Формула силы лоренца. Применение силы Лоренца

  • движение заряженной частицы в однородном магнитном поле;
  • применение силы Лоренца.
В зависимости от планирования материала на изучение этой темы можно отвести от 1 до 3 уроков, включая уроки решения задач.

Цели урока

Изучить движение заряженной частицы в однородном магнитном поле, отработать решение задач по теме «Действие магнитного поля на движущийся заряд. Сила Лоренца».

Новый материал на данном уроке изучается в ходе одновременной работы учащихся с компьютерной моделью. Ответы на вопросы рабочего листа учащиеся должны получить, используя возможности данной модели.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Повторение изученного материала по теме «Сила Лоренца» 10 Фронтальная беседа
3 Изучение нового материала с помощью компьютерной модели «Движение заряженной частицы в однородном магнитном поле» 30 Работа с рабочим листом и моделью
4 Объяснение домашнего задания 3

Домашнее задание: § 6, № 849 (Сб. задач. 10–11 кл. А. П. Рымкевич – Москва Дрофа, 2001).

Рабочий лист к уроку

Примерные ответы
Модель «Движение заряда в магнитном поле»

ФИО, класс __________________________________________________

1.

при каких условиях частица движется по окружности?

Ответ: частица движется по окружности, если вектор скорости перпендикулярен вектору индукции магнитного поля.

2.

При условии, что частица двигается по окружности, выставьте максимальные значения скорости частицы и величины магнитной индукции поля. Чему равен радиус окружности, по которой движется частица?

Ответ: R = 22,76 см.

3.

Уменьшите скорость частицы в 2 раза. Магнитное поле не меняйте. Чему равен радиус окружности, по которой движется частица?

Ответ: R = 11,38 см.

4.

Уменьшите еще раз скорость частицы в 2 раза. Магнитное поле не меняйте. Чему равен радиус окружности, по которой движется частица?

Ответ: R = 5,69 см.

5.

Как зависит радиус окружности, по которой движется частица от величины вектора скорости частицы?

Ответ: радиус окружности, по которой движется частица, прямо пропорционален величине вектора скорости частицы.

6. Вновь установите максимальные значения скорости и величины магнитной индукции поля (частица двигается по окружности).
7.

Уменьшите величину магнитной индукции в 2 раза. Скорость частицы не меняйте. Чему равен радиус окружности, по которой движется частица?

Ответ: R = 45,51 см.

8.

Уменьшите величину магнитной индукции еще раз в 2 раза. Скорость частицы не меняйте. Чему равен радиус окружности, по которой движется частица?

Ответ: R = 91,03 см.

9.

Как зависит радиус окружности, по которой движется частица от величины магнитной индукции поля?

Ответ: радиус окружности, по которой движется частица, обратно пропорционален величине магнитной индукции поля.

10.

Используя формулу радиуса окружности, по которой движется заряженная частица в магнитном поле (в учебнике формула 1.6) вычислите удельный заряд частицы (отношение заряда частицы к его массе).


11.

Сравните удельный заряд частицы с удельным зарядом электрона. Сделайте вывод.

Ответ: полученный результат соответствует табличному значению удельного заряда электрона.

12.

Пользуясь правилом левой руки, определите знак заряда частицы в компьютерном эксперименте. Сделайте вывод.

Ответ: анализ траектории движения частицы по правилу левой руки позволяет сказать, что это отрицательно заряженная частица. Учитывая ранее полученный результат равенства удельных зарядов исследуемой частицы и электрона, можно сделать вывод о том, что частица, представленная в модели, является электроном.

13. Следующие эксперименты выполните при данном условии: υ x = 5∙10 7 м/с, υ z = 0 м/с, B = 2 мТл. 14.

Вычислите силу Лоренца, действующую на заряд.


15.

Вычислите ускорение, которое сообщает этому заряду данная сила (по второму закону Ньютона).

F Л = 1,6∙10 –14 Н,

m = 9,1∙10 –31 кг.

____________________

a – ?

Ответ: ускорение заряда равно 1,76∙10 16 м/с 2 .

16.

Вычислите радиус окружности, по которой движется частица, используя формулу центростремительного ускорения.

υ = 5∙10 7 м/с,

a = 1,76∙10 16 м/с 2 .

____________________

R – ?

Нидерландский физик X. А. Лоренц в конце XIX в. установил, что сила, действующая со стороны магнитного поля на движущуюся заряженную частицу, всегда перпендикулярна направле­нию движения частицы и силовым линиям магнитного поля, в котором эта частица движется. Направление силы Лоренца можно определить с помощью правила левой руки. Если расположить ладонь левой руки так, чтобы четыре вытянутых пальца указывали на­правление движения заряда, а вектор магнитной индукции поля входил в отставленный большой палец укажет направление силы Лоренца, действующей на положительный заряд.

Если заряд частицы отрицательный, то сила Лоренца будет направлена в противоположную сторону.

Модуль силы Лоренца легко определяется из закона Ампера и составляет:

F = | q | vB sin? ,

где q - заряд частицы, v - скорость ее движения , ? - угол между векторами скорости и индукции магнитного поли.

Если кроме магнитного поля есть еще и электрическое поле , которое действует на заряд с силой , то полная сила, действующая на заряд, равна:

.

Часто именно эту силу называют силой Лоренца, а силу, выраженную формулой (F = | q | vB sin? ) называют магнитной частью силы Лоренца .

Поскольку сила Лоренца перпендикулярна направлению движения частицы, она не может изменить ее скорость (она не совершает работы), а может изменить лишь направление ее движения, т. е. искривить траекторию .

Такое искривление траектории электронов в кинескопе телевизо­ра легко наблюдать, если поднести к его экрану постоянный магнит - изображение исказится.

Движение заряженной частицы в однородном магнитном поле. Пусть заряженная частица влетает со скоростью v в однородное магнитное поле перпендикулярно линиям напряженности.

Сила, действующая со стороны магнитного поля на частицу, заставит ее равномерно вращаться по окружности радиусом r , который легко найти, воспользовавшись вторым законом Ньютона , выражением целеустремленного ускорения и формулой (F = | q | vB sin? ):

.

Отсюда получим

.

где m - масса частицы.

Применение силы Лоренца.

Действие магнитного поля на дви­жущиеся заряды применяется, например, в масс-спектрографах , позволяющих разделять заряженные частицы по их удельным за­рядам, т. е. по отношению заряда частицы к ее массе, и по полу­ченным результатам точно определять массы частиц.

Вакуумная камера прибора помещена в поле (вектор индукции перпендикулярен рисунку). Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попада­ют на фотопластину, где оставляют след, позволяющий с большой точностью измерить радиус траектории r . По этому радиусу опре­деляется удельный заряд иона. Зная заряд иона, легко вычислите его массу.

ОПРЕДЕЛЕНИЕ

Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле.

Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы.

Здесь – сила Лоренца, – заряд частицы, – модуль вектора индукции магнитного поля, – скорость частицы, – угол между вектором индукции магнитного поля и направления движения.

Единица измерения силы – Н (ньютон) .

Сила Лоренца — векторная величина. Сила Лоренца принимает своё наибольшее значение когда векторы индукции и направления скорости частицы перпендикулярны ().

Направление силы Лоренца определяют по правилу левой руки:

Если вектор магнитной индукции входит в ладонь левой руки и четыре пальца вытянуты в сторону направления вектора движения тока, тогда отогнутый в сторону большой палец показывает направление силы Лоренца.

В однородном магнитном поле частица будет двигаться по окружности, при этом сила Лоренца будет центростремительной силой. Работа при этом не будет совершаться.

Примеры решения задач по теме «Сила Лоренца»

ПРИМЕР 1

ПРИМЕР 2

Задание Под действием силы Лоренца частица массы m с зарядом q движется по окружности. Магнитное поле однородно, его напряжённость равна B. Найти центростремительное ускорение частицы.

Решение Вспомним формулу силы Лоренца:

Кроме того, по 2 закону Ньютона:

В данном случае сила Лоренца направлена к центру окружности и ускорение, ею создаваемое, направлено туда же, то есть это и есть центростремительное ускорение. Значит:

Похожие вопросы

  • Для молодших школярiв придбали всього 200 квиткiв: 74 квит.-в ляльковий театр. щосту частину решти-у цирк.а всi iншi- в кiнотеатр. Скiльки придбали в кiнотеатр,
  • спишите текст и продолжите его двумя-тремя предложениями. Жаркий летний день.В знойном воздухе разлита духота.Синее безоблачное небо подернуто легкой дымкой.
  • 1. Мяч упал с высоты 3м, отскочил от пола и был пойман на высоте 1м. Найти путь и перемещение мяча. 2. Скорость перемещения шагающего эскаватора во время работы равна 0,18 км/час. На какое расстояние передвинется эскаватор за 5 мин? 3. Расстояние между городами А и В рано 250 км. Одновременно из обоих городов навстречу друг другу выезжают две автомашины, одна со скоростью 60 км/час, другая 40 км/час. Через какое время они встретятся? 4. Движение материальной точки описывается уравнением x=-25+5t. Найти начальную координату точки величину и направление скорости, координату точки через 5 с. Начертите график зависимости координаты от времени. 5. Какое из тел не двигалось? Какое тело двигалось с меньшей скоростью? В одинаковом ли направлении двигались тела?
  • "Главные причины образования климата" Составьте схему.
  • Вместо многоточия необходимо вставить слово: 1) Believed to be an ancestor of domestic dog, the wolf is generated (1)... a highly intelligent animal. Wolves travel in packs and their territory can be anywhere (2)... 40 to 400 square miles. As well as marking the borders of their territory with scent, they (3)... other wolves know they are around by barking and howling. 2) A pack might (4)... of up to 30 wolves, although where (5)... food supply is limited there might only be six or seven animals in the pack. When hunting, they work together to chase an animal, block (6) ... escape, and finally catch it. In (7) ... way, they are (8) ... to trap large animals, such as deer or moose. 3) If farm animals are available, they (9) ... the wolves with an easy source of food. This, of course, brings then (10) ... contact with humans. Poisoning and shooting have contributed (11)... the decline in wolf populations around the world. The red wolf is now almost extinct (12) ... the wild, while the grey wolf has (13) ... its habitat reduced to a few areas in Europe, North America and Asia. (14) ... mani other large mammals, the wolf is increasingly (15) ... threat from human activity.

1. Вычислите силу Лоренца, действующую на протон, движущийся со скоростью 106 м/с в однородном магнитном поле с индукцией 0,3 Тл перпендикулярно линиям индукции.
2. В однородном магнитном поле с индукцией 0,8 Тл на проводник с током 30 А, длина активной части которого 10 см, действует сила 1,5 Н. Под каким углом к вектору магнитной индукции размещен проводник?
3. Какие из частиц электронного пучка
отклоняются на больший угол в одном и том же магнитном поле – быстрые или медленные? (почему?)
4. Ускоренный в электрическом поле разностью потенциалов 1,5 105 В протон влетает в однородное магнитное поле перпендикулярно к линиям магнитной индукции и движется равномерно по окружности радиусом 0,6 м. Определите скорость протона, модуль вектора магнитной индукции и силу, с которой магнитное поле действует на протон.

Литература: -

Интернет ресурсы.

-

Тема № 10 Электромагнитные колебания.

Решение задач и упражнений по образцу.

Прочтите теоретический материал, выбрав один из источников, указанных в списке литературы.

Найти формулы для решения задач.

Записать «Дано» к условию задачи.

Задача 1. В колебательном контуре индуктивность катушки равна 0,2 Гн. Амплитуда силы тока 40 мА. Найдите энергию магнитного поля катушки и энергию электрического поля конденсатора в тот момент, когда мгновенное значение силы тока в 2 раза меньше амплитудного. Сопротивлением контура пренебречь.

Задача 2. Рамка площадью 400 см 2 имеет 100 витков. Она вращается в однородном магнитном поле с индукцией 0,01 Тл, причём период вращения рамки равен 0,1с. Написать зависимость ЭДС от времени, возникающей в рамке, если ось вращения перпендикулярна к линиям магнитной индукции.

Задача 3.На первичную обмотку трансформатора подаётся напряжение220В. Какое напряжение можно снять со вторичной обмотки этого трансформатора, если коэффициент трансформации равен 10? Будет ли он потреблять энергию из сети, если его вторичная обмотка разомкнута?

Литература: - Г.Я. Мякишев Б.Б. Буховцев Физика. Учебник для 11 кл. – М., 2014.

Интернет ресурсы.

- Ландсберг Г.С. Элементарный учебник физики – М. Высшая школа 1975.

Яворский Б.М. Селезнев Ю.А. Справочное руководство по физике – М.Наука, 1984.

Решение задач на расчет параметров колебательного контура.

Прочтите теоретический материал, выбрав один из источников, указанных в списке литературы.

Найти формулы для решения задач.

Записать «Дано» к условию задачи.

1. Какую необходимо взять емкость в колебательном контуре, чтобы при индуктивности 250 мГн можно было бы его настроить на звуковую частоту 500 Гц.

2. Найти индуктивность катушки, если амплитуда напряжения равна 160 В, амплитуда силы тока 10 А, а частота 50 Гц.

3. Конденсатор включен в цепь переменного тока стандартной частоты с напряжением 220В. Какова ёмкость конденсатора, если сила тока в цепи 2,5 А.

4. В одном ящике находится резистор, в другом конденсатор, в третьем – катушка индуктивности. Выводы подключены к наружным зажимам. Как, не открывая ящиков, узнать, что находится в каждом из них? (Даются источники постоянного и переменного напряжения одинаковой величины и лампочка.)

Литература: - Г.Я. Мякишев Б.Б. Буховцев Физика. Учебник для 11 кл. – М., 2014.

Интернет ресурсы.

- Ландсберг Г.С. Элементарный учебник физики – М. Высшая школа 1975.

Яворский Б.М. Селезнев Ю.А. Справочное руководство по физике – М.Наука, 1984.

gastroguru © 2017