Какой толщины должен быть утеплитель, сравнение теплопроводности материалов. Теплопроводность строительных материалов Сравнение по теплопроводности стен из разных материалов

Строительное дело предусматривает использование любых подходящих материалов. Главные критерии – безопасность для жизни и здоровья, тепловая проводимость, надёжность. Далее следуют, цена, свойства эстетичности, универсальность применения и т.д.

Рассмотрим одну из важнейших характеристик стройматериалов – коэффициент теплопроводности, так как именно от этого свойства во многом зависит, к примеру, уровень комфорта в доме.

Теоретически, да и практически тоже, строительными материалами, как правило, создаются две поверхности – наружная и внутренняя. С точки зрения физики, теплая область всегда стремится к холодной области.

Применительно к стройматериалу, тепло будет стремиться от одной поверхности (более теплой) к другой поверхности (менее теплой). Вот, собственно, способность материала относительно такого перехода и называется – коэффициентом теплопроводности или в аббревиатуре – КТП.

Схема, поясняющая эффект теплопроводности: 1 – тепловая энергия; 2 – коэффициент теплопроводности; 3 – температура первой поверхности; 4 – температура второй поверхности; 5 – толщина стройматериала

Характеристика КТП обычно строится на основе испытаний, когда берётся экспериментальный экземпляр размерами 100х100 см и к нему применяется тепловое воздействие с учётом разницы температур двух поверхностей в 1 градус. Время воздействия 1 час.

Соответственно, измеряется теплопроводность в Ваттах на метр на градус (Вт/м°C). Коэффициент обозначается греческим символом λ.

По умолчанию, теплопроводность различных материалов для строительства со значением меньше 0,175 Вт/м°C, приравнивает эти материалы к разряду изоляционных.

Современным производством освоены технологии изготовления стройматериалов, уровень КТП которых составляет меньше 0,05 Вт/м°C. Благодаря таким изделиям, удается достичь выраженного экономического эффекта в плане потребления энергетических ресурсов.

Влияние факторов на уровень теплопроводности

Каждый отдельно взятый стройматериал имеет определенное строение и обладает своеобразным физическим состоянием.

Основой этого являются:

  • размерность кристаллов структуры;
  • фазовое состояние вещества;
  • степень кристаллизации;
  • анизотропия теплопроводности кристаллов;
  • объем пористости и структуры;
  • направление теплового потока.

Все это – факторы влияния. Определенное влияние на уровень КТП также оказывает химический состав и примеси. Количество примесей, как показала практика, оказывает особенно выразительное влияние на уровень теплопроводности кристаллических компонентов.

Изоляционные стройматериалы – класс продуктов под строительство, созданных с учётом свойств КТП, приближенных к оптимальным свойствам. Однако достичь идеальной теплопроводности при сохранении других качеств, крайне сложно

В свою очередь влияние на КТП оказывают условия эксплуатации стройматериала – температура, давление, уровень влажности и др.

Стройматериалы с минимальным КТП

Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.

С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.

Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.

Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.

Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить

В современном производстве применяются несколько технологий для получения пористости строительного материала.

В частности, используются технологии:

  • пенообразования;
  • газообразования;
  • водозатворения;
  • вспучивания;
  • внедрения добавок;
  • создания волоконных каркасов.

Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.

Значение теплопроводности может быть рассчитано по формуле:

λ = Q / S *(T 1 -T 2)*t,

  • Q – количество тепла;
  • S – толщина материала;
  • T 1 , T 2 – температура с двух сторон материала;
  • t – время.

Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:

λ = 1,16 √ 0,0196+0,22d 2 – 0,16,

Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.

Влияние влаги на теплопроводность стройматериала

Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.

Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала

Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.

Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.

Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.

Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности

Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.

Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.

Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.

Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.

Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается

Методы определения коэффициента

Используются разные методики в этом направлении, но по факту все технологии измерения объединены двумя группами методов:

  1. Режим стационарных измерений.
  2. Режим нестационарных измерений.

Стационарная методика подразумевает работу с параметрами, неизменными с течением времени или изменяющимися в незначительной степени. Эта технология, судя по практическим применениям, позволяет рассчитывать на более точные результаты КТП.

Действия, направленные на измерения теплопроводности, стационарный способ допускает проводить в широком температурном диапазоне – 20 – 700 °C. Но вместе с тем, стационарная технология считается трудоёмкой и сложной методикой, требующей большого количества времени на исполнение.

Пример аппарата, предназначенного под выполнение измерений коэффициента теплопроводности. Это одна из современных цифровых конструкций, обеспечивающая получение быстрого и точного результата

Другая технология измерений – нестационарная, видится более упрощенной, требующей для исполнения работ от 10 до 30 минут. Однако в этом случае существенно ограничен диапазон температур. Тем не менее, методика нашла широкое применение в условиях производственного сектора.

Таблица теплопроводности стройматериалов

Подвергать измерениям многие существующие и широко используемые стройматериалы не имеет смысла.

Все эти продукты, как правило, испытаны неоднократно, на основании чего составлена таблица теплопроводности строительных материалов, куда входят практически все нужные на стройке материалы.

Один из вариантов такой таблицы представлен ниже, где КТП – коэффициент теплопроводности:

Материал (стройматериал) Плотность, м 3 КТП сухая, Вт/мºC % влажн._1 % влажн._2 КТП при влажн._1, Вт/мºC КТП при влажн._2, Вт/мºC
Битум кровельный 1400 0,27 0 0 0,27 0,27
Битум кровельный 1000 0,17 0 0 0,17 0,17
Шифер кровельный 1800 0,35 2 3 0,47 0,52
Шифер кровельный 1600 0,23 2 3 0,35 0,41
Битум кровельный 1200 0,22 0 0 0,22 0,22
Лист асбоцементный 1800 0,35 2 3 0,47 0,52
Лист асбестоцементный 1600 0,23 2 3 0,35 0,41
Асфальтобетон 2100 1,05 0 0 1,05 1,05
Толь строительная 600 0,17 0 0 0,17 0,17
Бетон (на гравийной подушке) 1600 0,46 4 6 0,46 0,55
Бетон (на шлаковой подушке) 1800 0,46 4 6 0,56 0,67
Бетон (на щебенке) 2400 1,51 2 3 1,74 1,86
Бетон (на песчаной подушке) 1000 0,28 9 13 0,35 0,41
Бетон (пористая структура) 1000 0,29 10 15 0,41 0,47
Бетон (сплошная структура) 2500 1,89 2 3 1,92 2,04
Пемзобетон 1600 0,52 4 6 0,62 0,68
Битум строительный 1400 0,27 0 0 0,27 0,27
Битум строительный 1200 0,22 0 0 0,22 0,22
Минеральная вата облегченная 50 0,048 2 5 0,052 0,06
Минеральная вата тяжелая 125 0,056 2 5 0,064 0,07
Минеральная вата 75 0,052 2 5 0,06 0,064
Лист вермикулитовый 200 0,065 1 3 0,08 0,095
Лист вермикулитовый 150 0,060 1 3 0,074 0,098
Газо-пено-золо бетон 800 0,17 15 22 0,35 0,41
Газо-пено-золо бетон 1000 0,23 15 22 0,44 0,50
Газо-пено-золо бетон 1200 0,29 15 22 0,52 0,58
300 0,08 8 12 0,11 0,13
Газо-пено-бетон (пенно-силикат) 400 0,11 8 12 0,14 0,15
Газо-пено-бетон (пенно-силикат) 600 0,14 8 12 0,22 0,26
Газо-пено-бетон (пенно-силикат) 800 0,21 10 15 0,33 0,37
Газо-пено-бетон (пенно-силикат) 1000 0,29 10 15 0,41 0,47
Строительный гипс плита 1200 0,35 4 6 0,41 0,46
Гравий керамзитовый 600 2,14 2 3 0,21 0,23
Гравий керамзитовый 800 0,18 2 3 0,21 0,23
Гранит (базальт) 2800 3,49 0 0 3,49 3,49
Гравий керамзитовый 400 0,12 2 3 0,13 0,14
Гравий керамзитовый 300 0,108 2 3 0,12 0,13
Гравий керамзитовый 200 0,099 2 3 0,11 0,12
Гравий шунгизитовый 800 0,16 2 4 0,20 0,23
Гравий шунгизитовый 600 0,13 2 4 0,16 0,20
Гравий шунгизитовый 400 0,11 2 4 0,13 0,14
Дерево сосна поперечные волокна 500 0,09 15 20 0,14 0,18
Фанера клееная 600 0,12 10 13 0,15 0,18
Дерево сосна вдоль волокон 500 0,18 15 20 0,29 0,35
Дерево дуба поперек волокон 700 0,23 10 15 0,18 0,23
Металл дюралюминий 2600 221 0 0 221 221
Железобетон 2500 1,69 2 3 1,92 2,04
Туфобетон 1600 0,52 7 10 0,7 0,81
Известняк 2000 0,93 2 3 1,16 1,28
Раствор извести с песком 1700 0,52 2 4 0,70 0,87
Песок под строительные работы 1600 0,035 1 2 0,47 0,58
Туфобетон 1800 0,64 7 10 0,87 0,99
Облицовочный картон 1000 0,18 5 10 0,21 0,23
Многослойный строительный картон 650 0,13 6 12 0,15 0,18
Вспененный каучук 60-95 0,034 5 15 0,04 0,054
Керамзитобетон 1400 0,47 5 10 0,56 0,65
Керамзитобетон 1600 0,58 5 10 0,67 0,78
Керамзитобетон 1800 0,86 5 10 0,80 0,92
Кирпич (пустотный) 1400 0,41 1 2 0,52 0,58
Кирпич (керамический) 1600 0,47 1 2 0,58 0,64
Пакля строительная 150 0,05 7 12 0,06 0,07
Кирпич (силикатный) 1500 0,64 2 4 0,7 0,81
Кирпич (сплошной) 1800 0,88 1 2 0,7 0,81
Кирпич (шлаковый) 1700 0,52 1,5 3 0,64 0,76
Кирпич (глиняный) 1600 0,47 2 4 0,58 0,7
Кирпич (трепельный) 1200 0,35 2 4 0,47 0,52
Металл медь 8500 407 0 0 407 407
Сухая штукатурка (лист) 1050 0,15 4 6 0,34 0,36
Плиты минеральной ваты 350 0,091 2 5 0,09 0,11
Плиты минеральной ваты 300 0,070 2 5 0,087 0,09
Плиты минеральной ваты 200 0,070 2 5 0,076 0,08
Плиты минеральной ваты 100 0,056 2 5 0,06 0,07
Линолеум ПВХ 1800 0,38 0 0 0,38 0,38
Пенобетон 1000 0,29 8 12 0,38 0,43
Пенобетон 800 0,21 8 12 0,33 0,37
Пенобетон 600 0,14 8 12 0,22 0,26
Пенобетон 400 0,11 6 12 0,14 0,15
Пенобетон на известняке 1000 0,31 12 18 0,48 0,55
Пенобетон на цементе 1200 0,37 15 22 0,60 0,66
Пенополистирол (ПСБ-С25) 15 – 25 0,029 – 0,033 2 10 0,035 – 0,052 0,040 – 0,059
Пенополистирол (ПСБ-С35) 25 – 35 0,036 – 0,041 2 20 0,034 0,039
Лист пенополиуретановый 80 0,041 2 5 0,05 0,05
Панель пенополиуретановая 60 0,035 2 5 0,41 0,41
Облегченное пеностекло 200 0,07 1 2 0,08 0,09
Утяжеленное пеностекло 400 0,11 1 2 0,12 0,14
Пергамин 600 0,17 0 0 0,17 0,17
Перлит 400 0,111 1 2 0,12 0,13
Плита перлитоцементная 200 0,041 2 3 0,052 0,06
Мрамор 2800 2,91 0 0 2,91 2,91
Туф 2000 0,76 3 5 0,93 1,05
Бетон на зольном гравии 1400 0,47 5 8 0,52 0,58
Плита ДВП (ДСП) 200 0,06 10 12 0,07 0,08
Плита ДВП (ДСП) 400 0,08 10 12 0,11 0,13
Плита ДВП (ДСП) 600 0,11 10 12 0,13 0,16
Плита ДВП (ДСП) 800 0,13 10 12 0,19 0,23
Плита ДВП (ДСП) 1000 0,15 10 12 0,23 0,29
Полистиролбетон на портландцементе 600 0,14 4 8 0,17 0,20
Вермикулитобетон 800 0,21 8 13 0,23 0,26
Вермикулитобетон 600 0,14 8 13 0,16 0,17
Вермикулитобетон 400 0,09 8 13 0,11 0,13
Вермикулитобетон 300 0,08 8 13 0,09 0,11
Рубероид 600 0,17 0 0 0,17 0,17
Плита фибролит 800 0,16 10 15 0,24 0,30
Металл сталь 7850 58 0 0 58 58
Стекло 2500 0,76 0 0 0,76 0,76
Стекловата 50 0,048 2 5 0,052 0,06
Стекловолокно 50 0,056 2 5 0,06 0,064
Плита фибролит 600 0,12 10 15 0,18 0,23
Плита фибролит 400 0,08 10 15 0,13 0,16
Плита фибролит 300 0,07 10 15 0,09 0,14
Клееная фанера 600 0,12 10 13 0,15 0,18
Плита камышитовая 300 0,07 10 15 0,09 0,14
Раствор цементо-песчаный 1800 0,58 2 4 0,76 0,93
Металл чугун 7200 50 0 0 50 50
Раствор цементно-шлаковый 1400 0,41 2 4 0,52 0,64
Раствор сложного песка 1700 0,52 2 4 0,70 0,87
Сухая штукатурка 800 0,15 4 6 0,19 0,21
Плита камышитовая 200 0,06 10 15 0,07 0,09
Цементная штукатурка 1050 0,15 4 6 0,34 0,36
Плита торфяная 300 0,064 15 20 0,07 0,08
Плита торфяная 200 0,052 15 20 0,06 0,064

Таблица теплопроводности строительных материалов необходима при проектировании защиты здания от теплопотерь согласно нормативам СНиП от 2003 года под номером 23-02. Этими мероприятиями обеспечивается снижение эксплуатационного бюджета, поддержание круглогодичного комфортного микроклимата внутри помещений. Для удобства пользователей все данные сведены в таблицы, даны параметры для нормальной эксплуатации, условий повышенной влажности, так как, некоторые материалы при увеличении этого параметра резко снижают свойства.

Теплопроводность является одним из способов потерь тепла жилыми помещениями. Эта характеристика выражается количеством тепла, способным проникнуть сквозь единицу площади материала (1 м 2) за секунду при стандартной толщине слоя (1 м). Физики объясняют выравнивание температур различных тел, объектов путем теплопроводности природным стремлением к термодинамическому равновесию всех материальных веществ.

Таким образом, каждый индивидуальный застройщик, отапливая помещение в зимний период, получает потери тепловой энергии, уходящей из жилища сквозь наружные стены, полы, окна, кровлю. Чтобы сократить расход энергоносителя для обогрева помещений, сохранив внутри них комфортный для эксплуатации микроклимат, необходимо рассчитать толщину всех ограждающих конструкций на этапе проектирования. Это позволит сократить бюджет строительства.

Таблица теплопроводности строительных материалов позволяет использовать точные коэффициенты для стеновых конструкционных материалов. Нормативы СНиП регламентируют сопротивление фасадов коттеджа передаче тепла холодному воздуху улицы в пределах 3,2 единиц. Перемножив эти значения, можно получить необходимую толщину стены, чтобы определиться с количеством материала.

Например, при выборе ячеистого бетона с коэффициентом 0,12 единиц достаточно кладки в один блок длиной 0,4 м. используя более дешевые блоки из этого же материала с коэффициентом 0,16 единиц, потребуется сделать стену толще – 0,52 м. Коэффициент теплопроводности сосны, ели составляет 0,18 единиц. Поэтому, для соблюдения условия сопротивления теплопередаче 3,2, потребуется 57 см брус, которого не существует в природе. При выборе кирпичной кладки с коэффициентом 0,81 единица толщина наружных стен грозит увеличением до 2,6 м, железобетонных конструкций – до 6,5 м.

На практике стены изготавливают многослойными, закладывая внутрь слой утеплителя или обшивая теплоизолятором наружную поверхность. У этих материалов коэффициент теплопроводности гораздо ниже, что позволяет уменьшить толщину многократно. Конструкционный материал обеспечивает прочность здания, теплоизолятор снижает теплопотери до приемлемого уровня. Современные облицовочные материалы, используемые на фасадах, внутренних стенах, так же обладают сопротивлением теплопотерям. Поэтому, в расчетах учитываются все слои будущих стен.

Вышеуказанные расчеты будут неточными если не учесть наличие в каждой стене коттеджа светопрозрачных конструкций. Таблица теплопроводности строительных материалов в нормативах СНиП обеспечивает легкий доступ к коэффициентам теплопроводности данных материалов.

Пример расчета толщины стены по теплопроводности

При выборе типового или индивидуального проекта застройщик получает комплект документации, необходимый для возведения стен. Силовые конструкции в обязательном порядке просчитаны на прочность с учетом ветровых, снеговых, эксплуатационных, конструкционных нагрузок. Толщина стен учитывает характеристики материала каждого слоя, поэтому, теплопотери гарантированно будут ниже допустимых норм СНиП. В этом случае заказчик может предъявить претензии организации, занимавшейся проектированием, при отсутствии необходимого эффекта в процессе эксплуатации жилища.

Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители. Многие из них завышают в калькуляторах значения коэффициентов теплопроводности стандартных материалов для представления собственной продукции в выгодном свете. Подобнее ошибки в расчетах чреваты для застройщика снижением комфортности внутренних помещений в холодный период.

Самостоятельный расчет не представляет сложностей, используется ограниченное количество формул, нормативных значений:

Например, чтобы привести толщину кирпичной стены в соответствие с нормативным теплосопротивлением, потребуется умножить коэффициент для этого материала, взятый из таблицы на нормативное теплосопротивление:

0,76 х 3,5 = 2,66 м

Подобная крепость излишне затратна для любого застройщика, поэтому, следует снизить толщину кладки до приемлемых 38 см, добавив утеплитель:

Теплосопротивление кирпичной кладки в этом случае составит 0,38/0,76 = 0,5 единиц. Вычитая из нормативного параметра полученный результат, получаем необходимое теплосопротивление слоя утеплителя:

3,5 – 0,5 = 3 единицы

При выборе базальтовой ваты с коэффициентом 0,039 единиц, получаем слой толщиной:

3 х 0,039 = 11,7 см

Отдав предпочтение экструдированному пенополистиролу с коэффициентом 0,037 единиц, снижаем слой утеплителя до:

3 х 0,037 = 11,1 см

На практике, можно выбрать 12 см для гарантированного запаса либо обойтись 10 см, учитывая наружные, внутренние облицовки стен, так же обладающие теплосопротивлением. Необходимый запас можно добрать без использования конструкционных материалов либо утеплителей, изменив конструкцию кладки. Замкнутые пространства воздушных прослоек внутри некоторых типов облегченных кладок так же обладают теплосопротивлением.

Их теплопроводность можно узнать из нижеприведенной таблицы, находящейся в СНиП.

Чтобы правильно организовать , и помещений нужно знать определённые особенности и свойства материалов. От качественного подбора необходимых значений напрямую зависит тепловая устойчивость вашего дома, ведь ошибившись, в первоначальных расчётах вы рискуете сделать здания неполноценным. В помощь вам предоставляется подробная таблица теплопроводности строительных материалов, описанная в этой статье.

Читайте в статье

Что такое теплопроводность и её значимость?

Теплопроводность – это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах. Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла. Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.


Подробная таблица теплопроводности строительных материалов

Главной особенностью теплоизолирующих материалов и строительных деталей является внутренняя структура и коэффициент сжатия молекулярной основы сырья, из которого состоят материалы. Значения коэффициентов теплопроводности строительными материалами таблично описаны ниже.

Вид материала Коэффициенты теплопроводности, Вт/(мм*°С)
Сухие Средние условия тепловой отдачи Условия повышенной влажности
Полистирол 36 — 41 38 — 44 44 — 50
Эструдированный полистирол 29 30 31
Войлок 45
Раствор цемент+песок 580 760 930
Раствор известь+песок 470 700 810
из гипса 250
Каменная вата 180 кг/м 3 38 45 48
140-175 кг/м 3 37 43 46
80-125 кг/м 3 36 42 45
40-60 кг/м 3 35 41 44
25-50 кг/м 3 36 42 45
Стекловата 85 кг/м 3 44 46 50
75 кг/м 3 40 42 47
60 кг/м 3 38 40 45
45 кг/м 3 39 41 45
35 кг/м 3 39 41 46
30 кг/м 3 40 42 46
20 кг/м 3 40 43 48
17 кг/м 3 44 47 53
15 кг/м 3 46 49 55
Пеноблок и газоблок на основе 1000 кг/м 3 290 380 430
800 кг/м 3 210 330 370
600 кг/м 3 140 220 260
400 кг/м 3 110 140 150
и на извести 1000 кг/м 3 310 480 550
800 кг/м 3 230 390 450
400 кг/м 3 130 220 280
Дерево сосны и ели в распиле поперек волокон 9 140 180
сосны и ели в распиле вдоль волокон 180 290 350
Древесина дуба поперек волокон 100 180 230
Древесина дуб вдоль волокон 230 350 410
Медь 38200 — 39000
Алюминий 20200 — 23600
Латунь 9700 — 11100
Железо 9200
Олово 6700
Сталь 4700
Стекло 3 мм 760
Снежный слой 100 — 150
Вода обычная 560
Воздух средней температуры 26
Вакуум 0
Аргон 17
Ксенон 0,57
Арболит 7 — 170
35
Железобетон плотность 2,5 тыс. кг/м 3 169 192 204
Бетон на щебне с плотностью 2,4 тыс. кг/м 3 151 174 186
с плотностью 1,8 тыс. кг/м 3 660 800 920
Бетон на керамзите с плотностью 1,6 тыс. кг/м 3 580 670 790
Бетон на керамзите с плотностью 1,4 тыс. кг/м 3 470 560 650
Бетон на керамзите с плотностью 1,2 тыс. кг/м 3 360 440 520
Бетон на керамзите с плотностью 1 тыс. кг/м 3 270 330 410
Бетон на керамзите с плотностью 800 кг/м 3 210 240 310
Бетон на керамзите с плотностью 600 кг/м 3 160 200 260
Бетон на керамзите с плотностью 500 кг/м 3 140 170 230
Крупноформатный блок из керамики 140 — 180
из керамики плотный 560 700 810
Силикатный кирпич 700 760 870
Кирпич из керамики полый 1500 кг/м³ 470 580 640
Кирпич из керамики полый 1300 кг/м³ 410 520 580
Кирпич из керамики полый 1000 кг/м³ 350 470 520
Силикат на 11 отверстий (плотность 1500 кг/м 3) 640 700 810
Силикат на 14 отверстий (плотность 1400 кг/м 3) 520 640 760
Гранитный камень 349 349 349
Мраморный камень 2910 2910 2910
Известняковый камень, 2000 кг/м 3 930 1160 1280
Известняковый камень, 1800 кг/м 3 700 930 1050
Известняковый камень, 1600 кг/м 3 580 730 810
Известняковый камень, 1400 кг/м 3 490 560 580
Тюф 2000 кг/м 3 760 930 1050
Тюф 1800 кг/м 3 560 700 810
Тюф 1600 кг/м 3 410 520 640
Тюф 1400 кг/м 3 330 430 520
Тюф 1200 кг/м 3 270 350 410
Тюф 1000 кг/м 3 210 240 290
Сухой песок 1600 кг/м 3 350
Фанера прессованная 120 150 180
Отпрессованная 1000 кг/м 3 150 230 290
Отпрессованная доска 800 кг/м 3 130 190 230
Отпрессованная доска 600 кг/м 3 110 130 160
Отпрессованная доска 400 кг/м 3 80 110 130
Отпрессованная доска 200 кг/м 3 6 7 8
Пакля 5 6 7
(обшивочный), 1050 кг/м 3 150 340 360
(обшивочный), 800 кг/м 3 150 190 210
380 380 380
на утеплителе 1600 кг/м 3 330 330 330
Линолеум на утеплителе 1800 кг/м 3 350 350 350
Линолеум на утеплителе 1600 кг/м 3 290 290 290
Линолеум на утеплителе 1400 кг/м 3 200 230 230
Вата на эко основе 37 — 42
Перлит пескообразный с плотностью 75 кг/м 3 43 — 47
Перлит пескообразный с плотностью 100 кг/м 3 52
Перлит пескообразный с плотностью 150 кг/м 3 52 — 58
Перлит пескообразный с плотностью 200 кг/м 3 70
Вспененное стекло плотность которого 100 — 150 кг/м 3 43 — 60
Вспененное стекло плотность которого 51 — 200 кг/м 3 60 — 63
Вспененное стекло плотность которого 201 — 250 кг/м 3 66 — 73
Вспененное стекло плотность которого 251 — 400 кг/м 3 85 — 100
Вспененное стекло в блоках плотность которого 100 — 120 кг/м 3 43 — 45
Вспененное стекло плотность которого 121 — 170 кг/м 3 50 — 62
Вспененное стекло плотность которого 171 — 220 кг/м 3 57 — 63
Вспененное стекло плотность которого 221 — 270 кг/м 3 73
Керамзитная и гравийная насыпь плотность которого 250 кг/м 3 99 — 100 110 120
Керамзитная и гравийная насыпь плотность которого 300 кг/м 3 108 120 130
Керамзитная и гравийная насыпь плотность которого 350 кг/м 3 115 — 120 125 140
Керамзитная и гравийная насыпь плотность которого 400 кг/м 3 120 130 145
Керамзитная и гравийная насыпь плотность которого 450 кг/м 3 130 140 155
Керамзитная и гравийная насыпь плотность которого 500 кг/м 3 140 150 165
Керамзитная и гравийная насыпь плотность которого 600 кг/м 3 140 170 190
Керамзитная и гравийная насыпь плотность которого 800 кг/м 3 180 180 190
Гипсовые плиты плотность которого 1350 кг/м 3 350 500 560
плиты плотность которого 1100 кг/м 3 230 350 410
Перлитовый бетон плотность которого 1200 кг/м 3 290 440 500
МТПерлитовый бетон плотность которого 1000 кг/м 3 220 330 380
Перлитовый бетон плотность которого 800 кг/м 3 160 270 330
Перлитовый бетон плотность которого 600 кг/м 3 120 190 230
Вспененный полиуретан плотность которого 80 кг/м 3 41 42 50
Вспененный полиуретан плотность которого 60 кг/м 3 35 36 41
Вспененный полиуретан плотность которого 40 кг/м 3 29 31 40
Сшитый вспененный полиуретан 31 — 38

Важно! Для достижения более эффективного утепления нужно компоновать разные материалы. Совместимость поверхностей между собой указана в инструкции от производителя.

Разъяснения показателей в таблице теплопроводности материалов и утеплителя: их классификация

В зависимости от конструктивных особенностей конструкции, которую необходимо утеплить, подбирается вид утеплителя. Так, например, если стена возведена из в два ряда, то для полноценной изоляции подойдёт пенопласт в 5 см толщиной.

Благодаря широкому ассортименту плотности пенопластовых листов ими можно отлично произвести тепловую изоляцию стен из ОСБ и оштукатурить сверху, что также увеличит эффективность работы утеплителя.


Вы можете ознакомиться с уровнем теплопроводности , таблично представленного на фото ниже.


Классификация теплоизоляции

По способу передачи тепла теплоизоляционные материалы разделяются на два вида:

  • Утеплитель который поглощает любое воздействие холода, жары, химического воздействия и т.д.;
  • Утеплитель, умеющий отражать все виды воздействия на него;

По значению коэффициентов теплопроводности материала, из которого изготовлен утеплитель его различают по классам:

  • А класс. Такой утеплитель имеет наименьшую тепловую проводимость, максимальное значение которой 0,06 Вт (м*С);
  • Б класс. Обладает средним показателем СИ параметра и достигает 0,115 Вт (м*С);
  • В класс. Наделён высокой теплопроводностью и демонстрирует показатель в 0,175 Вт (м*С);

Примечание! Не все утеплители имеют стойкость к высоким температурам. Например, эковата, соломит, ДСП, ДВП и торф нуждаются в надёжной защите от внешних условий.

Основные виды коэффициентов теплопередачи материала. Таблица + примеры

Расчёт необходимого , если это касается внешних стен дома исходит от регионального размещения здания. Чтобы объяснить наглядно как он происходит, в таблице ниже, приведённые цифры будут касаться Красноярского края.

Вид материала Теплопередача, Вт/(м*°С) Толщина стен, мм Иллюстрация
5500
Лиственные породы деревьев с 15% 0,15 1230
Бетон на основе керамзита 0,2 1630
Пеноблок с плотностью 1 тыс. кг/м³ 0,3 2450
Хвойные породы деревьев вдоль волокон 0,35 2860
Дубовая вагонка 0,41 3350
на растворе из цемента и песка 0,87 7110
Железобетонные

Каждое здание имеет разные сопротивления теплопередачи материалов. Таблица ниже, которая является выдержкой из СНиПа, ярко это демонстрирует.


Примеры утепления зданий в зависимости от теплопроводности

В современном строительстве нормой стали стены, состоящие из двух и даже трёх слоёв материала. Один слой состоит из , который подбирается после определённых расчётов. Дополнительно необходимо выяснить, где находится точка росы.

Чтобы организовать необходимо комплексно использовать несколько СниПов, ГОСТов, пособий и СП:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Редакция от 2012 года;
  • СНиП 23-01-99 (СП 131.13330.2012). «Строительная климатология». Редакция от 2012 года;
  • СП 23-101-2004. «Проектирование тепловой защиты зданий»;
  • Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие»;
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях»;

Производя вычисления по этим документам, определяют тепловые особенности строительного материала, ограждающего конструкцию, сопротивление тепловой передачи и степень совпадений с нормативными документами. Параметры расчёта исходя из таблицы теплопроводности строительного материала приведены на фото ниже.

  1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
  2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.


    Особенность климата Плесень на стенах Затяжка пенопласта гидроизоляцией

Вопрос утепления квартир и домов весьма важен – постоянно повышающаяся стоимость энергоносителей обязывает бережно относиться к теплу в помещении. Но как правильно выбрать материал изоляции и рассчитать его оптимальную толщину? Для этого необходимо знать показатели теплопроводности.

Что такое теплопроводность

Эта величина характеризует способность проводить тепло внутри материала. Т.е. определяет отношение количества энергии, проходящей через тело площадью 1 м² и толщиной 1 м за единицу времени – λ (Вт/м*К). Проще говоря – сколько тепла будет передано от одной поверхности материала к другой.

В качестве примера рассмотрим обыкновенную кирпичную стену.

Как видно на рисунке, температура в помещении составляет 20°С, а на улице – 10°С. Для соблюдения такого режима в комнате необходимо, чтобы материал, из которого сделана стена, был с минимальным коэффициентом теплопроводности. Именно при таком условии можно говорить об эффективном энергосбережении.

Для каждого материала существует свой определенный показатель этой величины.

При строительстве принято следующее разделение материалов, которые выполняют определенную функцию:

  • Возведение основного каркаса зданий – стен, перегородок и т.д. Для этого применяются бетон, кирпич, газобетон и т.д.

Их показатели теплопроводности довольно велики, а это значит, что для достижения хорошего энергосбережения необходимо увеличивать толщину наружных стен. Но это не практично, так как требует дополнительных затрат и возрастание веса всего здания. Поэтому принято использовать специальные дополнительные изоляционные материалы.

  • Утеплители. К ним относятся , пенопласт, пенополистирол и любой другой материал с низким коэффициентом теплопроводности.

Именно они обеспечивают должную защиту дома от быстрой потери тепловой энергии.

В строительстве требованиями к основным материалам являются – механическая прочность, пониженный показатель гигроскопичности (сопротивление влаги), и менее всего – их энергетические характеристики. Поэтому особое внимание уделяется теплоизоляционным материалам, которые должны компенсировать этот «недостаток».

Однако применение на практике величины теплопроводности затруднительно, так как она не учитывает толщину материала. Поэтому используют обратное ей понятие – коэффициент сопротивления теплопередачи.

Эта величина является отношением толщины материала к его коэффициенту теплопроводности.

Значение этого параметра для жилых зданий прописаны в СНиП II-3-79 и СНиП 23-02-2003. Согласно этим нормативным документам коэффициент сопротивления теплопередачи в разных регионах России не должен быть менее тех значений, которые указаны в таблице.

СНиП .

Эта процедура расчета является обязательно не только при планировании постройки нового здания, но и для грамотного и эффективного утепления стен уже возведенного дома.

Современные утеплительные материалы имеют уникальные характеристики и применяются для решения задач определенного спектра. Большинство из них предназначены для обработки стен дома, но есть и специфичные, разработанные для обустройства дверных и оконных проемов, мест стыка кровли с несущими опорами, подвальных и чердачных помещений. Таким образом, выполняя сравнение теплоизоляционных материалов, нужно учитывать не только их эксплуатационные свойства, но и сферу применения.

Главные параметры

Дать оценку качеству материала можно исходя из нескольких основополагающих характеристик. Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.

Чувствительность к влаге

Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.


Плотность и теплоемкость

Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.

Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.


Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.


Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр - если речь идет об изоляции - должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

Теплопроводность основных видов утеплителей

Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:


Преимущества и недостатки

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.


Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.


В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

gastroguru © 2017