Как складывать десятичные дроби с разными знаками. Сложение и вычитание чисел с разными знаками. Примеры сложения и вычитания целых чисел

>>Математика: Сложение чисел с разными знаками

33. Сложение чисел с разными знаками

Если температура воздуха была равна 9 °С, а потом она изменилась на - 6 °С (т. е. понизилась на 6 °С), то она стала равной 9 + (- 6) градусам (рис. 83).

Чтобы сложить числа 9 и - 6 с помощью , надо точку А (9) переместить влево на 6 единичных отрезков (рис. 84). Получим точку В (3).

Значит, 9+(- 6) = 3. Число 3 имеет тот же знак, что и слагаемое 9, а его модуль равен разности модулей слагаемых 9 и -6.

Действительно, |3| =3 и |9| - |- 6| = = 9 - 6 = 3.

Если та же температура воздуха 9 °С изменилась на -12 °С (т. е. понизилась на 12 °С), то она стала равной 9 +(-12) градусам (рис. 85). Сложив числа 9 и -12 с помощью координатной прямой (рис. 86), получим 9 + (-12)= -3. Число -3 имеет тот же знак, что и слагаемое -12, а его модуль равен разности модулей слагаемых -12 и 9.

Действительно, | - 3| = 3 и | -12| - | -9| =12 - 9 = 3.

Чтобы сложить два числа с разными знаками, надо:

1) из большего модуля слагаемых вычесть меньший;

2) поставить перед полученным числом знак того слагаемого, модуль которого больше.

Обычно сначала определяют и записывают знак суммы, а потом находят разность модулей.

Например:

1) 6,1+(- 4,2)= +(6,1 - 4,2)= 1,9,
или короче 6,1+(- 4,2) = 6,1 - 4,2 = 1,9;

При сложении положительных и отрицательных чисел можно использовать микрокалькулятор . Чтобы ввести отрицательное число в микрокалькулятор, надо ввести модуль этого числа, потом нажать клавишу «изменение знака» |/-/|. Например, чтобы ввести число -56,81, надо последовательно нажимать клавиши: | 5 |, | 6 |, | ¦ |, | 8 |, | 1 |, |/-/|. Операции над числами любого знака выполняются на микрокалькуляторе так же, как над положительными числами.

Например, сумму -6,1 + 3,8 вычисляют по Программе

? Числа а и b имеют разные знаки. Какой знак будет иметь сумма этих чисел, если больший модуль имеет отрицательное число?

если меньший модуль имеет отрицательное число?

если больший модуль имеет положительное число?

если меньший модуль имеет положительное число?

Сформулируйте правило сложения чисел с разными знаками. Как ввести в микрокалькулятор отрицательное число?

К 1045. Число 6 изменили на -10. С какой стороны от начала отсчета расположено получившееся число? На каком расстоянии от начала отсчета оно находится? Чему равна сумма 6 и -10?

1046. Число 10 изменили на -6. С какой стороны от начала отсчета расположено получившееся число? На каком расстоянии от начала отсчета оно находится? Чему равна сумма 10 и -6?

1047. Число -10 изменили на 3. С какой стороны от начала отсчета расположено получившееся число? На каком расстоянии от начала отсчета оно находится? Чему равна сумма -10 и 3?

1048. Число -10 изменили на 15. С какой стороны от начала отсчета расположено получившееся число? На каком расстоянии от начала отсчета оно находится? Чему равна сумма -10 и 15?

1049. В первую половину дня температура изменилась на - 4 °С, а во вторую - на + 12 °С. На сколько градусов изменилась температура в течение дня?

1050. Выполните сложение:

1051. Прибавьте:

а) к сумме -6 и -12 число 20;
б) к числу 2,6 сумму -1,8 и 5,2;
в) к сумме -10 и -1,3 сумму 5 и 8,7;
г) к сумме 11 и -6,5 сумму -3,2 и -6.

1052. Какое из чисел 8; 7,1; -7,1; -7; -0,5 является корнем уравнения - 6 + х =-13,1?

1053. Угадайте корень уравнения и выполните проверку:

а) х + (-3)= -11; в) m + (-12) = 2;
б) - 5 + y=15; г) 3 + n = -10.

1054. Найдите значение выражения:

1055. Выполните действия с помощью микрокалькулятора:

а) - 3,2579 + (-12,308); г) -3,8564+ (-0,8397) +7,84;
б) 7,8547+ (- 9,239); д) -0,083 + (-6,378) + 3,9834;
в) -0,00154 + 0,0837; е) -0,0085+ 0,00354+ (- 0,00921).

П 1056. Найдите значение суммы:

1057. Найдите значение выражения:

1058. Сколько целых чисел расположено между числами:

а) 0 и 24; б) -12 и -3; в) -20 и 7?

1059. Представьте число -10 в виде суммы двух отрицательных слагаемых так, чтобы:

а) оба слагаемых были целыми числами;
б) оба слагаемых были десятичными дробями;
в) одно из слагаемых было правильной обыкновенной дробью .

1060. Каково расстояние (в единичных отрезках) между точками координатной прямой с координатами:

а) 0 и а; б) -а и а; в) -а и 0; г) а и -За?

М 1061. Радиусы географических параллелей земной поверхности, на которых расположены города Афины и Москва, соответственно равны 5040 км и 3580 км (рис. 87). На сколько параллель Москвы короче параллели Афин?

1062. Составьте уравнение для решения задачи: «Поле площадью 2,4 га разделили на два участка. Найдите площадь каждого участка, если известно, что один из участков:

а) на 0,8 га больше другого;
б) на 0,2 га меньше другого;
в) в 3 раза больше другого;
г) в 1,5 раза меньше другого;
д) составляет другого;
е) составляет 0,2 другого;
ж) составляет 60% другого;
з) составляет 140% другого».

1063. Решите задачу:

1) В первый день путешественники проехали 240 км, во второй день 140 км, в третий день они проехали в 3 раза больше, чем во второй, а в четвертый день они отдыхали. Сколько километров они проехали в пятый день, если за 5 дней они проезжали в среднем по 230 км в день?

2) Заработок отца в месяц равен 280 р. Стипендия дочери в 4 раза меньше. Сколько зарабатывает в месяц мать, если в семье 4 человека, младший сын - школьник и на каждого приходится в среднем 135 р.?

1064. Выполните действия:

1) (2,35 + 4,65) 5,3:(40-2,9);

2) (7,63-5,13) 0,4:(3,17 + 6,83).

1066. Представьте в виде суммы двух равных слагаемых кдое из чисел:

1067. Найдите значение а + b, если:

а) а= -1,6, b = 3,2; б) а=- 2,6, b = 1,9; в)

1068. На одном этаже жилого дома было 8 квартир. 2 квартиры имели жилую площадь по 22,8 м 2 , 3 квартиры - по 16,2 м 2 , 2 квартиры - по 34 м 2 . Какую жилую площадь имела восьмая квартира, если на этом этаже в среднем на каждую квартиру приходилось по 24,7 м 2 жилой площади?

1069.В составе товарного поезда было 42 вагона. Крытых вагонов было в 1,2 раза больше, чем платформ, а число цистерн составляло числа платформ. Сколько вагонов каждого вида было в составе поезда?

1070. Найдите значение выражения

Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Планирование по математике, учебники и книги онлайн , курсы и задачи по математике для 6 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

В курсе арифметики установлено, что вычитание есть действие, обратное сложению, при помощи которого по данной сумме и по одному слагаемому находят другое слагаемое.

Пользуясь этим определением, мы должны разобрать, как надо выполнять вычитание относительных чисел.

Пусть надо из (+8) вычесть (–3), т. е. пусть надо

Первое данное число выражает данную сумму, второе – данное слагаемое, а над найти другое слагаемое (для него оставлено место после знака равенства), т. е. надо решить вопрос: какое число надо сложить с (–3), чтобы в сумме получилось (+8)? Этот вопрос запишем в такой форме:

(?) + (–3) = +8.

Но сразу этот вопрос решить трудно, а поэтому сначала решим более простой, вспомогательный вопрос: какое число надо сложить с (–3), чтобы в сумме получился нуль?, т. е.

(?) + (–3) = 0.

На этот вопрос ответ ясен: надо взять для неизвестного слагаемого число, имеющее ту же абсолютную величину, как и данное слагаемое, но обратный знак, – в данном случае надо для неизвестного слагаемого взять число +3. Теперь перейдем к решению главного вопроса: мы взяли для неизвестного слагаемого число + 3 и в сумме получился нуль, но нам надо получить в сумме число +8, поэтому надо чтобы и в другое слагаемое вошло это же число +8. Следовательно, неизвестное слагаемое должно состоять: 1) из +3, чтобы в сумме получился нуль и 2) из +8, чтобы эту сумму «нуль» довести до требуемой +8. Поэтому на месте неизвестного слагаемого пишем + 3 + 8:

(+ 8) – (– 3) = + 3 + 8 = + 11.

Последнее (= + 11) написано на том основании, что числа + 3 и + 8 надо соединить в одно или сложить.

Вот еще примеры:

(– 7) – (+ 5) = – 5 – 7 = – 12.

Искомое слагаемое должно состоять: 1) из –5, чтобы в сумме получился нуль и 2) из –7, чтобы дополнить этот нуль до требуемой суммы, до –7. Сложив числа –5 и –7, получим –12.

(– 3) – (– 8) = + 8 – 3 = + 5.

Искомое слагаемое должно состоять: 1) из +8, чтобы в сумме получился нуль и 2) из –3, чтобы дополнить этот нуль до требуемой суммы, до –3. Сложив числа +8 и –3, получим +5.

(+7) – (+9) = –9 + 7 = –2.

Искомое слагаемое должно состоять: 1) из –9, чтобы в сумме получился нуль и 2) +7, чтобы дополнить этот нуль до требуемой суммы, до +7; сложив числа –9 и +7, получим –2.

Из этих примеров видим, что вычитание в алгебре состоит лишь в умении раскрывать скобки: надо второе число (данное слагаемое или вычитаемое) написать с обратным знаком, а первое число (данную сумму или уменьшаемое) написать с тем же знаком. После того, как это сделано, т. е., когда скобки раскрыты, дело сводится к сложению, так как написаны числа рядом с их знаками, напр., в последнем примере: – 9 + 7.

Так как сумма не изменяется от перестановки слагаемых, то можно числа, полученные в разобранных примерах после раскрытия скобок, переставить, чтобы порядок был согласен с порядком данных чисел:

(+ 8) – (– 3) = + 8 + 3; (– 7) – (+ 5) = – 7 – 5;
– 3 – (– 8) = – 3 + 8; (+ 7) – (+ 9) = + 7 – 9.

чтобы раскрыть скобки при вычитании, надо первое число (уменьшаемое) написать без изменения и приписать к нему второе число (вычитаемое) с обратным знаком.

Заметим еще, что при обозначении вычитания первое число пишется часто без скобок, а если оно положительное, то, как уже известно, знак + можно впереди не писать.

Например,

– 3 – (– 5) = – 3 + 5 = + 2; 1 – (– 6) = 1 + 6 = 7;
3 – (+ 3) = 3 – 3 = 0.

14. Примеры на сложение и вычитание. Пусть требуется вычислить:

1 – {3 + }.

Мы станем руководствоваться следующим порядком: если внутри какой-либо пары скобок нет других скобок и нет действия, то эти скобки можно раскрыть; если же внутри этих скобок есть действие (сложение), то надо сначала его выполнить. В нашем примере такой порядок: сначала выполним сложение чисел, написанных внутри маленьких скобок, потом надо эти скобки раскрыт, выполнить сложение внутри квадратных скобок, раскрыть квадратные скобки, выполнить сложение внутри витых скобок, раскрыть эти скобки и, наконец, сложить полученные числа:

1 – {3 + } = 1 – {3 + } = 1 – {3 + } =
= 1 – {3 + [+13]} = 1 – {3 + 13} = 1 – {+ 16} = 1 – 16 = – 15.

Конечно, при навыке можно сразу выполнять несколько действий и, следовательно, укоротить вычисление.
Еще пример:

Пусть еще требуется вычислить выражение:

a – {(b – c) – } при a = – 3; b = 1; c = 4; d = – 5; e = – 7; f = 2.

Выполним вычисления по действиям:

1) b – c = + 1 – (+ 4) = 1 – 4 = – 3;

2) e + f = (– 7) + (+ 2) = – 7 + 2 = – 5;

3) d + (– 5) = – 5 + (– 5) = – 5 – 5 = – 10;

4) (– 3) – (– 10) = – 3 + 10 = + 7;

5) – 3 – (+ 7) = – 3 – 7 = – 10.

Примеры для упражнений:

Если взять число нуль и прибавлять к нему по +1, то получим ряд постепенно увеличивающихся целых чисел:

0, +1, +2, +3, +4, +5, …..

Этот ряд совпадает (см. конец п. 10) с натуральным рядом чисел, т. е. с

0, 1, 2, 3, 4, 5 …..

Если мы, взяв число нуль, вычтем из него (+1), затем еще раз вычтем (+1) и т. д., то, согласно с тем, как мы это понимали в арифметике по отношению к натуральному ряду чисел, мы теперь признаем, что и здесь станем получать все уменьшающиеся целые числа:

1) 0 – (+ 1) = – 1; 2) (– 1) – (+ 1) = – 1 – 1 = – 2;
3) (– 2) – (+ 1) = – 3 и т. д.

Получим, идя от нуля налево, ряд уменьшающихся относительных чисел:

….., – 5, – 4, – 3, – 2, – 1, 0.

Соединяя этот ряд с предыдущим, получим полный ряд относительных чисел:

….., – 6, – 5, – 4, – 3, – 2, – 1, 0, +1, +2, +3, +4, +5, +6 …..

Этот ряд и вправо и влево идет без конца.

Всякое число в этом ряду больше другого, которое стоит левее и меньше любого, стоящего правее его. Так +1 > –3; 0 > –6; –5 < 0; –3 < +2 и т. д.

В промежутках между целыми числами этого ряда можно вставить бесконечно много дробных чисел.

СЛОЖЕНИЕ И ВЫЧИТАНИЕ

чисел с разными знаками

Добиться того, чтобы ученик за меньшее, чем прежде, время овладел большим объемом знаний, основательных и действенных - такова одна из главных задач современной педагогики. В этой связи появляется необходимость начинать изучение нового через повторение старого, уже изученного, известного по данной теме материала. Чтобы повторение проходило быстро и для того, чтобы была наиболее наглядной связь нового со старым, надо при объяснении организовать запись изучаемого материала специальным образом.

В качестве примера расскажу о том, как я обучаю учеников сложению и вычитанию чисел с разными знаками с помощью координатной прямой. Перед изучением темы непосредственно и на протяжении уроков в 5-м и 6-м классах уделяю много внимания устройству координатной прямой. До начала изучения темы «Сложение и вычитание чисел с разными знаками» необходимо, чтобы каждый ученик твердо знал и умел ответить на следующие вопросы:

1) Как устроена координатная прямая?

2) Как располагаются на ней числа?

3) Чему равно расстояние от числа 0 до любого числа?

Учащиеся должны понимать, что движение вдоль прямой вправо приводит к увеличению числа, т.е. выполняется действие сложения, а влево - к его уменьшению, т.е. выполняется действие вычитания чисел. Чтобы работа с координатной прямой не вызывала скуки, существует много игровых нестандартных задач. Например, такая.

Вдоль шоссе начерчена прямая. Длина одного единичного отрезка равна 2 м. все двигаются только вдоль прямой. На числе 3 стоят Гена и Чебурашка. Они одновременно пошли в разные стороны и одновременно остановились. Гена прошел в 2 раза большее расстояние, чем Чебурашка, и оказался на числе 11. На каком числе оказался Чебурашка? Сколько Чебурашка прошел метров? Кто из них шел медленнее и во сколько раз? (Нестандартная математика в школе. - М., Лайда, 1993, № 62).

Когда я твердо уверена, что все ученики справляются с движениями вдоль прямой, а это очень важно, перехожу непосредственно к обучению сложению и вычитанию чисел одновременно.

Каждому учащемуся выдается опорный конспект. Разбирая положения конспекта и опираясь на уже имеющиеся геометрические наглядные картинки координатной прямой, учащиеся получают новые знания. (Конспект приведен на рисунке). Изучение темы начинается с записи в тетради вопросов, которые будут рассмотрены.

1 . Как выполнить сложение с помощью координатной прямой? Как найти неизвестное слагаемое? Рассматриваем соответствующую часть конспекта??. Вспоминаем, что к a прибавить b - это значит увеличить a на b и движение вдоль координатной прямой происходит вправо. Вспоминаем, как называются и вычисляются компоненты при сложении и законы сложения, а также свойства нуля при сложении. Это части?? и?? конспекта. Поэтому следующие вопросы, записанные в тетради, таковы:

1). Сложение - это движение вправо.

СЛ. + СЛ. = С; СЛ. = С - СЛ.

2). Законы сложения:

1) переместительный закон: a + b = b + a ;

2) сочетательный закон: (a + b ) + c = a + (b + c ) = (a + c ) + b

3). Свойства нуля при сложении: a + 0= a ; 0+ a = a ; a + (- a ) = 0.

4). Вычитание - это движение влево.

У. - В. = Р.; У. = В. + Р.; В. = У. - Р.

5). Сложение можно заменить вычитанием, а вычитание - сложением.

4 + 3 = - 1 3 - 4 = -1

4 + 3 = 3 + (- 4) = 3 - 4 = - 1

по переместительному закону сложения

6). Так раскрывают скобки:

+ (a + b + c ) = + a + b + c

«джентельмен»

- (a + b + c) = - a - b - c

«разбойник»

2 . Законы сложения.

3 . Перечислите свойства нуля при сложении.

4 . Как выполнить с помощью координатной прямой вычитание чисел? Правила нахождения неизвестных вычитаемого, уменьшаемого.

5 . Как выполняется переход от сложения к вычитанию и от вычитания к сложению?

6 . Как раскрыть скобки, перед которыми стоит: а) знак плюс; б) знак минус?

Теоретический материал довольно объемен, но так как каждая его часть связана и как бы «вытекает» одна из другой, запоминание происходит успешно. Работа с конспектом на этом не заканчивается. С каждой частью конспекта соотносится текст учебника, который прочитывается в классе. Если после этого ученик считает, что разбираемая часть ему полностью понятна, то он слегка закрашивает текст конспекта в соответствующую рамочку, как бы говоря: «Это я понял». Если же есть что-то непонятное, то рамочка не закрашивается до тех пор, пока не станет все ясно. Белая часть конспекта - сигнал «Разберись!»

Цель учителя, которую следует достичь к концу урока, такова: учащиеся, уходя с урока, должны помнить, что сложение - это движение вдоль координатной прямой вправо, а вычитание - влево. Все ученики научились раскрывать скобки. Раскрытию скобок уделяется все оставшееся время урока. Устно и письменно раскрываем скобки в заданиях типа:

); - 20 + (- 7 + (- 5)).

Задание на дом. Ответьте на записанные в тетради вопросы, читая пункты учебника, указанные в конспекте.

На следующем уроке отрабатываем алгоритм сложения и вычитания чисел. У каждого учащегося на столе карта с инструкциями:

1) Спишите пример.

2) Раскройте, если они есть, скобки.

3) Нарисуйте координатную прямую.

4) Отметьте на ней без масштаба первое число.

5) Если за числом стоит знак «+», то двигайтесь вправо, а если знак «-» - то влево на столько единичных отрезков, сколько их содержит второе слагаемое. Нарисуйте это схематически и около числа, которое ищете, поставьте знак?

6) Поставьте вопрос «Где нуль?».

7) Определите знак числа, у которого стоит вопросительный знак, являющегося решением, так: если? стоит справа от 0, то у ответа знак +, а если? стоит слева от 0, то у ответа знак - . Запишите в ответе примера после знака = найденный знак.

8) Отметьте на чертеже три отрезка.

9) Найдите длину отрезка от нуля до знака?

Пример 1. - 35 + (- 9) = - 35 - 9 = - 44.

1. Списываю пример и раскрываю скобки.

2. Рисую картинку и рассуждаю так:

а) отмечаю - 35 и двигаюсь влево на 9 единичных отрезков; у искомого числа ставлю знак?;

б) спрашиваю себя: «Где нуль?». Отвечаю: «Нуль правее - 35 на 35 единичных отрезков, значит, знак у ответа -, так как? левее нуля»;

в) ищу расстояние от 0 до знака?. Для этого вычисляю 35 + 9 = 44 и приписываю полученное число в ответ к знаку - .

Пример 2. - 35 + 9.

Пример 3. 9 - 35.

Эти примеры решаем, проводя аналогичные примеру 1 рассуждения. Других случаев расположения чисел быть не может, и каждая картинка соответствует одному из правил, приведенных в учебнике и требующих запоминания. Проверено (и неоднократно), что данный способ сложения более рационален. Кроме того, он позволяет складывать числа даже тогда, когда ученик думает, что он ни одного правила не помнит. Данный способ работает и при действиях с дробями, нужно лишь привести их к общему знаменателю, а затем рисовать картинку. Например,

«Инструктивной» карточкой каждый пользуется до тех пор, пока в ней есть необходимость.

Такая работа заменяет нудное и однообразное действие счета по правилам живой и активно работающей мысли. Преимуществ множество: не надо зубрить и лихорадочно соображать, какое правило применять; легко запоминается устройство координатной прямой, а это и в алгебре, и в геометрии при вычислении величины отрезка, когда точка на прямой лежит между двумя другими точками. Эта методика эффективна как в классах с углубленным изучением математики, так и в классах возрастной нормы и даже в классах коррекции.

Данная статья посвящена числам с разными знаками. Мы будем разбирать материал и пытаться выполнять вычитание между этими числами. В параграфе мы познакомимся с основными понятиями и правилами, которые пригодятся во время решения упражнений и задач. Также в статье представлены подробно разобранные примеры, которые помогут лучше понять материал.

Yandex.RTB R-A-339285-1

Как правильно выполнять вычитание

Для того, чтобы лучше понять процесс вычитания, следует начать с основных определений.

Определение 1

Если вычесть из числа a число b , то это можно преобразовать как сложение числа a и - b , где b и − b – числа с противоположными знаками.

Если выразить данное правило буквами, то оно выглядит так a − b = a + (− b) , где a и b – любые действительные числа.

Данное правило вычитания чисел с разными знаками работает для действительных, рациональных и целых чисел. Его можно доказать на основании свойств действий с действительными числами. Благодаря им мы может представить числа как несколько равенства (a + (− b)) + b = a + ((− b) + b) = a + 0 = a . Так как сложение и вычитание тесно связаны, то равным также будет выражение a − b = a + (− b) . Это значит, что рассматриваемое правило вычитания также верно.

Данное правило, которое применяется для вычитания чисел с разными знаками, позволяет работать как с положительными, так и с отрицательными числами. Также можно производить процесс вычитания из отрицательного числа из положительного, которое переходит в сложение.

Для того, чтобы закрепить полученную информацию, мы рассмотрим типичные примеры и на практике рассмотрим правило вычитания для чисел с разными знаками.

Примеры упражнений на вычитание

Закрепим материал, рассмотрев типичные примеры.

Пример 1

Необходимо выполнить вычитание 4 из − 16 .

Для того, чтобы выполнить вычитание, следует взять число, противоположное вычитаемому 4 , есть − 4 . Согласно рассмотренному выше правилу вычитания (− 16) − 4 = (− 16) + (− 4) . Далее мы должны сложить получившиеся отрицательные числа. Получаем: (− 16) + (− 4) = − (16 + 4) = − 20 . (− 16) − 4 = − 20 .

Для того, чтобы выполнять вычитание дробей, необходимо представлять числа в виде обыкновенных или десятичных дробей. Это зависит от того, с числами какого вида будет удобнее проводить вычисления.

Пример 2

Необходимо выполнить вычитание − 0 , 7 от 3 7 .

Прибегаем к правилу вычитания чисел. Заменяем вычитание на сложение: 3 7 - (- 0 , 7) = 3 7 + 0 , 7 .

Мы складываем дроби и получаем ответ в виде дробного числа. 3 7 - (- 0 , 7) = 1 9 70 .

Когда какое-либо число представлено в виде квадратного корня, логарифма, основной и тригонометрических функций, то зачастую результат вычитания может быть записан в виде числового выражения. Чтобы пояснить данное правило, рассмотрим следующий пример.

Пример 3

Необходимо выполнить вычитание числа 5 из числа - 2 .

Воспользуемся описанным выше правилом вычитания. Возьмем противоположное число вычитаемому 5 – это − 5 . Согласно работы с числами с разными знаками - 2 - 5 = - 2 + (- 5) .

Теперь выполним сложение: получаем - 2 + (- 5) = 2 + 5 .

Полученное выражение и является результатом вычитания исходных чисел с разными знаками: - 2 + 5 .

Значение полученного выражения может быть вычислено максимально точно только в том случае, если это необходимо. Для подробной информации можно изучить другие разделы, связанные с данной темой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Материал этой статьи покрывает тему вычитание чисел с разными знаками . Здесь мы сначала дадим правило вычитания отрицательного числа от положительного, и положительного числа от отрицательного. После этого подробно разберем решения примеров вычитания чисел с разными знаками.

Навигация по странице.

Правило вычитания чисел с разными знаками

Правило вычитания чисел с разными знаками дословно совпадает с правилом вычитания отрицательных чисел . Его формулировка такова: вычесть из числа a число b – это все равно, что к числу a прибавить число −b , где b и −b – противоположные числа .

В буквенном виде это правило вычитания имеет вид a−b=a+(−b) , где a и b – любые действительные числа .

Озвученное правило вычитания чисел с разными знаками справедливо для действительных чисел, а также для рациональных чисел и целых чисел . Оно доказывается на основании свойств действий с действительными числами . Действительно, эти свойства позволяют записать цепочку равенств вида (a+(−b))+b=a+((−b)+b)=a+0=a , которая в силу существующей связи между сложением и вычитанием доказывает равенство a−b=a+(−b) , а значит, и рассматриваемое правило вычитания.

Правило вычитания чисел с разными знаками позволяет проводить вычитание положительного числа из отрицательного, а также вычитание отрицательного числа из положительного. При этом понятно, что вычитание сводится к сложению.

Осталось научиться применять правило вычитания чисел с разными знаками при решении примеров, что мы и сделаем в следующем пункте.

Примеры вычитания чисел с разными знаками

Рассмотрим примеры вычитания чисел с разными знаками .

Пример.

Выполните вычитание положительного числа 4 из отрицательного числа −16 .

Решение.

Число, противоположное вычитаемому 4 , есть −4 , тогда по правилу вычитания чисел с разными знаками имеем (−16)−4=(−16)+(−4) . Осталось выполнить сложение отрицательных чисел , имеем (−16)+(−4)=−(16+4)=−20 .

Ответ:

(−16)−4=−20 .

При вычитании дробных чисел с разными знаками приходится уменьшаемое и вычитаемое представлять либо в виде обыкновенных дробей , либо в виде десятичных дробей . Это зависит от того, с числами какого вида будет удобнее проводить вычисления.

Когда уменьшаемое и (или) вычитаемое задано как , и т.п., то часто результат вычитания записывается в виде . Приведем пример для пояснения.

Пример.

Выполните вычитание числа 5 из числа .

gastroguru © 2017