Ковалентная связь, полярная и неполярная, особенности, формулы и схемы. Ковалентные связи

Данные по энергии ионизации (ЭИ), ПЭИ и составу стабильных молекул - их настоящие значения и сравнения - как свободных атомов, так и атомов, связанных в молекулы, позволяют нам понять как атомы образуют молекулы посредством механизма ковалентной связи.

КОВАЛЕНТНАЯ СВЯЗЬ - (от латинского «со» совместно и «vales» имеющий силу) (гомеополярная связь), химическая связь между двумя атомами, возникающая при обобществлении электронов, принадлежавших этим атомам. Ковалентной связью соединены атомы в молекулах простых газов. Связь, при которой имеется одна общая пара электронов, называется одинарной; существуют также двойные и тройные связи.

Рассмотрим несколько примеров, чтобы увидеть, как мы можем использовать наши правила для определения количества ковалентных химических связей, которые может образовать атом, если мы знаем количество электронов на внешней оболочке данного атома и заряд его ядра. Заряд ядра и количество электронов на внешней оболочке определяются экспериментальным путем и включены в таблицу элементов.

Расчет возможного числа ковалентных связей

Для примера, подсчитаем количество ковалентных связей, которые могут образовать натрий (Na), алюминий (Al), фосфор (P), и хлор (Cl) . Натрий (Na) и алюминий (Al) имеют, соответственно 1 и 3 электрона на внешней оболочке, и, по первому правилу (для механизма образования ковалентной связи используется один электрон на внешней оболочке), они могут образовать:натрий (Na) - 1 и алюминий (Al) - 3 ковалентных связи. После образования связей количество электронов на внешних оболочках натрия (Na) и алюминия (Al) равно, соответственно, 2 и 6; т.е., менее максимального количества (8) для этих атомов. Фосфор (P) и хлор (Cl) имеют, соответственно, 5 и 7 электронов на внешней оболочке и, согласно второй из вышеназванных закономерностей, они могли бы образовать 5 и 7 ковалентных связей. В соответствии с четвертой закономерностью образование ковалентной связи, число электронов на внешней оболочке этих атомов увеличивается на 1. Согласно шестой закономерности, когда образуется ковалентная связь, число электронов на внешней оболочке связываемых атомов не может быть более 8. То есть, фосфор (P) может образовать только 3 связи (8-5 = 3), в то время как хлор (Cl) может образовать только одну (8-7 = 1).

Пример: на основании анализа мы обнаружили, что некое вещество состоит из атомов натрия (Na) и хлора (Cl) . Зная закономерности механизма образования ковалентных связей, мы можем сказать, что натрий (Na ) может образовать только 1 ковалентную связь. Таким образом, мы можем предположить, что каждый атом натрия (Na) связан с атомом хлора (Cl) посредством ковалентной связи в этом веществе, и что это вещество состоит из молекул атома NaCl . Формула строения для этой молекулы: Na - Cl. Здесь тире (-) означает ковалентную связь. Электронную формулу этой молекулы можно показать следующим образом:
. .
Na: Cl:
. .
В соответствии с электронной формулой, на внешней оболочке атома натрия (Na) в NaCl имеется 2 электрона, а на внешней оболочке атома хлора (Cl) находится 8 электронов. В данной формуле электроны (точки) между атомами натрия (Na) и хлора (Cl) являются связующими электронами. Поскольку ПЭИ у хлора (Cl) равен 13 эВ, а у натрия (Na) он равен 5,14 эВ, связующая пара электронов находится гораздо ближе к атому Cl , чем к атому Na . Если энергии ионизации атомов, образующих молекулу сильно различаются, то образовавшаяся связь будет полярной ковалентной связью.

Рассмотрим другой случай. На основании анализа мы обнаружили, что некое вещество состоит из атомов алюминия (Al) и атомов хлора (Cl) . У алюминия (Al) имеется 3 электрона на внешней оболочке; таким образом, он может образовать 3 ковалентные химические связи, в то время хлор (Cl) , как и в предыдущем случае, может образовать только 1 связь. Это вещество представлено как AlCl 3 , а его электронную формулу можно проиллюстрировать следующим образом:

Рисунок 3.1. Электронная формула AlCl 3

чья формула строения:
Cl - Al - Cl
Cl

Эта электронная формула показывает, что у AlCl 3 на внешней оболочке атомов хлора (Cl ) имеется 8 электронов, в то время, как на внешней оболочке атома алюминия (Al) их 6. По механизму образования ковалентной связи, оба связующих электрона (по одному от каждого атома) поступают на внешние оболочки связываемых атомов.

Кратные ковалентные связи

Атомы, имеющие более одного электрона на внешней оболочке, могут образовывать не одну, а несколько ковалентных связей между собой. Такие связи называются многократными (чаще кратными ) связями. Примерами таких связей служат связи молекул азота (N = N ) и кислорода (O = O ).

Связь, образующаяся при объединении одинарных атомов называется гомоатомной ковалентной связью,е сли атомы разные, то связь называется гетероатомнной ковалентной связью [греческие префексы "гомо" и "гетеро" соответственно означают одинаковые и разные].

Представим, как в действительности выглядит молекула со спаренными атомами. Самая простая молекула со спаренными атомами - это молекула водорода.

Ковалентная связь образуется при взаимодействии неметаллов . Атомы неметаллов имеют высокую электроотрицательность и стремятся заполнить внешний электронный слой за счёт чужих электронов. Два таких атома могут перейти в устойчивое состояние, если объединят свои электроны.

Рассмотрим возникновение ковалентной связи в простых веществах.

1. Образование молекулы водорода.

Каждый атом водорода имеет один электрон. Для перехода в устойчивое состояние ему необходим ещё один электрон.

При сближении двух атомов электронные облака перекрываются. Образуется общая электронная пара, которая связывает атомы водорода в молекулу.

В пространстве между двумя ядрами общие электроны бывают чаще, чем в других местах. Там формируется область с повышенной электронной плотностью и отрицательным зарядом. Положительно заряженные ядра притягиваются к ней, и образуется молекула.

При этом каждый атом получает завершённый двухэлектронный внешний уровень и переходит в устойчивое состояние.

Ковалентная связь за счёт образования одной общей электронной пары называется одинарной .

Общие электронные пары (ковалентные связи) образуются за счёт неспаренных электронов , расположенных на внешних энергетических уровнях взаимодействующих атомов.

У водорода - один неспаренный электрон. Для других элементов их число равно 8 – № группы .

Неметаллы VII А группы (галогены) имеют на внешнем слое один неспаренный электрон.

У неметаллов VI А группы (кислород, сера) таких электронов два .

У неметаллов V А группы (азот, фосфор) - три неспаренных электрона.

2. Образование молекулы фтора.

Атом фтора на внешнем уровне имеет семь электронов. Шесть из них образуют пары, а седьмой неспаренный.

При соединении атомов образуется одна общая электронная пара, то есть возникает одна ковалентная связь. Каждый атом получает завершённый восьмиэлектронный внешний слой. Связь в молекуле фтора тоже одинарная. Такие же одинарные связи существуют в молекулах хлора, брома и иода .

Если атомы имеют несколько неспаренных электронов, то образуются две или три общие пары.

3. Образование молекулы кислорода.

У атома кислорода на внешнем уровне - два неспаренных электрона.

При взаимодействии двух атомов кислорода возникают две общие электронные пары. Каждый атом заполняет свой внешний уровень до восьми электронов. Связь в молекуле кислорода двойная .

Единой теории химической связи не существует, условно химическую связь делят на ковалентную (универсальный вид связи), ионную(частный случай ковалентной связи), металлическую и водородную.

Ковалентная связь

Образование ковалентной связи возможно по трем механизмам: обменному, донорно-акцепторному и дативному (Льюиса).

Согласно обменному механизму образование ковалентной связи происходит за счет обобществления общих электронных пар. При этом каждый атом стремится приобрести оболочку инертного газа, т.е. получить завершенный внешний энергетический уровень. Образование химической связи по обменному типу изображают с использованием формул Льюиса, в которых каждый валентный электрон атома изображают точками (рис. 1).

Рис. 1 Образование ковалентной связи в молекуле HCl по обменному механизму

С развитием теории строения атома и квантовой механики образование ковалентной связи представляют, как перекрывание электронных орбиталей (рис. 2).

Рис. 2. Образование ковалентной связи за счет перекрывания электронных облаков

Чем больше перекрывание атомных орбиталей, тем прочнее связь, меньше длина связи и больше ее энергия. Ковалентная связь может образовываться за счет перекрывания разных орбиталей. В результате перекрывания s-s, s-p орбиталей, а также d-d, p-p, d-p орбиталей боковыми лопастями происходит образование – связи. Перпендикулярно линии, связывающей ядра 2-х атомов образуется – связь. Одна – и одна – связь способны образовывать кратную (двойную) ковалентную связь, характерную для органических веществ класса алкенов, алкадиенов и др. Одна – и две – связи образуют кратную (тройную) ковалентную связь, характерную для органических веществ класса алкинов (ацетиленов).

Образование ковалентной связи по донорно-акцепторному механизму рассмотрим на примере катиона аммония:

NH 3 + H + = NH 4 +

7 N 1s 2 2s 2 2p 3

Атом азота имеет свободную неподеленную пару электронов (электроны не участвующие в образовании химических связей внутри молекулы), а катион водорода свободную орбиталь, поэтому они являются донором и акцептором электронов, соответственно.

Дативный механизм образования ковалентной связи рассмотрим на примере молекулы хлора.

17 Cl 1s 2 2s 2 2p 6 3s 2 3p 5

Атом хлора имеет и свободную неподеленную пару электронов и вакантные орбитали, следовательно, может проявлять свойства и донора и акцептора. Поэтому при образовании молекулы хлора, один атом хлора выступает в роли донора, а другой – акцептора.

Главными характеристиками ковалентной связи являются: насыщаемость (насыщенные связи образуются тогда, когда атом присоединяет к себе столько электронов, сколько ему позволяют его валентные возможности; ненасыщенные связи образуются, когда число присоединенных электронов меньше валентных возможностей атома); направленность (эта величина связана с геометрий молекулы и понятием «валентного угла» — угла между связями).

Ионная связь

Соединений с чистой ионной связью не бывает, хотя под этим понимают такое химически связанное состояние атомов, в котором устойчивое электронное окружение атома создается при полном переходе общей электронной плотности к атому более электроотрицательного элемента. Ионная связь возможна только между атомами электроотрицательных и электроположительных элементов, находящихся в состоянии разноименно заряженных ионов – катионов и анионов.

ОПРЕДЕЛЕНИЕ

Ионом называют электрически заряженные частицы, образуемые путем отрыва или присоединения электрона к атому.

При передаче электрона атомы металлов и неметаллов стремятся сформировать вокруг своего ядра устойчивую конфигурацию электронной оболочки. Атом неметалла создает вокруг своего ядра оболочку последующего инертного газа, а атом металла – предыдущего инертного газа (рис. 3).

Рис. 3. Образование ионной связи на примере молекулы хлорида натрия

Молекулы, в которых в чистом виде существует ионная связь встречаются в парообразном состоянии вещества. Ионная связь очень прочная, в связи с этим вещества с этой связью имеют высокую температуру плавления. В отличии от ковалентной для ионной связи не характерны направленность и насыщаемость, поскольку электрическое поле, создаваемое ионами, действует одинаково на все ионы за счет сферической симметрии.

Металлическая связью

Металлическая связь реализуется только в металлах – это взаимодействие, удерживающее атомы металлов в единой решетке. В образовании связи участвуют только валентные электроны атомов металла, принадлежащие всему его объему. В металлах от атомов постоянно отрываются электроны, которые перемещаются по всей массе металла. Атомы металла, лишенные электронов, превращаются в положительно заряженные ионы, которые стремятся принять к себе движущиеся электроны. Этот непрерывный процесс формирует внутри металла так называемый «электронный газ», который прочно связывает между собой все атомы металла (рис. 4).

Металлическая связь прочная, поэтому для металлов характерна высокая температура плавления, а наличие «электронного газа» придают металлам ковкость и пластичность.

Водородная связь

Водородная связь – это специфическое межмолекулярное взаимодействие, т.к. ее возникновение и прочность зависят от химической природы вещества. Она образуется между молекулами, в которых атом водорода связан с атомом, обладающим высокой электроотрицательностью (O, N, S). Возникновение водородной связи зависит от двух причин, во-первых, атом водорода, связанный с электроотрицательным атомом не имеет электронов и может легко внедряться в электронные облака других атомов, а, во-вторых, обладая валентной s-орбиталью, атом водорода способен принимать неподеленную пару электронов электроотрицательного атома и образовывать с ним связь по донорно акцепторному механизму.

Впервые о таком понятии как ковалентная связь ученые-химики заговорили после открытия Гилберта Ньютона Льюиса, который описал как обобществление двух электронов. Более поздние исследования позволили описать и сам принцип ковалентной связи. Слово ковалентный можно рассматривать в рамках химии как способность атома образовывать связи с другими атомами.

Поясним на примере:

Имеется два атома с незначительными отличиями в электроотрицательности (С и CL, С и Н). Как правило, это которых максимально близко к строению электронной оболочки благородных газов.

При выполнении данных условий возникает притяжение ядер этих атомов к электронной паре, общей для них. При этом электронные облака не просто накладываются друг на друга, как при Ковалентная связь обеспечивает надежное соединение двух атомов за счет того, что перераспределяется электронная плотность и изменяется энергия системы, что вызвано "втягиванием" в межъядерное пространство одного атома электронного облака другого. Чем более обширно взаимное перекрытие электронных облаков, тем связь считается более прочной.

Отсюда, ковалентная связь - это образование, возникшее путем взаимного обобществления двух электронов, принадлежащих двум атомам.

Как правило, вещества с молекулярной кристаллической решеткой образуются посредством именно ковалентной связи. Характерными для являются плавление и кипение при низких температурах, плохая растворимость в воде и низкая электропроводность. Отсюда можно сделать вывод: в основе строения таких элементов, как германий, кремний, хлор, водород - ковалентная связь.

Свойства, характерные для данного вида соединения:

  1. Насыщаемость. Под этим свойством обычно понимается максимальное количество связей, которое они могут установить конкретные атомы. Определяется это количество общим числом тех орбиталей в атоме, которые могут участвовать в образовании химических связей. Валентность атома, с другой стороны, может быть определена числом уже использованных с этой целью орбиталей.
  2. Направленность . Все атомы стремятся образовывать максимально прочные связи. Наибольшая прочность достигается в случае совпадения пространственной направленности электронных облаков двух атомов, поскольку они перекрывают друг друга. Кроме того, именно такое свойство ковалентной связи как направленность влияет на пространственное расположение молекул то есть отвечает за их "геометрическую форму".
  3. Поляризуемость. В основе этого положения лежит представление о том, что ковалентная связь существует двух видов:
  • полярная или несимметричная. Связь данного вида могут образовывать только атомы разны видов, т.е. те, чья электроотрицательность значительно различается, либо в случаях, когда общая электронная пара несимметрично разделена.
  • возникает между атомами, электроотрицательность которых практически равна, а распределение электронной плотности равномерно.

Кроме того, существуют определенные количественные :

  • Энергия связи . Данный параметр характеризует полярную связь с точки зрения ее прочности. Под энергией понимается то количество тепла, которое было необходимо для разрушения связи двух атомов, а также то количество тепла, что было выделено при их соединении.
  • Под длиной связ и в молекулярной химии понимается длина прямой между ядрами двух атомов. Этот параметр также характеризует прочность связи.
  • Дипольный момент - величина, которая характеризует полярность валентной связи.

Ковалентная химическая связь возникает между атомами с близкими или равными значениями электроотрицательностей. Предположим, что хлор и водород стремятся отнять электроны и принять структуру ближайшего благородного газа, значит ни один из них не отдаст электрон другому. Каким же способом они все таки соединяются? Все просто – они поделятся друг с другом, образуется общая электронная пара.

Теперь рассмотрим отличительные черты ковалентной связи.

В отличие от ионных соединений, молекулы ковалентных соединений удерживаются вместе за счет «межмолекулярных сил», которые намного слабее химических связей. В связи с этим, ковалентной связи характерна насыщаемость – образование ограниченного числа связей.

Известно, что атомные орбитали ориентированы в пространстве определенным образом, поэтому при образовании связи, перекрывание электронных облаков происходит в определенном направлении. Т.е. реализуется такое свойство ковалентной связи как направленность.

Если ковалентная связь в молекуле образована одинаковыми атомами или атомами с равной электроотрицательностью, то такая связь не имеет полярности, т.е электронная плотность распределяется симметрично. Называется она неполярной ковалентной связью (H 2 , Cl 2 , O 2 ). Связи могут быть как одинарными, так и двойными, тройными.

Если электроотрицательности атомов различаются, то при их соединении электронная плотность распределяется между атомами неравномерно и образуется ковалентная полярная связь (HCl, H 2 O, CO), кратность которой также может быть различной. При образовании данного типа связи, более электроотрицательный атом приобретает частичный отрицательный заряд, а атом с меньшей электроотрицательностью – частичный положительный заряд (δ- и δ+). Образуется электрический диполь, в котором заряды, противоположные по знаку, расположены на неком расстоянии друг от друга. В качестве меры полярности связи используют дипольный момент:

Полярность соединения тем более выражена, чем больше дипольный момент. Молекулы будут иметь неполярный характер, если дипольный момент равен нулю.

В связи с вышеперечисленными особенностями, можно заключить, что ковалентные соединения летучи, имеют низкие температуры плавления и кипения. Электрический ток не может проходить через эти соединения, следовательно, они плохие проводники и хорошие изоляторы. При подводе тепла, многие соединения с ковалентной связью, загораются. В большей части это углеводороды, а также оксиды, сульфиды, галогениды неметаллов и переходных металлов.

Категории ,
gastroguru © 2017