Что такое удельное сопротивление. Удельное электрическое сопротивление и проводимость. Удельное сопротивление электролитов

Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.
В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики - то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление - это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации - при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

Виды удельного сопротивления

Так как сопротивление бывает:

  • активное - или омическое, резистивное, - происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
  • реактивное - емкостное или индуктивное, - которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП - активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.

Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin - кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.

Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.

Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса - играющих роль проводов других фаз, нулевых, заземляющих.

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10 -6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления - обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Таблица удельных сопротивлений проводников (металлов и сплавов)

Материал провод-ника

Состав (для сплавов)

Удельное сопротивление ρ мом × мм 2 / м

медь, цинк, олово, никель, свинец, марганец, железо и др.

Алюминий

Вольфрам

Молибден

медь, олово, алюминий, кремний, бериллий, свинец и др. (кроме цинка)

железо, углерод

медь, никель, цинк

Манганин

медь, никель, марганец

Константан

медь, никель, алюминий

никель, хром, железо, марганец

железо, хром, алюминий, кремний, марганец

Железо как проводник в электротехнике

Железо - самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

Где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

Будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм 2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10 -6 . Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм 2 .

Как видим, сопротивление железа достаточно большое, проволока получается толстая.

Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Электрический ток I в любом веществе создается движением заряженных частиц в определенном направлении за счет приложения внешней энергии (разности потенциалов U). Каждое вещество обладает индивидуальными свойствами, по-разному влияющими на прохождение тока в нем. Эти свойства оцениваются электрическим сопротивлением R.

Георг Ом эмпирическим путем определил факторы, влияющие на величину электрического сопротивления вещества, вывел от напряжения и тока, которая названа его именем. Единица измерения сопротивления в международной системе СИ названа его именем. 1 Ом - это величина сопротивления, замеренного при температуре 0 О С у однородного ртутного столба длиной 106,3 см с площадью поперечного сечения в 1 мм 2 .


Определение

Чтобы оценить и применять на практике материалы для изготовления электротехнических устройств, введен термин «удельное сопротивление проводника» . Добавленное прилагательное «удельное» указывает на фактор использования эталонной величины объема, принятой для рассматриваемого вещества. Это позволяет оценивать электрические параметры разных материалов.

При этом учитывают, что сопротивление проводника возрастает при увеличении его длины и уменьшении поперечного сечения. В системе СИ используется объем однородного проводника с длиной 1 метр и поперечным сечением 1м 2 . В технических расчетах применяется устаревшая, но удобная внесистемная единица объема, состоящая из длины 1 метр и площади 1мм 2 . Формула удельного сопротивления ρ представлена на рисунке.


Для определения электрических свойств веществ, введена еще одна характеристика - удельная проводимость б. Она обратно пропорциональна значению удельного сопротивления, определяет способность материала проводить электрический ток: б =1/ρ.

Как удельное сопротивление зависит от температуры

На величину проводимости материала влияет его температура. Разные группы веществ ведут себя не одинаково при нагреве или охлаждении. Это свойство учитывают в электрических проводах, работающих на открытом воздухе в жару и холод.


Материал и удельное сопротивление провода подбираются с учетом условий его эксплуатации.

Возрастание сопротивления проводников прохождению тока при нагреве объясняется тем, что с повышением температуры металла в нем увеличивается интенсивность передвижения атомов и носителей электрических зарядов во всех направлениях, что создает лишние препятствия для движения заряженных частиц в одну сторону, снижает величину их потока.

Если уменьшать температуру металла, то условия для прохождения тока улучшаются. При охлаждении до критической температуры во многих металлах проявляется явление сверхпроводимости, когда их электрическое сопротивление практически равно нулю. Это свойство широко используется в мощных электромагнитах.

Влияние температуры на проводимость металла используется электротехнической промышленностью при изготовлении обыкновенных ламп накаливания. Их при прохождении тока нагревается до такого состояния, что излучает световой поток. В обычных условиях удельное сопротивление нихрома составляет около 1,05÷1,4 (ом ∙мм 2)/м.

При включении лампочки под напряжение через нить проходит большой ток, который очень быстро разогревает металл. Одновременно возрастает сопротивление электрической цепи, ограничивающее первоначальный ток до номинального значения, необходимого для получения освещения. Таким способом осуществляется простое регулирование силы тока через нихромовую спираль, отпадает необходимость применения сложной пускорегулирующей аппаратуры, используемой в светодиодных и люминесцентных источниках.

Как используется удельное сопротивление материалов в технике

Цветные благородные металлы обладают лучшими свойствами электрической проводимости. Поэтому ответственные контакты в электротехнических устройствах выполняют из серебра. Но это увеличивает конечную стоимость всего изделия. Наиболее приемлемый вариант - использование более дешевых металлов. Например, удельное сопротивление меди, равное 0,0175 (ом ∙мм 2)/м, вполне подходит для таких целей.

Благородные металлы - золото, серебро, платина, палладий, иридий, родий, рутений и осмий, получившие название главным образом благодаря высокой химической стойкости и красивому внешнему виду в ювелирных изделиях. Кроме того, золото, серебро и платина обладают высокой пластичностью, а металлы платиновой группы - тугоплавкостью и, как и золото, химической инертностью. Эти достоинства благородных металлов сочетаются.

Медные сплавы, обладающие хорошей проводимостью, используются для изготовления шунтов, ограничивающих протекание больших токов через измерительную головку мощных амперметров.

Удельное сопротивление алюминия 0,026÷0,029 (ом ∙мм 2)/м чуть выше, чем у меди, но производство и стоимость этого металла ниже. К тому он же легче. Это объясняет его широкое применение в энергетике для изготовления проводов, работающих на открытом воздухе, и жил кабелей.

Удельное сопротивление железа 0,13 (ом ∙мм 2)/м также допускает его применение для передачи электрического тока, но при этом возникают бо́льшие потери мощности. Стальные сплавы обладают повышенной прочностью. Поэтому в алюминиевые воздушные провода высоковольтных линий электропередач вплетают стальные нити, которые предназначены для противостояния нагрузкам, действующим на разрыв.

Особенно актуально это при образовании наледи на проводах или сильных порывах ветра.

Часть сплавов, например, константин и никелин обладают термостабильными резистивными характеристиками в определенном диапазоне. У никелина удельное электрическое сопротивление практически не меняется от 0 до 100 градусов по Цельсию. Поэтому спирали для реостатов изготавливают из никелина.

В измерительных приборах широко применяется свойство строгого изменения значений удельного сопротивления платины от ее температуры. Если через платиновый проводник пропускать электрический ток от стабилизированного источника напряжения и вычислять значение сопротивления, то оно будет указывать температуру платины. Это позволяет градуировать шкалу в градусах, соответствующих значениям Омам. Этот способ позволяет измерять температуру с точностью до долей градусов.


Иногда для решения практических задач требуется узнать полное или удельное сопротивление кабеля . Для этого в справочниках на кабельную продукцию приводятся значения индуктивного и активного сопротивления одной жилы для каждого значения поперечного сечения. С их помощью рассчитываются допустимые нагрузки, выделяемая теплота, определяются допустимые условия эксплуатации и подбираются эффективные защиты.

На удельную проводимость металлов оказывает влияние способ их обработки. Использование давления для пластической деформации нарушает структуру кристаллической решетки, увеличивает число дефектов и повышает сопротивление. Для его уменьшения применяют рекристаллизационный отжиг.

Растяжения или сжатия металлов вызывают в них упругую деформацию, от которой уменьшаются амплитуды тепловых колебаний электронов, а сопротивление несколько снижается.

При проектировании систем заземления необходимо учитывать . Оно имеет отличия в определении от вышеперечисленного метода и измеряется в единицах системы СИ - Ом∙метр. С его помощью оценивают качество растекания электрического тока внутри земли.



На удельную проводимость грунта влияют многие факторы, включая влажность почвы, плотность, размеры ее частиц, температуру, концентрацию солей, кислот и щелочей.

> Сопротивление и удельное сопротивление

Рассмотрите удельное электрическое сопротивление проводника . Узнайте о влиянии характеристик материала на эквивалентное и удельное сопротивление, резисторы.

Характеризуют степень, в которой объект или материал препятствуют потоку электрического тока.

Задача обучения

  • Выявить свойства материала, описываемые сопротивлением и удельным сопротивлением.

Основные пункты

  • Сопротивление объекта основывается на его форме и материале.
  • Удельное сопротивление (p) – неотъемлемое свойство материала и прямо пропорционально полному сопротивлению (R).
  • Сопротивление отличается в зависимости от материалов. Также и резисторы располагаются на много порядков.
  • Резисторы устанавливают последовательно или параллельно. Эквивалентное сопротивление сети резисторов отображает суммирование всего сопротивления.

Термины

  • Параллельное эквивалентное сопротивление – сопротивление сети, где каждый резистор подвергается той же разности напряжения, что и токи сквозь них. Тогда обратное эквивалентное сопротивление равно сумме обратного сопротивления всех резисторов в сети.
  • Эквивалентное сопротивление – сопротивление сети резисторов, установленных так, что напряжение по сети выступает суммой напряжения на каждом резисторе.
  • Удельное сопротивление – степень, в которой материал сопротивляется электрическому потоку.

Сопротивление и удельное сопротивление

Сопротивление – электрическое свойство, создающее препятствия течению. Перемещающийся по проводу ток напоминает воду, текущую в трубе, а падение напряжения – перепад давления. Сопротивление выступает пропорциональным давлению, которое нужно для формирования конкретного потока, а проводимость пропорциональна скорости потока. Проводимость и сопротивление выступают соотносимыми.

Сопротивление основывается на форме и материале объекта. Легче всего рассматривать цилиндрический резистор и уже от него переходить к сложным формам. Электрическое сопротивление цилиндра (R) будет прямо пропорциональным длине (L). Чем длиннее, тем больше столкновений будет происходить с атомами.

Единый цилиндр с длиной (L) и площадью поперечного сечения (А). Сопротивление потоку тока аналогично сопротивлению жидкости в трубе. Чем длиннее цилиндр, тем сильнее сопротивление. А вот с ростом площади поперечного сечения уменьшается сопротивление

Разные материалы гарантируют различное сопротивление. Определим удельное сопротивление (p) вещества так, чтобы сопротивление (R) было прямо пропорциональным p. Если удельное выступает неотъемлемым свойством, то простое сопротивление – внешнее.

Типичный осевой резистор

Что определяет удельное сопротивление проводника? Сопротивление в зависимости от материала может сильно отличаться. Например, у тефлона проводимость в 10 30 раз ниже, чем показатель меди. Откуда такое отличие? У металла наблюдается огромное количество делокализованных электронов, которые не задерживаются в конкретном месте, а свободно путешествуют на большие дистанции. Однако в изоляторе (тефлон) электроны тесно связаны с атомами и нужна серьезная сила, чтобы оторвать их. В некоторых керамических изоляторах можно встретить сопротивление больше 10 12 Ом. У сухого человека – 10 5 Ом.

Разность напряжения в сети отображает сумму всех напряжений и общее сопротивление передается формулой:

R eq = R 1 + R 2 + ⋯ + R N .

Резисторы в параллельной конфигурации проходят сквозь одинаковую разность напряжения. Поэтому можно вычислить эквивалентное сопротивление сети:

1/R eq = 1/R 1 + 1/R 2 + ⋯ + 1/R N .

Параллельное эквивалентное сопротивление можно представить в формуле двумя вертикальными линиями или слешем (//). Например:

Каждое сопротивление R задается как R/N. Резисторная сеть отображает комбинацию параллельных и последовательных соединений. Ее можно разбить на более мелкие составляющие.

Эту комбинированную схему можно разбить на последовательные и параллельные компоненты

Некоторые сложные сети нельзя рассмотреть таким способом. Но нестандартное значение сопротивления можно синтезировать, если объединить несколько стандартных показателей последовательно и параллельно. Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных резисторов. В конкретном случае все резисторы подключены последовательно или параллельно и номинал индивидуальных умножается на N.

Мы знаем, что причиной электрического сопротивления проводника является взаимодействие электронов с ионами кристаллической решётки металла (§ 43). Поэтому можно предположить, что сопротивление проводника зависит от его длины и площади поперечного сечения, а также от вещества, из которого он изготовлен.

На рисунке 74 изображена установка для проведения такого опыта. В цепь источника тока по очереди включают различные проводники, например:

  1. никелиновые проволоки одинаковой толщины, но разной длины;
  2. никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения);
  3. никелиновую и нихромовую проволоки одинаковой длины и толщины.

Силу тока в цепи измеряют амперметром, напряжение - вольтметром.

Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.

Рис. 74. Зависимость сопротивления проводника от его размеров и рода вещества

Выполнив указанные опыты, мы установим, что:

  1. из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление;
  2. из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше;
  3. никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.

Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил, что сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника .

Как учесть зависимость сопротивления от вещества, из которого изготовляют проводник? Для этого вычисляют так называемое удельное сопротивление вещества .

Удельное сопротивление - это физическая величина, которая определяет сопротивление проводника из данного вещества длиной 1 м, площадью поперечного сечения 1 м 2 .

Введём буквенные обозначения: ρ - удельное сопротивление проводника, I - длина проводника, S - площадь его поперечного сечения. Тогда сопротивление проводника R выразится формулой

Из неё получим, что:

Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является 1 Ом, единицей площади поперечного сечения - 1 м2, а единицей длины - 1 м, то единицей удельного сопротивления будет:

Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметpax, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:

В таблице 8 приведены значения удельных сопротивлений некоторых веществ при 20 °С. Удельное сопротивление с изменением температуры меняется. Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.

Таблица 8. Удельное электрическое сопротивление некоторых веществ (при t = 20 °С)

Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь - лучшие проводники электричества.

При проводке электрических цепей используют алюминиевые, медные и железные провода.

Во многих случаях бывают нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов - веществ с большим удельным сопротивлением. Например, как видно из таблицы 8, сплав нихром имеет удельное сопротивление почти в 40 раз большее, чем алюминий.

Фарфор и эбонит имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток, их используют в качестве изоляторов.

Вопросы

  1. Как зависит сопротивление проводника от его длины и от площади поперечного сечения?
  2. Как показать на опыте зависимость сопротивления проводника от его длины, площади поперечного сечения и вещества, из которого он изготовлен?
  3. Что называется удельным сопротивлением проводника?
  4. По какой формуле можно рассчитывать сопротивление проводников?
  5. каких единицах выражается удельное сопротивление проводника?
  6. Из каких веществ изготавливают проводники, применяемые на практике?

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 ом сантиметр [Ом·см] = 0,01 ом метр [Ом·м]

Исходная величина

Преобразованная величина

ом метр ом сантиметр ом дюйм микроом сантиметр микроом дюйм абом сантиметр статом на сантиметр круговой мил ом на фут ом кв. миллиметр на метр

Подробнее об удельном электрическом сопротивлении

Общие сведения

Как только электричество покинуло лаборатории учёных и стало широко внедряться в практику повседневной жизни, встал вопрос о поиске материалов, обладающих определёнными, порой совершенно противоположными, характеристиками по отношению к протеканию через них электрического тока.

Например, при передаче электрической энергии на дальнее расстояние, к материалу проводов предъявлялись требования минимизации потерь из-за джоулева нагрева в сочетании с малыми весовыми характеристиками. Примером тому являются всем знакомые высоковольтные линии электропередач, выполненные из алюминиевых проводов со стальным сердечником.

Или, наоборот, для создания компактных трубчатых электронагревателей требовались материалы с относительно высоким электрическим сопротивлением и высокой термостойкостью. Простейшим примером прибора, в котором применяются материалы с подобными свойствами, может служить конфорка обыкновенной кухонной электроплиты.

От проводников, используемых в биологии и медицине в качестве электродов, зондов и щупов, требуется высокая химическая устойчивость и совместимость с биоматериалами в сочетании с малым контактным сопротивлением.

К разработке такого ныне привычного всем прибора, как лампа накаливания, свои усилия приложила целая плеяда изобретателей из разных стран: Англии, России, Германии, Венгрии и США. Томас Эдисон, проведя более тысячи опытов проверки свойств материалов, подходящих на роль нитей накала, создал лампу с платиновой спиралью. Лампы Эдисона, хотя и имели высокий срок эксплуатации, но не были практичными из-за высокой стоимости исходного материала.

Последующие работы русского изобретателя Лодыгина, предложившего использовать в качестве материалов нити относительно дешёвые тугоплавкие вольфрам и молибден с более высоким удельным сопротивлением, нашли практическое применение. К тому же Лодыгин предложил откачивать из баллонов ламп накаливания воздух, заменяя его инертными или благородными газами, что привело к созданию современных ламп накаливания. Пионером массового производства доступных и долговечных электрических ламп стала компания General Electric, которой Лодыгин переуступил права на свои патенты и далее успешно работал в лабораториях компании долгое время.

Этот перечень можно продолжать, поскольку пытливый человеческий ум настолько изобретателен, что порой для решения определённой технической задачи ему нужны материалы с невиданными доселе свойствами или с невероятными сочетаниями этих свойств. Природа уже не успевает за нашими аппетитами и учёные всех стран мира включились в гонку создания материалов, не имеющих природных аналогов.

Одной из важнейших характеристик как природных, так и синтезированных материалов является удельное электрическое сопротивление. Примером электрического прибора, в котором в чистом виде применяется это свойство, может служить плавкий предохранитель, защищающий нашу электро- и электронную аппаратуру от воздействия тока, превышающего допустимые значения.

При этом надо заметить, что именно самодельные заменители стандартных предохранителей, выполненные без знаний удельного сопротивления материала, порой служат причиной не только выгорания различных элементов электрических схем, но и возникновения пожаров в домах и возгорания проводки в автомобилях.

То же самое относится и к замене предохранителей в силовых сетях, когда вместо предохранителя меньшего номинала устанавливается предохранитель с большим номиналом тока срабатывания. Это приводит к перегреву электропроводки и даже, как следствие, к возникновению пожаров с печальными последствиями. Особенно это присуще каркасным домам.

Историческая справка

Понятие удельного электрического сопротивление появилось благодаря трудам известного немецкого физика Георга Ома, который теоретически обосновал и в ходе многочисленных экспериментов доказал связь между силой тока, электродвижущей силой батареи и сопротивлением всех частей цепи, открыв таким образом закон элементарной электрической цепи, названным затем его именем. Ом исследовал зависимость величины протекающего тока от величины приложенного напряжения, от длины и формы материала проводника, а также от рода материала, используемого в качестве проводящей среды.

При этом надо отдать должное работам сэра Гемфри Дэви, английского химика, физика и геолога, который первым установил зависимости электрического сопротивления проводника от его длины и площади поперечного сечения, а также отметил зависимость электропроводности от температуры.

Исследуя зависимости протекания электрического тока от рода материалов, Ом обнаружил, что каждый доступный ему проводящий материал обладал некоторой присущей только ему характеристикой сопротивления протеканию тока.

Надо заметить, что во времена Ома один из самых обыкновенных ныне проводников - алюминий - имел статус особо драгоценного металла, поэтому Ом ограничился опытами с медью, серебром, золотом, платиной, цинком, оловом, свинцом и железом.

В конечном итоге Ом ввёл понятие удельного электрического сопротивления материала как фундаментальной характеристики, совершенно ничего не зная ни о природе протекания тока в металлах, ни о зависимости их сопротивления от температуры.

Удельное электрическое сопротивление. Определение

Удельное электрическое сопротивление или просто удельное сопротивление - фундаментальная физическая характеристика проводящего материала, которая характеризует способность вещества препятствовать похождению электрического тока. Обозначается греческой буквой ρ (произносится как ро) и рассчитывается исходя из эмпирической формулы для расчёта сопротивления, полученной Георгом Омом.

или, отсюда

где R - сопротивление в Омах, S - площадь в м²/, L - длина в м

Размерность удельного электрического сопротивления в Международной системе единиц СИ выражается в Ом м.

Это сопротивление проводника длиной в 1 м и площадью поперечного сечения в 1 м²/ величиной в 1 Ом.

В электротехнике, для удобства расчётов, принято пользоваться производной величины удельного электрического сопротивления, выражаемой в Ом мм²/м. Значения удельного сопротивления для наиболее распространённых металлов и их сплавов можно найти в соответствующих справочниках.

В таблицах 1 и 2 приведены значения удельных сопротивлений различных наиболее распространённых материалов.

Таблица 1. Удельное сопротивление некоторых металлов

Таблица 2. Удельное сопротивление распространенных сплавов

Удельные электрические сопротивления различных сред. Физика явлений

Удельные электрические сопротивления металлов и их сплавов, полупроводников и диэлектриков

Сегодня, вооружённые знаниями, мы в состоянии заранее просчитать удельное электрическое сопротивление любого, как природного, так и синтезированного материала исходя из его химического состава и предполагаемого физического состояния.

Эти знания помогают нам лучшим образом использовать возможности материалов, порой весьма экзотические и уникальные.

В силу сложившихся представлений, с точки зрения физики твёрдые тела подразделяются на кристаллические, поликристаллические и аморфные вещества.

Проще всего, в смысле технического расчёта удельного сопротивления или его измерения, дело обстоит с аморфными веществами. Они не имеют выраженной кристаллической структуры (хотя и могут иметь микроскопические включения таковых веществ), относительно однородны по химическому составу и проявляют характерные для данного материала свойства.

У поликристаллических веществ, образованных совокупностью относительно мелких кристаллов одного химического состава, поведение свойств не очень отличается от поведения аморфных веществ, поскольку удельное электрическое сопротивление, как правило, определяется как интегральное совокупное свойство данного образца материала.

Сложнее дело обстоит с кристаллическими веществами, особенно с монокристаллами, которые имеют различное удельное электрическое сопротивление и другие электрические характеристики относительно осей симметрии их кристаллов. Это свойство называется анизотропией кристалла и широко используется в технике, в частности, в радиотехнических схемах кварцевых генераторов, где стабильность частоты определяется именно генерацией частот, присущих данному кристаллу кварца.

Каждый из нас, являясь обладателем компьютера, планшета, мобильного телефона или смартфона, включая владельцев наручных электронных часов вплоть до iWatch, одновременно является обладателем кристаллика кварца. По этому можно судить о масштабах использования в электронике кварцевых резонаторов, исчисляемых десятками миллиардов.

Помимо прочего, удельное сопротивление многих материалов, особенно полупроводников, зависит от температуры, поэтому справочные данные обычно приводятся с указанием температуры измерения, обычно равной 20 °С.

Уникальные свойства платины, имеющей постоянную и хорошо изученную зависимость удельного электрического сопротивления от температуры, а также возможность получения металла высокой чистоты послужили предпосылкой создания на её основе датчиков в широком диапазоне температур.

Для металлов разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и химической чистотой металла данного образца.

Для сплавов более сильный разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и непостоянством состава сплава.

Удельное электрическое сопротивление жидкостей (электролитов)

В основе понимания удельного сопротивления жидкостей лежат теории термической диссоциации и подвижности катионов и анионов. Например, в самой распространённой жидкости на Земле – обыкновенной воде, некоторая часть её молекул под воздействием температуры распадается на ионы: катионы Н+ и анионы ОН– . При подаче внешнего напряжения на электроды, погружённые в воду при обычных условиях, возникает ток, обусловленный перемещением вышеупомянутых ионов. Как выяснилось, в воде образуются целые ассоциации молекул - кластеры, порой соединяющимися с катионами Н+ или анионами ОН–. Поэтому передача ионов кластерами под воздействием электрического напряжения происходит так: принимая ион в направлении приложенного электрического поля с одной стороны, кластер «сбрасывает» аналогичный ион с другой стороны. Наличие в воде кластеров прекрасно объясняет тот научный факт, что при температуре около 4 °C вода имеет наибольшую плотность. Большая часть молекул воды при этом находится в кластерах из-за действия водородных и ковалентных связей, практически в квазикристаллическом состоянии; термодиссоциация при этом минимальна, а образование кристаллов льда, который имеет более низкую плотность (лёд плавает в воде), ещё не началось.

В целом проявляется более сильная зависимость удельного сопротивления жидкостей от температуры, поэтому эта характеристика всегда измеряется при температуре в 293 K, что соответствует температуре 20 °C.

Помимо воды имеется большое число других растворителей, способных создавать катионы и анионы растворяемых веществ. Знание и измерение удельного сопротивления таких растворов также имеет большое практическое значение.

Для водных растворов солей, кислот и щелочей существенную роль в определении удельного сопротивления раствора играет концентрация растворённого вещества. Примером может служить следующая таблица, в которой приведены значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С:

Таблица 3. Значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С

Данные таблиц взяты из Краткого физико-технического справочника, Том 1, - М.: 1960

Удельное сопротивление изоляторов

Огромное значение в отраслях электротехники, электроники, радиотехники и робототехники играет целый класс различных веществ, имеющий относительно высокое удельное сопротивление. Вне зависимости от их агрегатного состояния, будь оно твёрдое, жидкое или газообразное, такие вещества называются изоляторами. Такие материалы используются для изолирования отдельных частей электрических схем друг от друга.

Примером твёрдых изоляторов может служить всем знакомая гибкая изолента, благодаря которой мы восстанавливаем изоляцию при соединении различных проводов. Многим знакомы фарфоровые изоляторы подвески воздушных линий электропередач, текстолитовые платы с электронными компонентами, входящими в состав большинства изделий электронной техники, керамика, стекло и многие другие материалы. Современные твёрдые изоляционные материалы на базе пластмасс и эластомеров делают безопасным использование электрического тока различных напряжений в самых разнообразных устройствах и приборах.

Помимо твёрдых изоляторов широкое применение в электротехнике находят жидкие изоляторы с высоким удельным сопротивлением. В силовых трансформаторах электросетей жидкое трансформаторное масло предотвращает межвитковые пробои из-за ЭДС самоиндукции, надёжно изолируя витки обмоток. В масляных выключателях масло используется для гашения электрической дуги, которая возникает при переключении источников тока. Конденсаторное масло используется для создания компактных конденсаторов с высокими электрическими характеристиками; помимо этих масел в качестве жидких изоляторов используются природное касторовое масло и синтетические масла.

При нормальном атмосферном давлении все газы и их смеси являются с точки зрения электротехники отличными изоляторами, но благородные газы (ксенон, аргон, неон, криптон) в силу их инертности обладают более высоким удельным сопротивлением, что широко используется в некоторых областях техники.

Но самым распространённым изолятором служит воздух, в основном состоящий из молекулярного азота (75% по массе), молекулярного кислорода (23,15% по массе), аргона (1,3% по массе), углекислого газа, водорода, воды и некоторой примеси различных благородных газов. Он изолирует протекание тока в обычных бытовых выключателях света, переключателях тока на основе реле, магнитных пускателях и механических рубильниках. Необходимо отметить, что снижение давления газов или их смесей ниже атмосферного приводит к росту их удельного электрического сопротивления. Идеальным изолятором в этом смысле является вакуум.

Удельное электрическое сопротивление различных грунтов

Одним из важнейших способов защиты человека от поражающего действия электрического тока при авариях электроустановок является устройство защитного заземления.

Оно представляет собой преднамеренное соединение кожуха или корпуса электроустройств с защитным заземляющим устройством. Обычно заземление выполняется в виде зарытых в землю на глубину более 2,5 метра стальных или медных полос, труб, стержней или уголков, которые в случае аварии обеспечивают протекание тока по контуру устройство - корпус или кожух - земля - нулевой провод источника переменного тока. Сопротивление этого контура должно быть не более 4 Ом. В этом случае напряжение на корпусе аварийного устройства снижается до безопасного для человека величин, а автоматические устройства защиты электрической цепи тем или иным способом производят отключение аварийного устройства.

При расчёте элементов защитного заземления существенную роль играет знание удельного сопротивления грунтов, которое может варьироваться в широких пределах.

Сообразуясь с данными справочных таблиц, выбирается площадь заземляющего устройства, по ней вычисляется количество заземляющих элементов и собственно конструкция всего устройства. Соединение элементов конструкции устройства защитного заземления производится сваркой.

Электротомография

Электроразведка изучает приповерхностную геологическую среду, применяется для поиска рудных и нерудных полезных ископаемых и других объектов на основе исследования различных искусственных электрических и электромагнитных полей. Частным случаем электроразведки является электротомография (Electrical Resistivity Tomography) - метод определения свойств горных пород по их удельному сопротивлению.

Суть метода заключается в том, что при определённом положении источника электрического поля проводятся замеры напряжения на различных зондах, затем источник поля перемещают в другое место или переключают на другой источник и повторяют измерения. Источники поля и зонды-приёмники поля размещают на поверхности и в скважинах.

Затем полученные данные обрабатываются и интерпретируются с помощью современных компьютерных методов обработки, позволяющих визуализировать информацию в виде двухмерных и трёхмерных изображений.

Являясь очень точным методом поиска, электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам.

Определение формы залегания месторождений полезных ископаемых и границ их распространения (оконтуривание) позволяет выявить залегание жильных залежей полезных ископаемых, что существенно снижает затраты на их последующую разработку.

Археологам этот метод поиска даёт ценную информацию о расположении древних захоронений и наличия в них артефактов, тем самым сокращая затраты на раскопки.

Палеозоологи с помощью электротомографии ищут окаменевшие останки древних животных; результаты их работ можно увидеть в музеях естественных наук в виде поражающих воображение реконструкций скелетов доисторической мегафауны.

Кроме того, электротомография применяется при возведении и при последующей эксплуатации инженерных сооружений: высотных зданий, плотин, дамб, насыпей и других.

Определения удельного сопротивления на практике

Порой для решения практических задач перед нами может встать задача определения состава вещества, например, проволоки для резака пенополистирола. Имеем два мотка проволоки подходящего диаметра из различных неизвестных нам материалов. Для решения задачи необходимо найти их удельное электрическое сопротивление и далее по разнице найденных значений или по справочной таблице определить материал проволоки.

Отмерим рулеткой и отрежем по 2 метра проволоки от каждого образца. Определим диаметры проволок d₁ и d₂ микрометром. Включив мультиметр на нижний предел измерения сопротивлений, измеряем сопротивление образца R₁. Повторяем процедуру для другого образца и также измеряем его сопротивление R₂.

Учтём, что площадь поперечного сечения проволок рассчитывается по формуле

S = π · d 2 /4

Теперь формула для расчёта удельного электрического сопротивления будет выглядеть следующим образом

ρ = R · π · d 2 /4 · L

Подставляя полученные значения L, d₁ и R₁ в формулу для расчёта удельного сопротивления, приведенную в статье выше, вычисляем значение ρ₁ для первого образца.

ρ 1 = 0,12 ом мм 2 /м

Подставляя полученные значения L, d₂ и R₂ в формулу, вычисляем значение ρ₂ для второго образца.

ρ 2 = 1,2 ом мм 2 /м

Из сравнения значений ρ₁ и ρ₂ со справочными данными вышеприведенной Таблицы 2, делаем вывод, что материалом первого образца является сталь, а второго - нихром, из которого и изготовим струну резака.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

gastroguru © 2017