Кое-что о погоде на Марсе или датчик качества воздуха MQ135. Датчики газа серия MQ (Trema-модуль v2.0) Mq 135 arduino значения с датчика

Собственно, нестерпимое желание приобрести именно этот датчик у меня появилось после чтения пламенных . С одной стороны, прибор, конечно, хорош, но стоит на пару порядков дороже MQ135 - а это, как мы знаем, решающий фактор, когда хочется просто поиграться, а потом поставить игрушечку на полку.

К тому же, я решил, что мне вполне достаточно иметь под руками некоторую синтетическую оценку качества воздуха (более-менее соотносящуюся с реальностью), тогда как без абсолютных показателей как-нибудь обойдусь.

Датчик присылают в обычном антистатическом пакетике, который до этих дней не сохранился - да и было бы что сохранять, если уж задуматься. А то, что называют датчиком, здесь на самом деле датчик, размещенный на плате со всей необходимой (и не слишком необходимой) обвязкой.

По поводу необходимой обвязки нам говорит, что достаточно всего одного сопротивления:

На практике же схема выглядит очень похожей на найденную на просторах этого нашего интернета:

Разница, как видите, в том, что нагреватель включен через резистор, вместо подстроечника на выходе - постоянное сопротивление, ну и добавлен операционный усилитель, который, насколько я понял, используется в качестве компаратора. Порог срабатывания компаратора изменяется с помощью подстроечного резистора, а срабатывание при превышении порога (допустимой концентрации регистрируемых газов) отображается свечением зеленого светодиода.

Питается датчик от 5В, потребляет (по документации) менее 800 мВт. При этом надо понимать, что кушает он прилично, и львиная доля потребляемого тока идет на подогрев чувствительного элемента. Температура которого после нескольких часов работы выше предела регистрации бытовым термометром (т.е. больше 42C), на ощупь датчик теплый, но не обжигающий.

Несмотря на невысокую температуру корпуса, датчик прикрыт специальной сеточкой, предназначенной исключать возможность взрыва или возгорания горючих газов. Похожая защита в свое время применялась в шахтерских лампах.

Исходя из вышесказанного понятно, что в автономных системах применять датчик нецелесообразно: будучи постоянно включенным вместе с Arduino Mega, MQ135 этой модификации скушал аккумулятор в 10 Ач (ну, плюс-минус китайских Ач) менее чем за сутки. И, конечно, понятно, что если особенно прижмет сделать «автономку», включаться можно эпизодически - так это пожалуйста, я не запрещаю.

Но ест он все равно много. Измеренный мультиметром потребляемый ток составляет около 130 мА.

Размеры датчика (примерно) (ВхШхГ): 22х20х32 мм. Ноги датчика, как видите, по какой-то причине не обкусаны:

Как эта штуковина работает? Вот честно, я не знаю. Наверное, там какая-то магия и радужные единороги, но в документации почему-то говорится о том, что регистрируемые датчиком газы влияют на сопротивление принудительно подогреваемого измерительного элемента. Который подходит для обнаружения (согласно документации): аммиака (NH3), окисей азота (NOx), алкоголя (не указано какого, можно думать о всех спиртах), бензола, CO2, дыма и, как принято - etc.

Результат выдается в аналоговом виде на пин A0 и в дискретном (после компаратора) - на пин D0.

Отсюда вывод: аналоговый выход датчика подходит для наблюдения динамики качества воздуха, тогда как цифровой (D0) - для оповещения о превышении некоторого порога.

Второй вывод: теоретически для использования датчика не нужны вообще никакие библиотеки. Просто подключаем его, например, к Arduino и читаем состояние аналогового и/или цифрового выхода.

Ну вот хоть так:

#define analogPin A0 // аналоговый выход MQ135 подключен к пину A0 Arduino #define digitalPin 3 // цифровой выход подключен к пину 3 float analogValue; // для аналогового значения byte digitalValue; // для цифрового значения, можно, кстати и boolean, но не суть void setup() { Serial.begin(9600); // инициализация последовательного порта pinMode(analogPin, INPUT); // режим работы аналогового пина pinMode(digitalPin, INPUT); // режим работы цифрового пина delay(1000); // устаканимся } void loop() { analogValue = analogRead(analogPin); // чтение аналогового значения digitalValue = digitalRead(3); // чтение цифрового значения Serial.print("Current value: "); // вывод аналогового значения в последовательный порт Serial.println(analogValue); Serial.print("Threshold: "); // вывод цифрового значения в аналоговый порт Serial.println(digitalValue); delay(5000); // задержка, чтобы не мельтешило перед глазами }

Кроме того, прямо на плате есть и светодиод, показывающий работу компаратора, что, опять же чисто теоретически позволяет использовать датчик вообще без каких-либо контроллеров. Если, конечно, удастся подобрать нужный порог срабатывания компаратора.

Внимательный читатель может догадаться, что в первую очередь я подключил MQ135 к плате Arduino Mega и посмотрел, что там на аналоговом и цифровом выходах. Там, в общем, никаких особых сюрпризов. Ну, кроме того, что когда светодиод компаратора горит, на цифровом выходе на самом деле 0. Особой роли это не играет, но перфекционистам придется туго.

Показания аналогового выхода в нормальной атмосфере, судя по всему, находятся в нижней трети диапазона измерений ЦАП Arduino. Состояние цифрового выхода зависит от положения подстроечного резистора и, конечно, качества воздуха.

Вот так выглядит «подышать в трубочку»:

А так как аппетит приходит во время еды, то следующим делом я поискал библиотеку, которая позволила получить хотя бы примерную концентрацию CO2 в воздухе. Нашел .

Теория, которая стоит за библиотекой гласит следующее: диоксид углерода, он же CO2 - четвертый по распространенности газ в атмосфере Земли. Остальные регистрируемые датчиком вещества в газообразном состоянии встречаются (на наше счастье) гораздо, гораздо реже. Но при этом чувствительность ко всем этим газам у MQ135 примерно одинаковая, что, в принципе, позволяет использовать его в первую очередь как датчик CO2.

В результате пользоваться библиотекой очень просто, но есть нюансы. Первый вытекает из той же документации по датчику, которая настаивает на 24-часовом прогреве датчика перед его реальным использованием. Второй же заключается в том, что по умолчанию библиотека рассчитана на нагрузочное сопротивление в 10 кОм, тогда как мой экземпляр платы укомплектован резистором в 1 кОм.

По счастью, второе легко решается редактированием кода библиотеки - спасибо Георгу Крокеру, что он подумал и о такой мелочи. Я же замечу, что калибровать следует только после того, как убедитесь, что в коде библиотеки задано верное значение сопротивления, иначе калибровочные данные вас удивят.

Итак, датчик прогрет, сопротивление задано верно. Что дальше? Дальше его нужно откалибровать, для чего пишем небольшой код, который набирает статистику по калибровочным данным и выставляем всю конструкцию на свежий воздух, при предпочтительной температуре около 20С на полчаса или около того.

Вот комбинированный код, чтобы посмотреть текущие и/или калибровочные данные:

#include // подключение библиотеки #define analogPin A0 // аналоговый выход MQ135 подключен к пину A0 Arduino MQ135 gasSensor = MQ135(analogPin); // инициализация объекта датчика void setup() { Serial.begin(9600); // последовательный порт для отображения данных delay(1000); // устаканимся } void loop() { float ppm = gasSensor.getPPM(); // чтение данных концентрации CO2 Serial.println(ppm); // выдача в последовательный порт float rzero = gasSensor.getRZero(); // чтение калибровочных данных Serial.println(rzero); // выдача в последовательный порт delay(5000); // просто задержка, чтобы не мельтешило перед глазами }

Затем усредняем полученные (калибровочные) показатели, добавляем их в ту же библиотеку (заменив оригинальное значение калибровки) и наслаждаемся показаниями, заявленными близкими ко всеми любимым ppm, но не забываем про магию и радужных единорогов.

На всякий случай сообщаю, что «добавляем в библиотеку» означает редактирование приведенных ниже строк в файле MQ135.h библиотеки MQ135:

/// The load resistance on the board #define RLOAD 1.0 /// Calibration resistance at atmospheric CO2 level #define RZERO 396.57

Здесь, например, уже задано актуальное для платы сопротивление и полученный опытным путем индекс калибровки. Индекс настоятельно рекомендую посчитать, поскольку он может быть разным для разных экземпляров датчика.

К великому сожалению, узнать, насколько актуальны показания получившейся системы, я не могу: специального прибора у меня нет, а на сайте данные о концентрации CO2 в моем районе не приводятся. Да и вообще особо не приводятся, поскольку этот газ, похоже, не считается загрязняющим.

Но хочу заметить, что датчик выдает довольно стабильные показания, которые также очень неплохо соотносятся с происходящим. К примеру, на приведенной ниже иллюстрации видно, как показания довольно резко пошли наверх, когда в комнате закрыли окно (около 18:00), и как они не менее стремительно стали снижаться, когда окно открыли (около 20:00):

Что касается цифрового выхода и компаратора, то его работа мне не очень понравилась, поскольку в обычных условиях он начинает срабатывать уже в самом начале (или конце - как посмотреть) диапазона регулировки подстроечного резистора.

Если найти какой-нибудь нормированный генератор CO2, тогда можно еще поиграться с настройкой, но где же такую фиговину найдешь? Другое дело - ненормированный, в качестве которого можно использовать себя любимого: дыхнешь - лампочка загорелась.

И хотя может показаться, что именно так я и планирую развлекать себя в ближайшее время, но нет. Пока что строю амбициозные планы на прибор для автоматического проветривания на основе температуры внутри/снаружи и качества воздуха внутри помещения.

Если удастся найти подходящий привод окна и справиться с управлением - доложу отдельно.

Ps. как обычно, в комментариях приветствуются чад кутежа и всяческий угар ссылки на более интересную цену, любопытные аналоги с учетом заявленной цели, ваши изделия, мысли о том, как лучше откалибровать MQ135 и предложения одолжить для этой благородной задачи ваш измерительный прибор. Ну и вообще.

Планирую купить +50 Добавить в избранное Обзор понравился +44 +76

Химический полупроводниковый сенсор - слой чувствительного полупроводника (обычно это оксиды переходных металлов) на инертной подложке, поверхность которого умеет селективно захватывать какие-то летучие вещества из газа. В результате такой хемосорбции полупроводник приобретает заряд и меняет свои свойства: обычно следят за его сопротивлением. Полупроводниковые сенсоры практически всегда требуют нагрева для нормальной работы.

Пару слов о том, зачем мне это понадобилось. Я всегда с тоской вспоминаю походы с палаткой - потому что только там я мог нормально, полноценно спать благодаря совершенно свежему воздуху. Несмотря на то что в Москве я живу в своеобразном зелёном острове, всё равно духота часто мучает меня по ночам. Вообще, эта моя история очень похожа на историю BarsMonster`а с Хабра, который в поисках причин быстрого утомления ставил кислородный концентратор, вешал мощнейшую люстру на 10 тысяч люмен, и делал прочие хаотичные штуки. Я пошёл по его пути, тоже поставил такую люстру, но особой разницы не заметил. В итоге мы оба дошли до идеи измерить концентрацию углекислого газа в воздухе - его избыток вызывает мгновенное закисление крови и нарушение процессов обмена.

Именно для этих измерений я купил в Китае датчик MQ-135.

В нём чувствительный слой из диоксида олова (с золотыми контактными площадками) нанесён на сапфировую подложку с нихромовым нагревателем, и электроды грелки (H-H) вместе с платиновыми электродами от чувствительного слоя (A/B-B/A) выведены наружу. Измерять сопротивление можно на любых двух из них, A-B или B-A.

Он очень дешёвый и доступный, и может служить элементом домашней метеостанции. Помимо углекислого газа, датчик также реагирует на присутствие других газов: угарного газа, аммиака, бензола, оксидов азота и паров спирта. В даташите приведена зависимость относительного сопротивления датчика от парциального давления разных газов - таким образом, из сопротивления можно вычислить концентрацию газа в воздухе.

Кстати, одна из его модификаций, с обострённой чувствительностью к спирту, стоит в полицейских датчиках спирта, которым «дышат в трубку».

Попробуем подключить его к STM32!

Схема подключения

Для начала давайте рассмотрим схему включения.

Всё просто: нагреватель питается от 5 вольт, а чтобы измерить сопротивление сенсора - он включается в состав резистивного делителя, и измеряется напряжение на выходе этого резистора. При известном сопротивлении резистора и напряжении питания сопротивление сенсора рассчитывается как r1 = r2*(u/uout-1).

Конкретно у меня датчик распаян на плате, которая содержит этот дополнительный резистор - она выдаёт наружу сразу нужное напряжение. Чтобы измерить это напряжение с помощью STM32, нам потребуется модуль АЦП. Программа практически повторяет код из той статьи.

Void adc_init() { RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); //ADC settings ADC_InitTypeDef ADC_InitStructure; ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_Cmd(ADC1, ENABLE); //Channel settings ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, ADC_SampleTime_55Cycles5); ADC_ResetCalibration(ADC1); while (ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); while (ADC_GetCalibrationStatus(ADC1)); } uint16_t getCO2Level() { ADC_SoftwareStartConvCmd(ADC1, ENABLE); while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); return ADC_GetConversionValue(ADC1); } int main() { adc_init(); uint16_t co2; while(1) { co2 = getCO2Level(); delay(10000000); } }

Особенности

Во время работы датчик заметно греется, и это его нормальное состояние; вряд ли он способен что-то поджечь, но всё-таки не стоит его ничем накрывать. Да и доступ воздуха ему нужно обеспечить, поэтому просто разместите его на каком-нибудь открытом пространстве. Гемфри Дэви придумал окружать шахтёрские лампы металлической сеткой во избежание взрыва газа - так и здесь, вокруг датчика находится металлическая сетка, благодаря которой сенсор можно использовать даже в помещениях с высокой концентрацией метана или других горючих газов.

Датчик очень медленно выходит на режим. В первый раз его обязательно нужно прогреть не менее 24 часов. При следующих включениях требуется хотя бы 10-минутный прогрев.

Параметры датчика немного деградируют с ростом влажности воздуха. При точных измерениях необходимо следить за влажностью, например с помощью датчика DHT-22.

На моей плате дополнительно размещён ОУ с переменным резистором - к ним подключен светодиод и вывод «DOUT». Это простой настраиваемый пороговый индикатор, светодиод загорится когда концентрация углекислого газа превысит заданное значение.

Post Views: 609

Описание

Универсальный датчик, обнаруживающий в воздухе бензол, спирт, пыль, дым. Аналого - цифровой модуль позволяет как получать данные о содержании газов к которым восприимчив газоанализатор, так и работать напрямую с устройствами, выдавая цифровой сигнал о превышении/уменьшении порогового значения. Имеет регулятор чувствительности, что позволяет подстраивать датчик под нужды конкретного проекта. Модуль имеет два светодиода: первый (красный) - индикация питания, второй (зеленый) - индикация превышения/уменьшения порогового значения.

Основным рабочим элементом датчика является нагревательный элемент, за счет которого происходит химическая реакция, в результате которой получается информация о концентрации газа. В процессе работы датчик должен нагреваться - это нормально. Также необходимо помнить, что за счет нагревательного элемента, датчик потребляет большой ток, поэтому рекомендуется использовать внешнее питание.

Обратите внимание, что показания датчика подвержены влиянию температуры и влажности окружающего воздуха. Поэтому в случае использования датчика в изменяющейся среде, будет необходима компенсация этих параметров.

Диапазон измерений: 0,001 - 0,1 %

Технические характеристики

    Напряжение питания: 5 В

    Потребляемый ток: 150 мА

    Время прогрева при включении: 1 мин

Физические размеры

    Модуль (Д х Ш х В): 35 х 20 х 21 мм

Плюсы использования

    Высокая чувствительность

    Короткое время отклика

    Удобный в использовании модуль за счет наличия цифрового и аналогового выводов

Минусы использования

    Перед использованием требует долгого прогрева (не менее 24 часов)

    Для снятия показаний требуется прогрев (не менее 1 минуты)

    Высокое энергопотребление (желательно дополнительное питание)

Пример подключения и использования

В примере демонстрируется подключение датчика и вывод полученных данных в монитор Serial - порта. (Пример тестировался на контроллере Smart UNO)

Схема подключения:

Скетч для загрузки:

const int analogSignal = A0; //подключение аналогового сигналоьного пина const int digitalSignal = 8 ; //подключение цифрового сигнального пина boolean noGas; //переменная для хранения значения о присутствии газа int gasValue = 0 ; //переменная для хранения количества газа void setup() { pinMode (digitalSignal, INPUT ) ; //установка режима пина Serial .begin (9600 ) ; //инициализация Serial порта } void loop() { noGas = digitalRead (digitalSignal) ; //считываем значение о присутствии газа gasValue = analogRead (analogSignal) ; // и о его количестве //вывод сообщения Serial .print ("There is " ) ; if (noGas) Serial .print ("no gas" ) ; else Serial .print ("gas" ) ; Serial .print (", the gas value is " ) ; Serial .println (gasValue) ; delay (1000 ) ; //задержка 1 с }

Один из факторов влияющих на эффективность работы является концентрация CO 2 в воздухе. Для оценки качества воздуха в помещениях есть готовые решения, но нам было интересно разработать свое решение и интегрировать его в используемую систему мониторинга Zabbix .

За основу была взята плата NodeMCU на базе микроконтроллера ESP8266 . Данное решение "из коробки" позволяет подключиться к сети Wi-Fi и организовать прием/передачу данных.

Для определения CO 2 используется недорогое [и не точное] решение - датчик MQ-135 . Данный датчик чувствителен к ряду газов в т.ч. и к CO 2 , библиотека для Arduino IDE содержит в себе функции для пересчета показаний датчика в ppm . Изыскания показали, что вычисляемые значения ppm с реальной концентрацией ничего общего не имеет, соответственно для оценки качества воздуха целесообразно использовать значения на аналоговом выходе модуля MQ-135, которые растут по мере повышения концентрации газов в воздухе. Показания этого датчика чувствительны к питанию, датчик необходимо продержать включенным не менее суток для прокаливания и есть основания предполагать, что выдаваемые значения будут различными для разных экземпляров датчика. Так же показания датчика зависят от температуры и влажности окружающей среды.

Для передачи данных в Zabbix без использования агента используется функция мониторинга веб-страниц, которая позволяет обратиться по заданному URL, получить код ответа и проверить наличие на странице определенного текста. При этом производится замер времени передачи данных и скорость. Единственный простой способ передачи данных от NodeMCU без использования агента на отдельном ПК, это передача значений в коде ответа веб-страницы:

  1. http://ip/ - URL возвращает HTML-страницу с текущими значениями параметров, страница автоматически обновляется с заданным интервалом;
  2. http://ip/a - URL возвращает значение с датчика MQ135;
  3. http://ip/t - URL возвращает значение с датчика DHT11/22;
  4. http://ip/h - URL возвращает значение с датчика DHT11/22.
Код ответа "HTTP/1.1 [значение] OK"
HTTP/1.1 235 OK

Что позволило нам построить графики и поставить триггеры на выход параметров за пределы пороговых.

Подключение MQ135 и DHT-11 к NodeMCU

Изначально стоит определится с питанием. Исходя из информации в Сети и опыта работы MQ135 в силу необходимости нагрева чувствительного элемента потребляет ток до 800 мА, при этом его рабочее напряжение 5 В. NodeMCU работает с напряжением в 3.3 В, использует 3 В логику и выдает максимум 12 мА на пин. Текущая реализация показала, что используемые модули толерантны к логике на 3 В.

Приведенный ниже код основан на примере NodeMCU Server.

Библиотека MQ135 содержит функцию расчета скорректированного значения показаний датчика с поправкой на влажность и температуру. При реальном использовании выяснилось, что при включении увлажнителя в помещении с увеличением влажности росли и показания датчика, что приводило к срабатыванию триггера в Zabbix. Расчет поправочного коэффициента производится по формуле:
k=CORA * t * t - CORB * t + CORC - (h-33.)*CORD , где CORA, CORB, CORC и CORD постоянные, заданные в начале программы.

#include #include #include "DHT.h" #include "Wire.h" #define CORA 0.00035 #define CORB 0.02718 #define CORC 1.39538 #define CORD 0.0018 #define DHTPIN 4 #define DHTTYPE DHT22 #define MQ135APIN A0 #define SOUNDPIN 5 #define LIMIT 360 DHT dht(DHTPIN, DHTTYPE); const char* ssid = "SSID"; const char* password = "PASSWORD"; const boolean debug = 1; float t = 0; float h = 0; float ppmRaw = 0; int timeOut = 0; int count = 0; String header = ""; String footer = ""; String s = ""; WiFiServer server(80); extern "C" { #include "user_interface.h" bool wifi_set_sleep_type(sleep_type_t); sleep_type_t wifi_get_sleep_type(void); } void setup() { pinMode(SOUNDPIN, OUTPUT); if (debug==1) { Serial.begin(115200); delay(10); }; Wire.begin(2, 0); delay(10); dht.begin(); delay(10); if (debug==1) { Serial.println(); Serial.println(); Serial.print("Connecting to "); Serial.println(ssid); }; WiFi.mode(WIFI_STA); wifi_set_sleep_type(NONE_SLEEP_T); WiFi.begin(ssid, password); while (WiFi.status() != WL_CONNECTED) { delay(500); if (debug==1) Serial.print("."); } server.begin(); if (debug==1) { Serial.println(""); Serial.println("WiFi connected"); Serial.println("Server started"); Serial.println(WiFi.localIP()); }; header = "HTTP/1.1 200 OK\r\n"; header = header + "Content-Type: text/html\r\n\r\n"; header = header + " \r\n"; header = header + " \r\n"; header = header + " \r\n"; header = header + " "; header = header + " NodeMCU \r\n"; header = header + " \r\n"; header = header + " \r\n"; footer = " \r\n"; footer = footer + " \r\n"; } void loop() { h = dht.readHumidity(); t = dht.readTemperature(); if (h == 0.00 or isnan(h)) { h = dht.readHumidity(); }; if (t == 0.00 or isnan(t)) { t = dht.readTemperature(); }; ppmRaw = analogRead(MQ135APIN)*(CORA * t * t - CORB * t + CORC - (h-33.)*CORD); if (ppmRaw>LIMIT) { tone(SOUNDPIN, 100, 10); }; if (debug==1) { Serial.print("H: "); Serial.println(h); Serial.print("t: "); Serial.println(t); Serial.print("Air: "); Serial.println(ppmRaw); Serial.println(WiFi.status()); }; WiFiClient client = server.available(); if (!client) { delay(1000); return; }; if (debug == 1) Serial.println("new client"); while(!client.available()){ delay(1); timeOut = timeOut +1; if (timeOut>=15) { // 500 client.stop(); client.flush(); timeOut = 0; return; // break }; } String req = client.readStringUntil("\r"); if (debug==1) { Serial.println(req); } client.flush(); float heap = ESP.getFreeHeap(); if (req.indexOf("/favicon.ico") != -1) { s = "HTTP/1.1 404 Not found\r\n"; client.print(s); } else if (req.indexOf("/t") != -1) { String answer="HTTP/1.1 " + String(t) + " OK\r\n"; client.print(answer); } else if (req.indexOf("/h") != -1) { String answer="HTTP/1.1 " + String(h) + " OK\r\n"; client.print(answer); } else if (req.indexOf("/a") != -1) { String answer="HTTP/1.1 " + String(ppmRaw) + " OK\r\n"; client.print(answer); } else { client.print(header); client.print(t); client.println("°"); if (h "); client.print(h); client.print(""); } else { client.print(h); }; client.println("%"); client.print(" Air "); client.println(ppmRaw); client.println(footer); client.stop(); client.flush(); return; } delay(1); if (debug==1) Serial.println("Client disonnected"); };

7 мая 2017
Версия 0.3 Денис Пак , генеральный директор
gastroguru © 2017