Как найти предел функции калькулятор. Пределы в математике для чайников: объяснение, теория, примеры решений

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является сайт.

Первым замечательным пределом именуют следующее равенство:

\begin{equation}\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1 \end{equation}

Так как при $\alpha\to{0}$ имеем $\sin\alpha\to{0}$, то говорят, что первый замечательный предел раскрывает неопределённость вида $\frac{0}{0}$. Вообще говоря, в формуле (1) вместо переменной $\alpha$ под знаком синуса и в знаменателе может быть расположено любое выражение, - лишь бы выполнялись два условия:

  1. Выражения под знаком синуса и в знаменателе одновременно стремятся к нулю, т.е. присутствует неопределенность вида $\frac{0}{0}$.
  2. Выражения под знаком синуса и в знаменателе совпадают.

Часто используются также следствия из первого замечательного предела:

\begin{equation} \lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1 \end{equation}

На данной странице решены одиннадцать примеров. Пример №1 посвящен доказательству формул (2)-(4). Примеры №2, №3, №4 и №5 содержат решения с подробными комментариями. Примеры №6-10 содержат решения практически без комментариев, ибо подробные пояснения были даны в предыдущих примерах. При решении используются некоторые тригонометрические формулы, которые можно найти .

Замечу, что наличие тригонометрических функций вкупе с неопределённостью $\frac {0} {0}$ ещё не означает обязательное применение первого замечательного предела. Иногда бывает достаточно простых тригонометрических преобразований, - например, см. .

Пример №1

Доказать, что $\lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$.

а) Так как $\tg\alpha=\frac{\sin\alpha}{\cos\alpha}$, то:

$$ \lim_{\alpha\to{0}}\frac{\tg{\alpha}}{\alpha}=\left|\frac{0}{0}\right| =\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} $$

Так как $\lim_{\alpha\to{0}}\cos{0}=1$ и $\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1$, то:

$$ \lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} =\frac{\displaystyle\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha}}{\displaystyle\lim_{\alpha\to{0}}\cos{\alpha}} =\frac{1}{1} =1. $$

б) Сделаем замену $\alpha=\sin{y}$. Поскольку $\sin{0}=0$, то из условия $\alpha\to{0}$ имеем $y\to{0}$. Кроме того, существует окрестность нуля, в которой $\arcsin\alpha=\arcsin(\sin{y})=y$, поэтому:

$$ \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\sin{y}} =\lim_{y\to{0}}\frac{1}{\frac{\sin{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\sin{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$ доказано.

в) Сделаем замену $\alpha=\tg{y}$. Поскольку $\tg{0}=0$, то условия $\alpha\to{0}$ и $y\to{0}$ эквивалентны. Кроме того, существует окрестность нуля, в которой $\arctg\alpha=\arctg\tg{y})=y$, поэтому, опираясь на результаты пункта а), будем иметь:

$$ \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\tg{y}} =\lim_{y\to{0}}\frac{1}{\frac{\tg{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\tg{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$ доказано.

Равенства а), б), в) часто используются наряду с первым замечательным пределом.

Пример №2

Вычислить предел $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}$.

Так как $\lim_{x\to{2}}\frac{x^2-4}{x+7}=\frac{2^2-4}{2+7}=0$ и $\lim_{x\to{2}}\sin\left(\frac{x^2-4}{x+7}\right)=\sin{0}=0$, т.е. и числитель и знаменатель дроби одновременно стремятся к нулю, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Кроме того, видно, что выражения под знаком синуса и в знаменателе совпадают (т.е. выполнено и ):

Итак, оба условия, перечисленные в начале страницы, выполнены. Из этого следует, что применима формула , т.е. $\lim_{x\to{2}} \frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Ответ : $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Пример №3

Найти $\lim_{x\to{0}}\frac{\sin{9x}}{x}$.

Так как $\lim_{x\to{0}}\sin{9x}=0$ и $\lim_{x\to{0}}x=0$, то мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Однако выражения под знаком синуса и в знаменателе не совпадают. Здесь требуется подогнать выражение в знаменателе под нужную форму. Нам необходимо, чтобы в знаменателе расположилось выражение $9x$, - тогда станет истинным. По сути, нам не хватает множителя $9$ в знаменателе, который не так уж сложно ввести, - просто домножить выражение в знаменателе на $9$. Естественно, что для компенсации домножения на $9$ придётся тут же на $9$ и разделить:

$$ \lim_{x\to{0}}\frac{\sin{9x}}{x}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\sin{9x}}{9x\cdot\frac{1}{9}} =9\lim_{x\to{0}}\frac{\sin{9x}}{9x} $$

Теперь выражения в знаменателе и под знаком синуса совпали. Оба условия для предела $\lim_{x\to{0}}\frac{\sin{9x}}{9x}$ выполнены. Следовательно, $\lim_{x\to{0}}\frac{\sin{9x}}{9x}=1$. А это значит, что:

$$ 9\lim_{x\to{0}}\frac{\sin{9x}}{9x}=9\cdot{1}=9. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{9x}}{x}=9$.

Пример №4

Найти $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}$.

Так как $\lim_{x\to{0}}\sin{5x}=0$ и $\lim_{x\to{0}}\tg{8x}=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако форма первого замечательного предела нарушена. Числитель, содержащий $\sin{5x}$, требует наличия в знаменателе $5x$. В этой ситуации проще всего разделить числитель на $5x$, - и тут же на $5x$ домножить. Кроме того, проделаем аналогичную операцию и со знаменателем, домножив и разделив $\tg{8x}$ на $8x$:

$$\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}}$$

Сокращая на $x$ и вынося константу $\frac{5}{8}$ за знак предела, получим:

$$ \lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}} =\frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} $$

Обратите внимание, что $\lim_{x\to{0}}\frac{\sin{5x}}{5x}$ полностью удовлетворяет требованиям для первого замечательного предела. Для отыскания $\lim_{x\to{0}}\frac{\tg{8x}}{8x}$ применима формула :

$$ \frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{\displaystyle\lim_{x\to{0}}\frac{\sin{5x}}{5x}}{\displaystyle\lim_{x\to{0}}\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{1}{1} =\frac{5}{8}. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\frac{5}{8}$.

Пример №5

Найти $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}$.

Так как $\lim_{x\to{0}}(\cos{5x}-\cos^3{5x})=1-1=0$ (напомню, что $\cos{0}=1$) и $\lim_{x\to{0}}x^2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Однако чтобы применить первый замечательный предел следует избавиться от косинуса в числителе, перейдя к синусам (дабы потом применить формулу ) или тангенсам (чтобы потом применить формулу ). Сделать это можно таким преобразованием:

$$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)$$ $$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)=\cos{5x}\cdot\sin^2{5x}.$$

Вернемся к пределу:

$$ \lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\cos{5x}\cdot\sin^2{5x}}{x^2} =\lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) $$

Дробь $\frac{\sin^2{5x}}{x^2}$ уже близка к той форме, что требуется для первого замечательного предела. Немного поработаем с дробью $\frac{\sin^2{5x}}{x^2}$, подгоняя её под первый замечательный предел (учтите, что выражения в числителе и под синусом должны совпасть):

$$\frac{\sin^2{5x}}{x^2}=\frac{\sin^2{5x}}{25x^2\cdot\frac{1}{25}}=25\cdot\frac{\sin^2{5x}}{25x^2}=25\cdot\left(\frac{\sin{5x}}{5x}\right)^2$$

Вернемся к рассматриваемому пределу:

$$ \lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) =\lim_{x\to{0}}\left(25\cos{5x}\cdot\left(\frac{\sin{5x}}{5x}\right)^2\right)=\\ =25\cdot\lim_{x\to{0}}\cos{5x}\cdot\lim_{x\to{0}}\left(\frac{\sin{5x}}{5x}\right)^2 =25\cdot{1}\cdot{1^2} =25. $$

Ответ : $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=25$.

Пример №6

Найти предел $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}$.

Так как $\lim_{x\to{0}}(1-\cos{6x})=0$ и $\lim_{x\to{0}}(1-\cos{2x})=0$, то мы имеем дело с неопределенностью $\frac{0}{0}$. Раскроем ее с помощью первого замечательного предела. Для этого перейдем от косинусов к синусам. Так как $1-\cos{2\alpha}=2\sin^2{\alpha}$, то:

$$1-\cos{6x}=2\sin^2{3x};\;1-\cos{2x}=2\sin^2{x}.$$

Переходя в заданном пределе к синусам, будем иметь:

$$ \lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{2\sin^2{3x}}{2\sin^2{x}} =\lim_{x\to{0}}\frac{\sin^2{3x}}{\sin^2{x}}=\\ =\lim_{x\to{0}}\frac{\frac{\sin^2{3x}}{(3x)^2}\cdot(3x)^2}{\frac{\sin^2{x}}{x^2}\cdot{x^2}} =\lim_{x\to{0}}\frac{\left(\frac{\sin{3x}}{3x}\right)^2\cdot{9x^2}}{\left(\frac{\sin{x}}{x}\right)^2\cdot{x^2}} =9\cdot\frac{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{3x}}{3x}\right)^2}{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\right)^2} =9\cdot\frac{1^2}{1^2} =9. $$

Ответ : $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=9$.

Пример №7

Вычислить предел $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}$ при условии $\alpha\neq\beta$.

Подробные пояснения были даны ранее, здесь же просто отметим, что вновь наличествует неопределенность $\frac{0}{0}$. Перейдем от косинусов к синусам, используя формулу

$$\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\cdot\sin\frac{\alpha-\beta}{2}.$$

Используя указанную формулу, получим:

$$ \lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{-2\sin\frac{\alpha{x}+\beta{x}}{2}\cdot\sin\frac{\alpha{x}-\beta{x}}{2}}{x^2}=\\ =-2\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)\cdot\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x^2} =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x}\right)=\\ =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\frac{\alpha+\beta}{2}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}}\cdot\frac{\alpha-\beta}{2}\right)=\\ =-\frac{(\alpha+\beta)\cdot(\alpha-\beta)}{2}\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}} =-\frac{\alpha^2-\beta^2}{2}\cdot{1}\cdot{1} =\frac{\beta^2-\alpha^2}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\frac{\beta^2-\alpha^2}{2}$.

Пример №8

Найти предел $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}$.

Так как $\lim_{x\to{0}}(\tg{x}-\sin{x})=0$ (напомню, что $\sin{0}=\tg{0}=0$) и $\lim_{x\to{0}}x^3=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Раскроем её следующим образом:

$$ \lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{x}}{\cos{x}}-\sin{x}}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(\frac{1}{\cos{x}}-1\right)}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(1-\cos{x}\right)}{x^3\cdot\cos{x}}=\\ =\lim_{x\to{0}}\frac{\sin{x}\cdot{2}\sin^2\frac{x}{2}}{x^3\cdot\cos{x}} =\frac{1}{2}\cdot\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2\cdot\frac{1}{\cos{x}}\right) =\frac{1}{2}\cdot{1}\cdot{1^2}\cdot{1} =\frac{1}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\frac{1}{2}$.

Пример №9

Найти предел $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}$.

Так как $\lim_{x\to{3}}(1-\cos(x-3))=0$ и $\lim_{x\to{3}}(x-3)\tg\frac{x-3}{2}=0$, то наличествует неопределенность вида $\frac{0}{0}$. Перед тем, как переходить к её раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha \to 0$). Проще всего ввести переменную $t=x-3$. Однако ради удобства дальнейших преобразований (эту выгоду можно заметить по ходу приведённого ниже решения) стоит сделать такую замену: $t=\frac{x-3}{2}$. Отмечу, что обе замены применимы в данном случае, просто вторая замена позволит поменьше работать с дробями. Так как $x\to{3}$, то $t\to{0}$.

$$ \lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{x-3}{2};\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\cos{2t}}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{2\sin^2t}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\tg{t}}=\\ =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\frac{\sin{t}}{\cos{t}}} =\lim_{t\to{0}}\frac{\sin{t}\cos{t}}{t} =\lim_{t\to{0}}\left(\frac{\sin{t}}{t}\cdot\cos{t}\right) =\lim_{t\to{0}}\frac{\sin{t}}{t}\cdot\lim_{t\to{0}}\cos{t} =1\cdot{1} =1. $$

Ответ : $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=1$.

Пример №10

Найти предел $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}$.

Вновь мы имеем дело с неопределенностью $\frac{0}{0}$. Перед тем, как переходить к ее раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha\to{0}$). Проще всего ввести переменную $t=\frac{\pi}{2}-x$. Так как $x\to\frac{\pi}{2}$, то $t\to{0}$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2} =\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{\pi}{2}-x;\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\sin\left(\frac{\pi}{2}-t\right)}{t^2} =\lim_{t\to{0}}\frac{1-\cos{t}}{t^2}=\\ =\lim_{t\to{0}}\frac{2\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{\frac{t^2}{4}\cdot{4}} =\frac{1}{2}\cdot\lim_{t\to{0}}\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2 =\frac{1}{2}\cdot{1^2} =\frac{1}{2}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}=\frac{1}{2}$.

Пример №11

Найти пределы $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}$.

В данном случае нам не придётся использовать первый замечательный предел. Обратите внимание: как в первом, так и во втором пределах присутствуют только тригонометрические функции и числа. Зачастую в примерах такого рода удаётся упростить выражение, расположенное под знаком предела. При этом после упомянутого упрощения и сокращения некоторых сомножителей неопределённость исчезает. Я привёл данный пример лишь с одной целью: показать, что наличие тригонометрических функций под знаком предела вовсе не обязательно означает применение первого замечательного предела.

Так как $\lim_{x\to\frac{\pi}{2}}(1-\sin{x})=0$ (напомню, что $\sin\frac{\pi}{2}=1$) и $\lim_{x\to\frac{\pi}{2}}\cos^2x=0$ (напомню, что $\cos\frac{\pi}{2}=0$), то мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако это вовсе не означает, что нам потребуется использовать первый замечательный предел. Для раскрытия неопределенности достаточно учесть, что $\cos^2x=1-\sin^2x$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x} =\left|\frac{0}{0}\right| =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{1-\sin^2x} =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{(1-\sin{x})(1+\sin{x})} =\lim_{x\to\frac{\pi}{2}}\frac{1}{1+\sin{x}} =\frac{1}{1+1} =\frac{1}{2}. $$

Аналогичный способ решения есть и в решебнике Демидовича (№475) . Что же касается второго предела, то как и в предыдущих примерах этого раздела, мы имеем неопределённость вида $\frac{0}{0}$. Отчего она возникает? Она возникает потому, что $\tg\frac{2\pi}{3}=-\sqrt{3}$ и $2\cos\frac{2\pi}{3}=-1$. Используем эти значения с целью преобразования выражений в числителе и в знаменателе. Цель наших действий: записать сумму в числителе и знаменателе в виде произведения. Кстати сказать, зачастую в пределах аналогичного вида удобна замена переменной, сделанная с таким расчётом, чтобы новая переменная устремилась к нулю (см., например, примеры №9 или №10 на этой странице). Однако в данном примере в замене смысла нет, хотя при желании замену переменной $t=x-\frac{2\pi}{3}$ несложно осуществить.

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cdot\left(\cos{x}+\frac{1}{2}\right)} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}-\tg\frac{2\pi}{3}}{2\cdot\left(\cos{x}-\cos\frac{2\pi}{3}\right)}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{\frac{\sin\left(x-\frac{2\pi}{3}\right)}{\cos{x}\cos\frac{2\pi}{3}}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}} =\lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{2\sin\frac{x-\frac{2\pi}{3}}{2}\cos\frac{x-\frac{2\pi}{3}}{2}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}} =\lim_{x\to\frac{2\pi}{3}}\frac{\cos\frac{x-\frac{2\pi}{3}}{2}}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Как видите, нам не пришлось применять первый замечательный предел. Конечно, при желании это можно сделать (см. примечание ниже), но необходимости в этом нет.

Каким будет решение с использованием первого замечательного предела? показать\скрыть

При использовании первого замечательного предела получим:

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\left(\frac{\sin\left(x-\frac{2\pi}{3}\right)}{x-\frac{2\pi}{3}}\cdot\frac{1}{\frac{\sin\frac{x-\frac{2\pi}{3}}{2}}{\frac{x-\frac{2\pi}{3}}{2}}}\cdot\frac{1}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}\right) =1\cdot{1}\cdot\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}=\frac{1}{2}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}=-\frac{4}{\sqrt{3}}$.

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что "скучная теория" должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) $ \lim_{x \to 0} \frac{1}{x} $; б)$ \lim_{x \to \infty} \frac{1}{x} $
Решение

а) $$ \lim \limits_{x \to 0} \frac{1}{x} = \infty $$

б)$$ \lim_{x \to \infty} \frac{1}{x} = 0 $$

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \text{a)} \lim \limits_{x \to 0} \frac{1}{x} = \infty \text{ б)}\lim \limits_{x \to \infty} \frac{1}{x} = 0 $$

Что делать с неопределенностью вида: $ \bigg [\frac{0}{0} \bigg ] $

Пример 3
Решить $ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} $
Решение

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела.

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = \frac{(-1)^2-1}{-1+1}=\frac{0}{0} $$

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её :)

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

$$ \lim \limits_{x \to -1}\frac{x^2-1}{x+1} = \lim \limits_{x \to -1}\frac{(x-1)(x+1)}{x+1} = $$

$$ = \lim \limits_{x \to -1}(x-1)=-1-1=-2 $$

Ответ
$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = -2 $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac{\infty}{\infty} \bigg ] $

Пример 5
Вычислить $ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} $
Решение

$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \frac{\infty}{\infty} $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное - возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем...

$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} =\lim \limits_{x \to \infty} \frac{x^2(1-\frac{1}{x^2})}{x(1+\frac{1}{x})} = $$

$$ = \lim \limits_{x \to \infty} \frac{x(1-\frac{1}{x^2})}{(1+\frac{1}{x})} = $$

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

$$ = \frac{\infty(1-\frac{1}{\infty})}{(1+\frac{1}{\infty})} = \frac{\infty \cdot 1}{1+0} = \frac{\infty}{1} = \infty $$

Ответ
$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \infty $$

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: "ноль делить на ноль" или "бесконечность делить на бесконечность" и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность "ноль делить на ноль" нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность "бесконечность делить на бесконечность", тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

Теория пределов - один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов. Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности. В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано. Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается "не знаю! Не умею! Нас не учили!"

Вычисление пределов методом подстановки

Пример 1. Найти предел функции
Lim((x^2-3*x)/(2*x+5),x=3).

Решение: Такого сорта примеры по теории вычисляют обычной подстановкой

Предел равен 18/11.
Ничего сложного и мудрого в таких пределах нет - подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию. Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные.

Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности

Пример 2. Найти предел функции
Lim((x^2+2x)/(4x^2+3x-4),x=infinity).
Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности

Простая подстановка значения к которому следует переменная найти пределов не поможет, получаем неопределенность вида бесконечность разделить на бесконечность.
Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени "икс" в числителе или знаменателе. Далее на него упрощают числитель и знаменатель и находят предел функции

Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей

Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях. Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю.
Формулами предел можно записать так

Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности

Следующий тип пределов касается поведения функций возле нуля.

Пример 3. Найти предел функции
Lim((x^2+3x-5)/(x^2+x+2), x=0).
Решение: Здесь уже выносить старший множитель полинома не требуется. С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел

Значение x^2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим

что предел равен 2,5.

Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции .

Предел с неопределенностью типа 0/0 и методы его вычислений

Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции.
Рассмотрим для наглядности несколько примеров.

Пример 4. Найти предел функции
Lim((3x^2+10x+7)/(x+1), x=-1).

Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность вида 0/0.
Бороться с такой неопределенностью просто: нужно разложить полином на множители, а точнее выделить множитель, который превращает функцию в ноль.

После разложения предел функции можно записать в виде

Вот и вся методика вычисления предела функции. Так же поступаем если есть предел вида многочлен разделить на многочлен.

Пример 5. Найти предел функции
Lim((2x^2-7x+6)/(3x^2-x-10), x=2).

Решение: Прямая подстановка показывает
2*4-7*2+6=0;
3*4-2-10=0

что имеем неопределенность типа 0/0 .
Разделим полиномы на множитель которій вносит особенность


Есть преподаватели которые учат, что полиномы 2 порядка то есть вида "квадратные уравнения" следует решать через дискриминант. Но реальная практика показывает что это дольше и запутаннее, поэтому избавляйтесь особенности в пределах по указанному алгоритму. Таким образом записываем функцию в виде простых множителей и вічисляем в предел

Как видите, ничего сложного в исчислении таких пределов нет. Делить многочлены Вы на момент изучения пределов умеете, по крайней мере согласно программе должны уже пройти.
Среди задач на неопределенность типа 0/0 встречаются такие в которых нужно применять формулы сокращенного умножения. Но если Вы их не знаете, то делением многочлена на одночлен можно получить нужную формулу.

Пример 6. Найти предел функции
Lim((x^2-9)/(x-3), x=3).
Решение: Имеем неопределенность типа 0/0 . В числителе применяем формулу сокращенного умножения

и вычисляем нужній предел

Метод раскрытия неопределенности умножением на сопряженное

Метод применяют к пределам в которіхнеопределенность порождают иррациональные функции. Числитель или знаменатель превращается в точке вычисления в ноль и неизвестно как найти границу.

Пример 7. Найти предел функции
Lim((sqrt(x+2)-sqrt(7x-10))/(3x-6), x=2).
Решение:
Представим переменную в формулу предела

При подстановки получим неопределенность типа 0/0.
Согласно теории пределов схема обхода данной особенности заключается в умножении иррационального выражения на сопряженное. Чтобы выражение не изменилось знаменатель нужно разделить на такое же значение

По правилу разности квадратов упрощаем числитель и вычисляем предел функции

Упрощаем слагаемые, создающие особенность в пределе и выполняем подстановку

Пример 8. Найти предел функции
Lim((sqrt(x-2)-sqrt(2x-5))/(3-x), x=3).
Решение: Прямая подстановка показывает что предел имеет особенность вида 0/0.

Для раскрытия умножаем и делим на сопряженное к числителю

Записываем разницу квадратов

Упрощаем слагаемые которые вносят особенность и находим предел функции

Пример 9. Найти предел функции
Lim((x^2+x-6)/(sqrt(3x-2)-2), x=2).
Решение: Подставим двойку в формулу

Получим неопределенность 0/0 .
Знаменатель нужно умножить на сопряженный выражение, а в числителе решить квадратное уравнение или разложить на множители, учитывая особенность. Поскольку известно, что 2 является корнем, то второй корень находим по теореме Виета

Таким образом числитель запишем в виде

и подставим в предел

Сведя разницу квадратов избавляемся особенности в числителе и знаменателе

Приведенным образом можно избавиться особенности во многих примерах, а применение надо замечать везде где заданная разница корней превращается в ноль при подстановке. Другие типы пределов касаются показательных функций, бесконечно малых функций, логарифмов, особых пределов и других методик. Но об этом Вы сможете прочитать в перечисленных ниже статьях о пределах.

Из вышеуказанной статьи Вы сможете узнать, что же такое предел, и с чем его едят – это ОЧЕНЬ важно. Почему? Можно не понимать, что такое определители и успешно их решать, можно совершенно не понимать, что такое производная и находить их на «пятёрку». Но вот если Вы не понимаете, что такое предел, то с решением практических заданий придется туго. Также не лишним будет ознакомиться с образцами оформления решений и моими рекомендациями по оформлению. Вся информация изложена в простой и доступной форме.

А для целей данного урока нам потребуются следующие методические материалы: Замечательные пределы и Тригонометрические формулы . Их можно найти на странице . Лучше всего методички распечатать – это значительно удобнее, к тому же к ним часто придется обращаться в оффлайне.

Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходится мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней. То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически.

Замечательных пределов существует несколько, но на практике у студентов-заочников в 95% случаев фигурируют два замечательных предела: Первый замечательный предел , Второй замечательный предел . Следует отметить, что это исторически сложившиеся названия, и, когда, например, говорят о «первом замечательном пределе», то подразумевают под этим вполне определенную вещь, а не какой-то случайный, взятый с потолка предел.

Первый замечательный предел

Рассмотрим следующий предел: (вместо родной буквы «хэ» я буду использовать греческую букву «альфа», это удобнее с точки зрения подачи материала).

Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений ) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:

Данный математический факт носит название Первого замечательного предела . Аналитическое доказательство предела приводить не буду, а вот его геометрический смысл рассмотрим на уроке о бесконечно малых функциях .

Нередко в практических заданиях функции могут быть расположены по-другому, это ничего не меняет:

– тот же самый первый замечательный предел.

Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде , то и решать его нужно в таком же виде, ничего не переставляя.

На практике в качестве параметра может выступать не только переменная , но и элементарная функция, сложная функция. Важно лишь, чтобы она стремилась к нулю .

Примеры:
, , ,

Здесь , , , , и всё гуд – первый замечательный предел применим.

А вот следующая запись – ересь:

Почему? Потому что многочлен не стремится к нулю, он стремится к пятерке.

Кстати, вопрос на засыпку, а чему равен предел ? Ответ можно найти в конце урока.

На практике не все так гладко, почти никогда студенту не предложат решить халявный предел и получить лёгкий зачет. Хммм… Пишу эти строки, и пришла в голову очень важная мысль – все-таки «халявные» математические определения и формулы вроде лучше помнить наизусть, это может оказать неоценимую помощь на зачете, когда вопрос будет решаться между «двойкой» и «тройкой», и преподаватель решит задать студенту какой-нибудь простой вопрос или предложить решить простейший пример («а может он (а) все-таки знает чего?!»).

Переходим к рассмотрению практических примеров:

Пример 1

Найти предел

Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела.

Сначала пробуем подставить 0 в выражение под знак предела (делаем это мысленно или на черновике):

Итак, у нас есть неопределенность вида , ее обязательно указываем в оформлении решения. Выражение под знаком предела у нас похоже на первый замечательный предел, но это не совсем он, под синусом находится , а в знаменателе .

В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: «под синусом у нас , значит, в знаменателе нам тоже нужно получить ».
А делается это очень просто:

То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания.
Когда задание оформляется от руки, то первый замечательный предел желательно пометить простым карандашом:


Что произошло? По сути, обведенное выражение у нас превратилось в единицу и исчезло в произведении:

Теперь только осталось избавиться от трехэтажности дроби:

Кто позабыл упрощение многоэтажных дробей, пожалуйста, освежите материал в справочнике Горячие формулы школьного курса математики .

Готово. Окончательный ответ:

Если не хочется использовать пометки карандашом, то решение можно оформить так:



Используем первый замечательный предел

Пример 2

Найти предел

Опять мы видим в пределе дробь и синус. Пробуем подставить в числитель и знаменатель ноль:

Действительно, у нас неопределенность и, значит, нужно попытаться организовать первый замечательный предел. На уроке Пределы. Примеры решений мы рассматривали правило, что когда у нас есть неопределенность , то нужно разложить числитель и знаменатель на множители. Здесь – то же самое, степени мы представим в виде произведения (множителей):

Аналогично предыдущему примеру, обводим карандашом замечательные пределы (здесь их два), и указываем, что они стремятся к единице:

Собственно, ответ готов:

В следующих примерах, я не буду заниматься художествами в Пэйнте, думаю, как правильно оформлять решение в тетради – Вам уже понятно.

Пример 3

Найти предел

Подставляем ноль в выражение под знаком предела:

Получена неопределенность , которую нужно раскрывать. Если в пределе есть тангенс, то почти всегда его превращают в синус и косинус по известной тригонометрической формуле (кстати, с котангенсом делают примерно то же самое, см. методический материал Горячие тригонометрические формулы на странице Математические формулы, таблицы и справочные материалы ).

В данном случае:

Косинус нуля равен единице, и от него легко избавиться (не забываем пометить, что он стремится к единице):

Таким образом, если в пределе косинус является МНОЖИТЕЛЕМ, то его, грубо говоря, нужно превратить в единицу, которая исчезает в произведении.

Здесь все вышло проще, без всяких домножений и делений. Первый замечательный предел тоже превращается в единицу и исчезает в произведении:

В итоге получена бесконечность, бывает и такое.

Пример 4

Найти предел

Пробуем подставить ноль в числитель и знаменатель:

Получена неопределенность (косинус нуля, как мы помним, равен единице)

Используем тригонометрическую формулу . Возьмите на заметку! Пределы с применением этой формулы почему-то встречаются очень часто.

Постоянные множители вынесем за значок предела:

Организуем первый замечательный предел:


Здесь у нас только один замечательный предел, который превращается в единицу и исчезает в произведении:

Избавимся от трехэтажности:

Предел фактически решен, указываем, что оставшийся синус стремится к нулю:

Пример 5

Найти предел

Этот пример сложнее, попробуйте разобраться самостоятельно:

Некоторые пределы можно свести к 1-му замечательному пределу путём замены переменной, об этом можно прочитать чуть позже в статье Методы решения пределов .

Второй замечательный предел

В теории математического анализа доказано, что:

Данный факт носит название второго замечательного предела .

Справка: – это иррациональное число.

В качестве параметра может выступать не только переменная , но и сложная функция. Важно лишь, чтобы она стремилась к бесконечности .

Пример 6

Найти предел

Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел.

Но сначала, как всегда, пробуем подставить бесконечно большое число в выражение , по какому принципу это делается, разобрано на уроке Пределы. Примеры решений .

Нетрудно заметить, что при основание степени , а показатель – , то есть имеется, неопределенность вида :

Данная неопределенность как раз и раскрывается с помощью второго замечательного предела. Но, как часто бывает, второй замечательный предел не лежит на блюдечке с голубой каемочкой, и его нужно искусственно организовать. Рассуждать можно следующим образом: в данном примере параметр , значит, в показателе нам тоже нужно организовать . Для этого возводим основание в степень , и, чтобы выражение не изменилось – возводим в степень :

Когда задание оформляется от руки, карандашом помечаем:


Практически всё готово, страшная степень превратилась в симпатичную букву :

При этом сам значок предела перемещаем в показатель :

Пример 7

Найти предел

Внимание! Предел подобного типа встречается очень часто, пожалуйста, очень внимательно изучите данный пример.

Пробуем подставить бесконечно большое число в выражение, стоящее под знаком предела:

В результате получена неопределенность . Но второй замечательный предел применим к неопределенности вида . Что делать? Нужно преобразовать основание степени. Рассуждаем так: в знаменателе у нас , значит, в числителе тоже нужно организовать .

gastroguru © 2017