, если матрица Якоби \({\bf{J}}\), определённая в ней, не содержит собственных значений \({s_k} \) с нулевой действительной частью, т. е. \({\rm{Re}}\,{s_k} \ne 0\).

При рассмотрении многопараметрического пространства \(\Lambda \) точка этого пространства (\(\lambda \in \Lambda \)), в которой происходит качественное изменение поведения динамической системы, именуется точкой бифуркации. Для пространства \(\Lambda \) характерна задача определения числа параметров \(\{ {\lambda _q}\} \), которые должны присутствовать в модели для того, чтобы данная бифуркация относилась к типичной.

Собственные значения \({s_k} \) матрицы \({\bf{J}}\) представляют собой функции от параметров, т. е. \({s_k}({\lambda _1},\; \ldots ,\;{\lambda _m})\). Тогда условия нарушения гиперболичности вида \({\rm{Re}}\,{s_k} = 0\) определяются системой уравнений, составленных относительно параметров. Например, для того, чтобы два действительных собственных значения одновременно обратились в ноль, необходимо найти решение системы двух уравнений относительно неизвестных

\[\begin{array}{l}
{s_1}({\lambda _1},\; \ldots ,\;{\lambda _m}) = 0\\
{s_2}({\lambda _1},\; \ldots ,\;{\lambda _m}) = 0
\end{array}\]

При этом возможны следующие типичные ситуации:

  • если \(m = 1 \) , то решение в общем случае отсутствует; бифуркация не обнаруживается;
  • если \(m = 2 \), то возможно решение; бифуркация может произойти в одной или нескольких точках \(\Lambda \);
  • если \(m > 2 \), то в типичных случаях негиперболические точки будут располагаться на поверхности размерности \(m — 2 \) в \(\Lambda \) , т. е. могут образовываться поверхности бифуркации.

В общем случае, если необходимо удовлетворить \(k \) условиям нарушения гиперболичности, то возможные точки бифуркации будут располагаться на \((m — k)\) -мерной поверхности. Величину \(k \), определяющую количество условий нарушения гиперболичности, называют коразмерностью бифуркации. Разность между размерностью пространства и размерностью поверхности бифуркации представляет собой коразмерность поверхности.

Коразмерность бифуркации показывает, каким числом параметров должна определяться динамическая система, чтобы наблюдаемая в ней бифуркация была типичная. Другими словами, коразмерность бифуркации – наименьшая размерность пространства \(\Lambda \), в котором возможна бифуркация соответствующего типа. В дальнейшем для простоты понимания основных положений теории бифуркаций целесообразно ограничиться рассмотрением бифуркаций коразмерности 1, которые наблюдаются в однопараметрических системах. С бифуркациями более высокого порядка можно ознакомиться в специальной литературе.

Изучение распространённых типов бифуркаций производится на моделях первого и второго порядков, представленных определёнными ДУ. При этом в линеаризованных моделях возникает одно нулевое или два мнимых собственных значений матрицы Якоби.

2.1 Бифуркации в системах с простым движением

Негрубость системы означает негрубость тех или иных траекторий. Среди таких траекторий прежде всего выделяются устойчивые состояния равновесия и периодические движения, поскольку они являются математическим образом стационарных состояний и автоколебаний.

Состояние равновесия n-мерной системы \(\mathop x\limits^. = X(x)\) точка \(M({x^*})\), где \({x^*}\) — решение системы \(X(x) = 0\). Оно негрубое, если среди \({\lambda _{1,}}{\lambda _2}, …{\lambda _n}\) — корней характеристического уравнения \(\det (\frac{{\partial X({x^*})}}{{\partial x}} — \lambda E) = 0\) имеются корни, лежащие на мнимой оси. В случае, если \({\mathop{\rm Re}\nolimits} {\lambda _i} < 0,i = 1,…n \), состояние равновесия является устойчивым. Если имеются корни как с отрицательной, так и с положительной реальной частью, то состояние равновесия носит название седлового. К нему будут стремиться траектории как при \(t \to + \infty \), так и при \(t \to — \infty \) , в совокупности образуя устойчивое \({W^s}\) и неустойчивое \({W^u}\) многообразия. Периодическое решение \(x = \phi (t) \) этой системы будет негрубым, если среди мультипликаторов \({\rho _1},{\rho _2},…{\rho _{n — 1}}\) имеются равные по модулю 1. Если же \(\left| {{\rho _i}} \right| < 1\), периодическое движение устойчивое, и седловое, если среди мультипликаторов есть как лежащие внутри единичного круга, так и вне его.

В настоящее время основные (коразмерности 1) локальные и глобальные бифуркации таких траекторий подробно изучены.

Устойчивое состояние равновесия может:

  1. исчезнуть, слившись с неустойчивым. В момент бифуркации у состояния равновесия, называемого седло-узел, только один характеристический корень лежит на мнимой оси и равен нулю.
  2. потерять устойчивость. При этом из состояния равновесия будет рождаться (влипать в него) устойчивое (неустойчивое) периодическое движение, если в момент бифуркации состояние равновесия устойчиво (неустойчиво). Эта бифуркация, объясняющая генерацию колебаний, носит название Андронова-Хопфа.

Устойчивое периодическое движение может:

  • исчезнуть, слившись с неустойчивым в момент бифуркации. Для \(n > 2\) негрубое периодическое движение носит название седло-узлового.
  • потерять устойчивость с рождением устойчивого
    • периодического движения удвоенного периода, если мультипликатор равен (-1),
    • двумерного инвариантного тора, если \({\rho _{1,2}} = {e^{ \pm i\phi }}\), где \(\phi \ne 0,\pi ,\frac{\pi }{2},\frac{{2\pi }}{3}\).

Устойчивые периодические движения могут также рождаться в результате следующих глобальных бифуркаций:

  1. из траектории, идущей из седла с характеристическими корнями \({\mathop{\rm Re}\nolimits} {\lambda _i} < 0\), \(i=1, … ,n-1\), и седловой величиной \(\max {\mathop{\rm Re}\nolimits} {\lambda _i} + {\lambda _n} < 0\) в то же седло,
  2. из траектории, идущей из седло-узла в него при исчезновении состояния равновесия,
  3. при исчезновении седло-узлового периодического движения, все траектории неустойчивого многообразия которого, образуют в совокупности сильно сжимающуюся трубку, навивающуюся на периодическое движение. Эта бифуркация называется «катастрофой голубого неба» и ее особенность состоит в том, что при стремлении параметра к бифуркационному значению длина периодических движений стремится к бесконечности.

В случае коразмерности 1 седловые периодические движения могут рождаться из траектории, идущей 1) из седла в него же, 2) из негрубого состояния равновесия типа седло-седло в него же при его исчезновении (такое состояние равновесия образуется при слиянии двух грубых седел.)

Все перечисленные бифуркации не выводят из класса систем с простым поведением траекторий.

2.2 Бифуркации в системах со сложным движением

Основным признаком системы со сложным поведением траекторий является существование грубого предельного множества, состоящего из траекторий седлового типа, в котором всюду плотны постоянные движения и есть всюду плотная траектория. Такие множества называются гиперболическими. Наиболее универсальный критерий существования таких множеств связан с гомоклинической орбитой Пуанкаре - двояко асимптотической траекторией к седловому постоянному движению, по которой его устойчивое и неустойчивое многообразия пересекаются без касания. Наличие такой структуры гарантирует существование в любой ее малой окрестности одномерного гиперболического множества, но неустойчивого. По этой причине бифуркации, связанные с появлением или исчезновением гиперболического множества, получили общее название гомоклинических. Другим типичным случаем систем со сложным поведением траекторий являются системы с гомоклиническими петлями седло-фокуса с положительной седловой величиной. Гомоклинические бифуркации подразделяются на два типа: граничные, объясняющие переходы от простой динамики к сложной, и внутренние. Характерным примером бифуркации 1-го типа, показывающим, что системы с простой и сложной динамикой могут быть разделены бифуркационной поверхностью, является бифуркацией исчезновения состояния равновесия типа седло-седло с не менее, чем двумя двояко асимптотическими траекториями, а также ряд бифуркаций систем с негрубой гомоклинической траекторией Пуанкаре. Однако такому переходу может предшествовать бесконечный каскад бифуркаций удвоения периода Шарковского-Фейгенбаума. Отметим также задачу о разрушении тора в связи с проблемой синхронизации.

В случае внутренних бифуркаций одной из основных задач является выделение в пространстве динамических систем областей негрубых систем. Впервые на это необычное явление было указано Смейлом в начале 60-х годов. Но наибольшую известность получили области Ньюхауса, в которых всюду плотны системы с негрубыми гомоклиническими траекториями Пуанкаре, имеющие постоянного движения любого порядка вырождения. Из этого следует вывод - для нелинейной динамики: полный качественный анализ моделей, допускающих негрубую гомоклиническую траекторию Пуанкаре, не реалистичен.

С открытием динамического хаоса в теории бифуркаций открылась новая глава, связанная с теорией странных аттракторов – притягивающих предельных множеств с неустойчивым поведением траекторий. В отличие, например, от постоянных движений, странные аттракторы не имеют унифицированной природы: они могут быть как многообразием (гладким или негладким), так и множествами с весьма сложной теоретико-множественной структурой. Исходя из интересов нелинейной динамики, от странных аттракторов требуется, чтобы они сохраняли свои свойства при малых возмущениях системы. Естественно, это так для гиперболических аттракторов. Но анализ ряда моделей показал, что таковыми могут быть и негрубые аттракторы. Характерным примером является странный аттрактор модели Лоренца \(\mathop x\limits^. = — \sigma (x — y),\mathop y\limits^. = — y + rx — xz,\mathop z\limits^. = — bz + xy\), негрубость которого обусловлена тем, что состояние равновесия типа седло принадлежит странному аттрактору. В размерности n>3 могут быть негрубые аттракторы, содержащие седло-фокус. Поскольку последние допускают гомоклинические касания, их (по выше приведенным причинам) принято называть «дикими». Понятно, что изучение бифуркаций, приводящих к возникновению странных аттракторов, стало одной из актуальных задач. Исторически эта проблема возникла в гидродинамике в связи с объяснением возникновения турбулентности. Именно в этой связи в 40-х годах Ландау и Хопф предложили такое объяснение на примере каскада бифуркаций торов с повышением их размерности. Гидродинамическое происхождение имеет и модель Лоренца. Здесь переход от простой динамики к странному аттрактору происходит в результате двух гомоклинических бифуркаций: граничной бифуркации гомоклинической восьмерки-бабочки седла, в результате которой рождается неустойчивое одномерное гиперболическое множество, и внутренней бифуркацией гомоклинического контура в момент, когда обе траектории, выходящие из седла, впервые устремятся к седловым постоянным движением, появившимся в результате граничной бифуркации. Однако такой, сравнительно простой сценарий, обусловлен тем, что модель Лоренца обладает симметрией \((— x, — y) \to (x,y)\). Отметим также следующий результат, имеющий пока чисто математическое значение, — ряд гиперболических аттракторов (соленоид Смейла-Вильямса, аносовский тор), могут рождаться в результате глобальных бифуркаций, связанных с исчезновением седло-узловых постоянных движенй и торов. Помимо странных аттракторов во многих прикладных исследованиях встречаются предельные множества, которые можно назвать квазиаттракторами, поскольку в них, кроме гиперболических множеств, содержатся устойчивые постоянные движения, причем даже в счетном множестве. Подобная ситуация возникает, например, в трехмерных системах с отрицательной дивергенцией. В компьютерных исследованиях динамика модели в областях Ньюхауса может вполне ассоциироваться с хаотическим поведением траекторий, поскольку п.д. могут иметь весьма большие периоды и узкие области притяжения.

3. Мягкая и жесткая потеря устойчивости

3.1 Понятие мягкой и жесткой потери устойчивости

Бифуркации условно можно разделить на мягкие и жёсткие, что наглядно демонстрируется следующим примером. На рис. 3.1 и рис. 3.2 изображён перестраиваемый профиль с шариком. В результате изменения какого-либо фактора (параметра), исходный профиль изменяет свою конфигурацию таким образом, что устойчивое равновесное состояние шарика теряется. При этом «рождаются» два новых устойчивых состояния равновесия, в один из которых и сваливается шарик. Вновь появившиеся состояния равновесия перестроившегося профиля располагаются в непосредственной близости от начального состояния равновесия, которое потеряло устойчивость. Бифуркации такого типа называют мягкими. Новый режим функционирования как бы постепенно появляется из режима, потерявшего устойчивость, и сосуществует рядом с ним.

Рис. 3.1 - перестраиваемый профиль с шариком

Характер перестроения профиля, изображённого на рис. 3.2, иной. Для значения параметра меньше критического шарик находится в устойчивом равновесном состоянии. Одновременно существует ещё одно потенциальное неустойчивое равновесное состояние. При перестроении профиля для критического значения параметра устойчивое и неустойчивое состояния сливаются в одно. Далее они оба исчезают, и система «скачком» выбирает новый режим, который существенно отличается от предыдущего и не находится в непосредственной близости от исходного режима. Бифуркации такого типа относятся к жёстким. Именно жёсткие (скачкообразные) бифуркации в первую очередь являются предметом исследования теории катастроф.

Рис. 3.2 - перестраиваемый профиль с шариком

4. Виды бифуркаций

В следующем разделе будут описаны основные виды и примеры бифуркаций как непрерывных, так и дискретных (отражений) функций.

4.1 Касательная (седло-узловая) бифуркация

Пример седло-узловой бифуркации рассмотрим на примере системы, описываемой д.у.:

\[\frac{{dx}}{{dt}} = \lambda — {x^2}\]

где \(\lambda \) - варьируемый параметр. Равновесные решения \(x_{{\rm{1}}{\rm{,2}}}^{\rm{}} = \pm \sqrt \lambda \) уравнения определены только для \(\lambda \ge 0\); при \(\lambda < 0\) равновесные состояния отсутствуют. Значение \(\lambda = 0\) является бифуркационным. На рис. 4.2 изображена соответствующая бифуркационная диаграмма. Как видно из рисунка, из точки бифуркации \((x = 0,\;\lambda = 0)\) выходят две ветви равновесных состояний, одна из которых устойчивая, а вторая - неустойчивая. При варьировании параметра в сторону увеличения значений из «ничего» рождаются два состояния равновесия, одно из которых устойчиво. Бифуркации такого рода относят к типу «седло-узел».

Рис. 4.1 - Временная характеристика системы с касательной (седло-узловой) бифуркацией

Рис 4.2 - Диаграмма касательной (седло-узловой) бифуркации

4.2 Транскритическая бифуркация (бифуркация типа «обмен устойчивости»)

Бифуркацию типа «обмен устойчивости» продемонстрируем на системе

\[\frac{{dx}}{{dt}} = x\lambda — {x^2}\]

Уравнение имеет два равновесных решения: \(x_1^{\rm{}} = 0,\;x_2^{\rm{}} = \lambda \). Первое решение устойчиво при и неустойчиво при; второе – устойчиво при \(\lambda < 0\) и неустойчиво при \(\lambda > 0\). Принято говорить, что оба решения «обмениваются устойчивостью» в точке бифуркации \((x = 0,\;\lambda = 0)\). На рис. 4.3, представлены соответствующие графики функций.

Рис. 4.3 - Временная характеристика системы с транскритической бифуркацией

Рис. 4.4 - Диаграмма транскритической бифуркации

4.3 Бифуркация «вилка»

Бифуркация типа «вилка» описывается ДУ вида

\[\frac{{dx}}{{dt}} = \lambda x — {x^3}\]

Это уравнение имеет одно равновесное решение \(x_1^{\rm{}} = 0 \) при \(\lambda < 0\) и три равновесных решения \(x_1^{\rm{}} = 0,\;x_{{\rm{2}}{\rm{,3}}}^{\rm{}} = \pm \sqrt \lambda \) при \(\lambda > 0\). Соответствующие графики функций (рис. 4.6) симметричны относительно оси \(x\). В данном случае из точки бифуркации выходят три ветви равновесных состояний: две устойчивые и одна неустойчивая.

Рис. 4.5 - Временная характеристика системы с бифуркацией «Вилка»

Рис. 4.4 - Диаграмма бифуркации «Вилка»

Бифуркация типа «вилка» широко рассматривается в теоретической физике, поскольку на ней основываются некоторые теории, объясняющие спонтанное нарушение симметрии (устойчивая равновесная точка \(x_1^{\rm{}} = 0 \) при \(\lambda < 0\) отвечает симметричному состоянию, например, отсутствию намагниченности, а рождающиеся устойчивые точки равновесия \({x^{\rm{}}} = \pm \sqrt \lambda \) при \(\lambda > 0\) – состоянию с нарушенной симметрией). В частности, на этой бифуркации основана теория переходов II рода, предложенная Л. Д. Ландау. В ней чаще всего роль параметра \(\lambda\) играет отклонение температуры от критического значения, а величина \(x\) носит название «параметр порядка».
Рассмотренные бифуркации называются суперкритическими или нормальными. Их особенность заключается в том, что нелинейные члены \({x^2}\) и \({x^3}\) соответствующих уравнений оказывают влияние, способствующее получению устойчивых равновесных состояний системы. Однако при изменении знаков перед нелинейными членами, последние будут оказывать уже дестабилизирующее влияние на систему. В этих случаях возникают субкритические или обратные бифуркации.

4.4 Бифуркация Андронова – Хопфа (Hopf)

Кроме бифуркаций состояний равновесия в динамических системах при изменении параметра может происходить ещё одна перестройка структуры фазового портрета. Этот тип бифуркации рассматривает рождение предельного цикла из неподвижной точки и является более сложным, чем представленные выше.
Пусть нелинейная модель описывается следующим д. у.:

\[\frac{{dz}}{{dt}} = (\mu + j\eta)z — z{\left| z \right|^2}\]

где \(z \) – комплексная переменная; \(\mu + j\eta \) – комплексный параметр, причём \(j \) – мнимая единица, \(\mu \) – варьируемый бифуркационный параметр.

Уравнение представляет собой комплексный аналог бифуркации типа «вилка». С целью определения всех равновесных решений необходимо произвести замену комплексной переменной \(z \):

где \({x_1}\) и \({x_2}\) новые вещественные переменные.

В результате подстановки \(z \) в исходное ДУ получается система из двух уравнений первого порядка:

\[\begin{array}{l}
{{\dot x}_1} = [\mu — (x_1^2 + x_2^2)]{x_1} — \eta {x_2}\\
{{\dot x}_2} = [\mu — (x_1^2 + x_2^2)]{x_2} + \eta {x_1}
\end{array}\]

Таким образом, здесь осуществлён переход к модели второго порядка с вещественными параметрами. Полученные уравнения связаны между собой через комплексную переменную \(z \) и имеют следующие два стационарных решения:

\[{x_1} = {x_2} = 0 \ при \ z = 0 \\
x_1^2 + x_2^2 = {\left| z \right|^2} = \mu \ при \ z \ne 0\]

Первое решение является неустойчивым и совпадает с точкой бифуркации, а второе решение определяет окружность радиуса \(\sqrt \mu\) в пространстве координат \(({x_1},\;{x_2},\;\mu)\). На рис. 4.5 изображены фазовые траектории при фиксированных \(\mu \).

Рис. 4.5 - Фазовый портрет системы с бифуркацией Андронова – Хопфа

4.5 Бифуркации циклов

Образование в динамических системах второго порядка предельных циклов – соответствует бифуркации Андронова–Хопфа. Так, для модели, представленной системой ДУ

\[\begin{array}{l}
\frac{{d{x_1}}}{{dt}} = {x_2} — {x_1}(x_1^2 + x_2^2 — \lambda)\\
\frac{{d{x_2}}}{{dt}} = — {x_1} — {x_2}(x_1^2 + x_2^2 — \lambda)
\end{array}\]

точка \(\lambda = 0\) является бифуркационной точкой. При изменении \(\lambda \) с отрицательных значений на положительные от нулевого равновесного состояния \(({x_1} = 0,{x_2} = 0)\) ответвляется периодическая орбита \(x_1^2 + x_2^2 = \lambda \), соответствующая устойчивому предельному циклу. При этом происходит изменение характера особой точки: из устойчивой она становится неустойчивой (рис. 4.6).

Рис. 4.6 - Фазовый портрет системы с бифуркацией циклов

4.6 Бифуркация удвоения периода

Теперь рассмотрим бифуркации отражений. Одномерное отображение – это простейшая модель эволюционного процесса, когда состояние системы характеризуется единственной переменной, а время – дискретно. Примером может служить динамика численности биологической популяции, если наблюдение за ее численностью производится, например, один раз в год.

Простейшей моделью, описывающей бифуркацию удвоения периода, может служить логистическое отображение

\[{x_{n + 1}} = 1 — \lambda x_n^2\]

Его неподвижные точки ищутся из решения соответствующего квадратного уравнения #\({x_0} = 1 — \lambda x_0^2\), так что

\[{x_0} = \frac{{ — 1 \pm \sqrt {1 + 4\lambda } }}{{2\lambda }}\]

При \(\lambda = -0.25\) имеет место касательная бифуркация, в результате которой возникают неустойчивая и устойчивая точки.

Построим бифуркационную диаграмму (Рис. 4.7) с помощью команды математического пакета Maxima.

gastroguru © 2017