Ардуино датчик mq 135 подключение. Датчики газа серия MQ (Trema-модуль v2.0). Пример подключения и использования

Химический полупроводниковый сенсор - слой чувствительного полупроводника (обычно это оксиды переходных металлов) на инертной подложке, поверхность которого умеет селективно захватывать какие-то летучие вещества из газа. В результате такой хемосорбции полупроводник приобретает заряд и меняет свои свойства: обычно следят за его сопротивлением. Полупроводниковые сенсоры практически всегда требуют нагрева для нормальной работы.

Пару слов о том, зачем мне это понадобилось. Я всегда с тоской вспоминаю походы с палаткой - потому что только там я мог нормально, полноценно спать благодаря совершенно свежему воздуху. Несмотря на то что в Москве я живу в своеобразном зелёном острове, всё равно духота часто мучает меня по ночам. Вообще, эта моя история очень похожа на историю BarsMonster`а с Хабра, который в поисках причин быстрого утомления ставил кислородный концентратор, вешал мощнейшую люстру на 10 тысяч люмен, и делал прочие хаотичные штуки. Я пошёл по его пути, тоже поставил такую люстру, но особой разницы не заметил. В итоге мы оба дошли до идеи измерить концентрацию углекислого газа в воздухе - его избыток вызывает мгновенное закисление крови и нарушение процессов обмена.

Именно для этих измерений я купил в Китае датчик MQ-135.

В нём чувствительный слой из диоксида олова (с золотыми контактными площадками) нанесён на сапфировую подложку с нихромовым нагревателем, и электроды грелки (H-H) вместе с платиновыми электродами от чувствительного слоя (A/B-B/A) выведены наружу. Измерять сопротивление можно на любых двух из них, A-B или B-A.

Он очень дешёвый и доступный, и может служить элементом домашней метеостанции. Помимо углекислого газа, датчик также реагирует на присутствие других газов: угарного газа, аммиака, бензола, оксидов азота и паров спирта. В даташите приведена зависимость относительного сопротивления датчика от парциального давления разных газов - таким образом, из сопротивления можно вычислить концентрацию газа в воздухе.

Кстати, одна из его модификаций, с обострённой чувствительностью к спирту, стоит в полицейских датчиках спирта, которым «дышат в трубку».

Попробуем подключить его к STM32!

Схема подключения

Для начала давайте рассмотрим схему включения.

Всё просто: нагреватель питается от 5 вольт, а чтобы измерить сопротивление сенсора - он включается в состав резистивного делителя, и измеряется напряжение на выходе этого резистора. При известном сопротивлении резистора и напряжении питания сопротивление сенсора рассчитывается как r1 = r2*(u/uout-1).

Конкретно у меня датчик распаян на плате, которая содержит этот дополнительный резистор - она выдаёт наружу сразу нужное напряжение. Чтобы измерить это напряжение с помощью STM32, нам потребуется модуль АЦП. Программа практически повторяет код из той статьи.

Void adc_init() { RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); //ADC settings ADC_InitTypeDef ADC_InitStructure; ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_Cmd(ADC1, ENABLE); //Channel settings ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, ADC_SampleTime_55Cycles5); ADC_ResetCalibration(ADC1); while (ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); while (ADC_GetCalibrationStatus(ADC1)); } uint16_t getCO2Level() { ADC_SoftwareStartConvCmd(ADC1, ENABLE); while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); return ADC_GetConversionValue(ADC1); } int main() { adc_init(); uint16_t co2; while(1) { co2 = getCO2Level(); delay(10000000); } }

Особенности

Во время работы датчик заметно греется, и это его нормальное состояние; вряд ли он способен что-то поджечь, но всё-таки не стоит его ничем накрывать. Да и доступ воздуха ему нужно обеспечить, поэтому просто разместите его на каком-нибудь открытом пространстве. Гемфри Дэви придумал окружать шахтёрские лампы металлической сеткой во избежание взрыва газа - так и здесь, вокруг датчика находится металлическая сетка, благодаря которой сенсор можно использовать даже в помещениях с высокой концентрацией метана или других горючих газов.

Датчик очень медленно выходит на режим. В первый раз его обязательно нужно прогреть не менее 24 часов. При следующих включениях требуется хотя бы 10-минутный прогрев.

Параметры датчика немного деградируют с ростом влажности воздуха. При точных измерениях необходимо следить за влажностью, например с помощью датчика DHT-22.

На моей плате дополнительно размещён ОУ с переменным резистором - к ним подключен светодиод и вывод «DOUT». Это простой настраиваемый пороговый индикатор, светодиод загорится когда концентрация углекислого газа превысит заданное значение.

Post Views: 609

Датчик качества воздуха MQ-135. Датчик позволяет определить концентрацию различных газов в воздухе и таким образом можно вычислить насколько воздух качественный. Чем выше напряжение на выводе, тем выше уровень загрязняющих газов. В датчике MQ135 используется оксид олова низкой проводимости (SnO2).
Так же датчик пожно использовать как детектор газов аммиака, сульфида, паров бензола, детектор дыма и других газов.

Область применения

Зонд для дома, устройство для определения характеристик окружающей среды и обнаружения вредных газов, детектор аммиака, соединений серы, паров бензола, дыма и других газов. Чувствительный элемент работает в диапазоне концентраций: от 10 до 1000ppm

Характеристики

Двухстороннмй монтаж, индиктор питания
Два режима выода данных: D0 TTL уровень и A0 аналоговый
Выход сигнала TTL с компортатора низкого уровня, позволяет подключить датчик непосредственно к контроллеру
Аналоговый выход 0 ~ 5 В, выходное напряжение, чем выше концентрация, тем выше напряжение
Монтажные отверстия для крепления
Размер: 32мм X22mm X27mm
Сенсор: MQ-135
Рабочее напряжение: 5 В постоянного тока
Длительный срок службы, высокая надежность

Премечание: после включения датчик должен прогрется не менее 20 секунд. При работе датчик должен быть теплым - это нормально.

Распиновка

1. VCC: положительный источник питания (5V)
2. GND: отрицательный источник питания
3. DO: выход сигнала компаратора TTL
4. AO: аналоговый выход сигнала

Датчик качества воздуха MQ-135 Отзывы:

Отзывы: 1 , Оценка: 5.00

Оценка: 5

Сначала каждый будет задаваться вопросами как работать с этим датчиком, рекомендую прочесть статью - https://www.olegkravec.space/%D0%BE%D1%82%D0%BA%D0%B0%D0%BB%-
D0%B8%D0%B1%D1%80%D0%BE%D0%B2%D0%B0%D1%82%D1%8C-%D0%B4%D0%B0-
%D1%82%D1%87%D0%B8%D0%BA-%D1%83%D0%B3%D0%BB%D0%B5%D0%BA%D0%B-
8%D1%81%D0%BB%D0%BE%D0%B3/

Подключение и настройка

Датчик газа MQ-135 подключается к управляющей электронике по 5 проводам. Для подключения используются два . Для быстрого подключения модуля к Iskra JS или Arduino используйте . С можно обойтись без лишних проводов.

Примеры программ для Arduino

Для обладателей платформ Arduino выведем в Serial-порт текущее значение вредных газов в ppm , управляя нагревателем. Для запуска примера скачайте и установите библиотеку TroykaMQ .

mq135Heater.ino #include #define PIN_MQ135 A0 // имя для пина, к которому подключен нагреватель датчика #define PIN_MQ135_HEATER 11 // создаём объект для работы с датчиком // и передаём ему номер пина выходного сигнала и нагревателя Serial.begin (9600 ) ; // включаем нагреватель mq135.heaterPwrHigh () ; Serial.println ("Heated sensor" ) ; } void loop() { // если прошёл интервал нагрева датчика // и калибровка не была совершена if (! mq135.isCalibrated () && mq135.heatingCompleted () ) { mq135.calibrate () ; // если известно сопротивление датчика на чистом воздухе // mq135.calibrate(160); Serial.print ("Ro = " ) ; Serial.println (mq135.getRo () ) ; } // если прошёл интевал нагрева датчика // и калибровка была совершена if (mq135.isCalibrated () && mq135.heatingCompleted () ) { Serial.print ("\t CO2: " ) ; Serial.print (mq135.readCO2 () ) ; Serial.println (" ppm" ) ; delay(100 ) ; } }

К платам Arduino c 5 вольтовой логикой датчик можно подключить используя всего один . Для этого установите перемычку на разъём «выбор питания нагревателя».

Выведем в Serial-порт текущее значение вредных газов в ppm , при этом нагреватель всегда включён.

mq135.ino // библиотека для работы с датчиками MQ (Troyka-модуль) #include // имя для пина, к которому подключен датчик #define PIN_MQ135 A0 // создаём объект для работы с датчиком и передаём ему номер пина MQ135 mq135(PIN_MQ135) ; void setup() { // открываем последовательный порт Serial.begin (9600 ) ; // перед калибровкой датчика прогрейте его 60 секунд // выполняем калибровку датчика на чистом воздухе mq135.calibrate () ; // при знании сопративления датчика на чистом воздухе // можно его указать вручную, допустим 160 // mq135.calibrate(160); // выводим сопротивление датчика в чистом воздухе (Ro) в serial-порт Serial.print ("Ro = " ) ; Serial.println (mq135.getRo () ) ; } void loop() { // выводим отношения текущего сопротивление датчика // к сопротивлению датчика в чистом воздухе (Rs/Ro) Serial.print ("Ratio: " ) ; Serial.print (mq135.readRatio () ) ; // выводим значения газов в ppm Serial.print ("\t CO2: " ) ; Serial.print (mq135.readCO2 () ) ; Serial.println (" ppm" ) ; delay(100 ) ; }

Способны определять концентрацию широкого спектра газов в воздухе (природные газы, углекислый и угарный газ, углеводороды, дым, пары спирта и бензина).

  • Аналоговый выход модуля «S» (Signal) - подключается к любому аналоговому входу Arduino и предназначен для снятия показаний модуля.
  • Цифровой вход модуля «EN» (Enable) - подключается к любому выходу Arduino и предназначен для управления режимами работы модуля («1» - активный режим, «0» - режим энергосбережения).
  • Если вход «EN» оставить неподключённым, то модуль будет находиться в активном режиме пока есть питание.

Модуль удобно подключать 3 способами, в зависимости от ситуации:

Способ - 1: Используя проводной шлейф и Piranha UNO

Используя провода «Папа - Мама », подключаем напрямую к контроллеру Piranha UNO.


Способ - 2: Используя Trema Set Shield

Модуль можно подключить к любому из аналоговых входов Trema Set Shield.



Способ - 3: Используя проводной шлейф и Shield

Используя 3-х проводной шлейф, к Trema Shield, Trema-Power Shield, Motor Shield, Trema Shield NANO и тд.



Питание:

Входное напряжение питания 5 В постоянного тока, подаётся на выводы «V» (Vcc) и «G» (GND) модуля.

Подробнее о модуле:

Уровень напряжения на аналоговом выходе «S» (Signal) прямо пропорционален концентрации детектируемых газов. Цифровой вход «EN» (Enable) можно не использовать - тогда модуль будет работать постоянно.

Если подключить вход модуля «EN» к любому выходу Arduino, то модулем можно управлять: логическая «1» подключит нагревательный элемент датчика к шине питания и модуль будет регистрировать концентрацию газов, логический «0» отключит нагревательный элемент и модуль перейдёт в режим энергосбережения.

Примеры:

Пример для Типа подключения 1:

int8_t gasPin = A0; // Определяем номер вывода, к которому подключен модуль void setup() { Serial.begin(9600); // Инициируем передачу данных на скорости 9600 бит/сек pinMode(gasPin, INPUT); // назначаем вывод, к которому подключен датчик, работать в режиме входа } void loop() { Serial.print("Gas volume: "); // выводим текст в монитор порта Serial.println(analogRead(gasPin)); // выводим значение с датчика delay(1000); // ждём секунду }

Пример для Типа подключения 2:

int8_t gasPin = A0; // Определяем номер вывода, к которому подключен модуль int8_t gasPwr = 8; // Определяем номер вывода, к которому подключено управление нагревателя модуля void setup() { Serial.begin(9600); // Инициируем передачу данных на скорости 9600 бит/сек pinMode(gasPin, INPUT); // назначаем вывод, к которому подключен датчик, работать в режиме входа } void loop() { if (analogRead(gasPin) < 550) { // если значение с датчика ниже порога, то digitalWrite(gasPwr, LOW); // выключаем питание с нагревателя и Serial.println("GasPwr OFF"); // выводим текст в монитор порта } else { // если значение с датчика выше порога, то digitalWrite(gasPwr, HIGH); // включаем питание нагревателя, Serial.print("Gas volume: "); // выводим текст в монитор порта Serial.println(analogRead(gasPin)); // выводим значение с датчика } delay(1000); // ждём секунду }

Всем привет. Это еще одна статья из разряда ESP8266 + Blynk = . Прошу не воспринимать как рекламу, а только как дань уважения разработчикам платформы Blynk и личный опыт, который может быть полезен кому то еще, кроме меня.

Начало

Идея проекта родилась несколько лет назад, когда в порыве DYI-энтузиазма на Ali был куплен датчик качества воздуха MQ-135 . По спецификации этот датчик реагирует на наличие в воздухе таких веществ как: NH3, NOx, спирт, бензин, дым и CO2 и выдает свою абстрактную оценку качества воздуха на аналоговом выходе [да я знаю, что существуют подстроечные резисторы и способы калибровки, но как то это слишком сложно].

Испытания показали, что на всякие вредные и «вонючие» соединения датчик реагирует отлично, показывая достаточно резкое изменение выходного уровня. Хуже дело обстояло с определением невидимого врага, а именно углекислого газа СО2. Про вред и очевидную повсеместность этого диоксида сказано немало, повторяться не будем.


Поэтому для меня, датчик MQ-135 оказался бесполезным, поскольку не мог «заметить» существенную разницу в качестве воздуха в переполненном людьми помещении и на свежем воздухе. Но вызов был уже принят, поэтому несколько итераций спустя родилась последняя (текущая) версия платы OpenWindAir с ИК-датчиком MH-Z19 [да не идеальный, да китайский]. Подробнее про получившуюся железку и ее аппаратные возможности написано в статье Система сбора данных на ESP. Часть I .

Для задачи измерения уровня углекислого газа в жилом помещении датчик оказался идеальным и оптимальным по цене (1200 рублей на Ali с доставкой) решением.

Blynk - помогает соединить железо, облако и телефон

Про платформу Blynk уже много хорошего сказано, например . Возможности платформы просто удивляют своей продуманностью и удобством использования. Поэтому когда пришло время выбирать среду разработки для ESP8266 и писать программу, выбор сразу пал на Arduino IDE и библиотеку Blynk.

Запуск тестового скетча BlynkSimpleEsp8266 , не вызвал никаких проблем. Однако по мере усложнения и наращивания функционала - пришлось столкнуться с некоторыми трудностями, о которых и хочется рассказать подробнее.

Архитектура ПО

Главный плюс разработки ПО под ESP8266 в среде Arduino IDE – что можно совместить в одном скетче совершенно разные библиотеки и вам за это почти ничего не будет.

Перед началом разработки ТЗ было сформулировано тезисно и включало следующие пункты:

1. Необходимо с определенным интервалом считывать показания датчика CO2 (MH-Z19) и отображать результаты с помощью трех (зеленый, желтый, красный) светодиодов. Пределы были выбраны почти с учетом ГОСТ 30494-2011 (Здания жилые и общественные. Параметры микроклимата в помещениях.): до 900 PPM – зеленый , от 901 до 1400 PPM - желтый , выше 1401 PPM - красный . Также у нас есть бипер, порог бибикания которого задан на уровне 1100 PPM, но его можно настроить или вообще отключить через Blynk. Во время отладки выяснилось, что иногда MH-Z19 может глюкануть и выдать свое максимальное значение (в зависимости от установленного предела: 1000, 2000, 3000 или 5000 PPM), вместо фактически измеренного. Это немного осложнило обработку результатов и могло привести к ложным сообщениям пользователю, а нервы пользователя надо беречь. И поскольку нет абсолютно верного (кроме многократных измерений) способа отличить неверно измеренные 2000 PPM (дикое значение для жилого помещения) от ситуации, когда пользователь сидит и специально дышит в датчик. То было принято две меры по маскировке данной проблемы: установлен предел измерения в 2000 PPM (предполагается использование прибора в жилых помещениях и все что больше 1400 для нас уже красная зона) и добавлено усреднение результатов последних 10 измерений. Как итог - единичные ложные срабатывания (на 2000 PPM) не дают больших всплесков на усредненном графике. Но при желании через Blynk можно настроить предел измерения датчика и посмотреть фактическое (не усредненное значение CO2).

2. Для работы с датчиком температуры\влажности (AM2302 ) была использована библиотека DHT Sensor Library от Adafruit. Было сделано два небольших изменения: добавил повторное считывание AM2302 (иногда считывается не с первого раза) и введены поправочные коэффициенты для значений температуры и влажности. Если используется встроенный датчик, то опытным путем установлено, что воздух внутри прибора «суше» на 15% и теплее на 2 градуса C (1 градус F) чем снаружи, при использовании выносного датчика (выбирается джампером) - поправку в измеренные результаты вносить не надо и можно отключить.

3. Пользователь должен иметь возможность настроить устройство (подключиться к WiFi, указать auth token и тд) без дополнительного софта или перепрошивки. Наиболее оптимальным решением стало использование библиотеки WiFiManager , которая переводит ESP в режим точки доступа и позволяет через Captive портал сохранить во флешку настройки WiFi сети и другие параметры.


В дальнейшем при старте библиотека пытается подключится к сохраненной WiFi точке и в случае неудачи снова переходит в режим точки доступа и Captive портала. А если пользователь вдруг не захочет использовать Blynk или у него не окажется WiFi-роутера, то в этом случае OpenWindAir никогда на загрузится и будет только стартовать в AP-режиме и перезагружаться по таймауту.

Выход из этой безвыходной ситуации был найден следующий, если у нас сохранены ненулевые параметры подключения к Blynk или MQTT серверу, значит при старте будем пытаться подключиться и перезагружаться, в противном случае - можем и не подключаться к WiFi, а работать оффлайн.

If (!wifiManager.autoConnect("OpenWind - tap to config")){ if (mqtt_server != "\0" || blynk_token != "\0"){ Serial.println("Failed to go online for Blynk and MQTT, restarting.."); ESP.restart(); } else{ Serial.println("Failed to go online, offline mode activated"); online = false; }

4. Blynk требует подключения к Интернету (если сервер не локальный) и поэтому необходимо контролировать наличие подключения к WiFi. Библиотека WiFiManager на данный момент не умеет восстанавливать соединение с WiFi и если в квартире «моргнет» свет и роутер перезагрузится, то восстановить подключение ESP8266 к WiFi поможет только перезагрузка. Поэтому пришлось добавить простой таймер, который через 60 непрерывных секунд отсутствия коннекта перезагрузит устройство.

If (WiFi.status() != WL_CONNECTED && online){ if (!wifilost_flag){ wifilost_timer_start = uptime; wifilost_flag = true; } if (((uptime - wifilost_timer_start) > wifilost_timer_max) && wifilost_flag){ Serial.print("\n\rWiFi connection lost, restarting.."); wifilost_flag = false; ESP.restart(); } }
5. В качестве альтернативы использования Blynk пользователь может выбрать отправку показаний по протоколу MQTT на сервер Народного мониторинга или любого другого подобного сервиса. Для этих целей была выбрана библиотека PubSubClient , которая написана на наиболее понятном мне языке Си и единственная (из представленных в каталоге Arduino IDE), которая имела понятные примеры.

6. Перепрошивка устройства дело хоть и не частое и не очень сложное (особенно при наличии встроенного CP2102 ), но все равно захотелось максимально упростить этот процесс. Библиотека ArduinoOTA позволяет легко загрузить новый бинарник и прошить его. Активировать ОТА можно как кнопкой на устройстве, так и удаленно через телефон. Однако без сюрпризов не обошлось, оказывается мной были куплены модули ESP8266-12E с разным размером файловой системы (SPIFFS).

Примерное распределение Flash

Внешне не отличимые модули ESP8266-12E могут иметь файловую систему размером 1 или 3 Мб и требовать разные прошивки (опции сборки в Arduino IDE). Поэтому, чтобы избежать возможных проблем, при загрузке надо проверять фактический размер памяти и при ОТА апгрейде запрашивать на сервере соответствующий бинарник (пока не сделано). Или можно пойти чуть более простым путем и собирать все прошивки под SPIFFS c меньшим номиналом 1 Мб, т. к. они вполне работают на ESP8266-12E c большим объемом памяти.

Для таких проверок в SDK есть удобные функции позволяющие определить размер фактической и выбранной в IDE памяти.

String realSize = String(ESP.getFlashChipRealSize()); String ideSize = String(ESP.getFlashChipSize()); bool flashCorrectlyConfigured = realSize.equals(ideSize); if(flashCorrectlyConfigured){ Serial.println("flash correctly configured, SPIFFS starts, IDE size: " + ideSize + ", match real size: " + realSize); } else{ Serial.println("flash incorrectly configured, SPIFFS cannot start, IDE size: " + ideSize + ", real size: " + realSize); }
7. Чтобы самому не путаться в разных версиях ПО и отличать их друг от друга, был немного переписан файл arduino-1.8.5\hardware\platform.txt от Arduino IDE так, чтобы во время компиляции запускался bat файл, который делает копию текущего скетча и полученного бинарника, а также автоматически инкрементирует номер версии.

Recipe.hooks.sketch.prebuild.0.pattern=D:\arduino-1.8.5\hardware\increment.bat {build.path} {build.source.path} {build.project_name}
Таким образом, после каждой сборки\прошивки имеем зашитый в бинарнике номер версии и копию скетча с таким же номером. А если папку со скетчем положить в Dropbox - то получится самодельная система контроля версий.

Инструкция по настройке автоинкремента версии для Arduino IDE и bat-файл выложены на гитхабе.

8. Ну а раз есть встроенный USB-UART переходник (с драйвером для CP2102 нет никаких проблем в Windows и Linux), то нельзя было не добавить вывод результатов измерений через Терминал (на скорости 9600). Раз в двадцать секунд выводятся результаты измерений и сообщения об ошибках.

Reading MHZ19 sensor: ok
Reading DHT22 sensor: ok

Humidity: 36.20%
Temperature: 27.20C \ 83.56F
C02: 1153 ppm
C02 average: 462 ppm
ADC: 99
UpTime: 0 days, 0 hours, 3 minutes, 45 seconds.
Time: 16:25:56 20/3/2018
===================================================

А по нажатию кнопки Enter можно получить сообщение с системной информацией.
======SYSTEM-STATUS================================
Device name: OpenWindAir
Software version: 0.1.235
FreeHeap: 33824
ChipId: 13704617
FlashChipId: 1405167
FlashChipSize: 4194304
FlashChipSpeed: 40000000
CycleCount: 2204474679
Time: 16:27:6 20/3/2018
UpTime: 295
======BLYNK-STATUS=================================
Blynk token:
Blynk connected: 1
Notify level: 1100
Beep: 1
CO2 limit: 2000
Temperature correction: 1
======NETWORK-STATUS===============================
WiFi network: adakta2
WiFi status: 3
RSSI: -70
MAC: 18FE34D11DA9
IP: 192.168.0.152
Online: 1
======MQTT-STATUS==================================
MQTT server:narodmon.ru
MQTT port:1883
MQTT login:login
MQTT key:key
MQTT topics:
/OpenWindAir/h
/OpenWindAir/t
/OpenWindAir/f
/OpenWindAir/ppm
/OpenWindAir/status
======END-of-STATUS================================

Самая неприятная проблема

Самое неприятное с чем пришлось столкнуться при разработке, это когда при одновременной отправке результатов измерений на сервер MQTT и в Blynk, часть данных может начать теряться и не доходить до сервера. Как оказалось, на то, чтобы подключиться к серверу MQTT и отправить данные - может понадобиться несколько секунд и за это время библиотека Blynk успевает потерять соединение со своим сервером и в результате если вручную не инициировать переподключение к серверу - может пройти достаточно много времени и часть результатов измерений потеряется. Пришлось добавить проверку состояния WiFi клиента _blynkWifiClient и случае отсутствия коннекта делать принудительный стоп _blynkWifiClient.stop(), а потом подключаться к серверу Blynk заново.

If (WiFi.status() == WL_CONNECTED){ wifilost_flag = false; if (blynk_token != "\0"){ if (Blynk.connected() && _blynkWifiClient.connected()){ Blynk.run(); } else{ Serial.print("\n\rReconnecting to blynk.. "); Serial.print(Blynk.connected()); if (!_blynkWifiClient.connected()){ _blynkWifiClient.stop(); Return _blynkWifiClient.connect(BLYNK_DEFAULT_DOMAIN, BLYNK_DEFAULT_PORT); } Blynk.connect(4000); Serial.print(Blynk.connected()); } }

Заключение

Это моя первая статья, хотя с момента регистрации на Хабре прошло уже 7 лет. Прошу не судить очень строго и не обращать внимание на говнокод, который пока является единственным языком программирования, которым я владею.

Ознакомиться с проектом целиком можно в репозитории на гитхабе .

Наличие датчика CO2 не дает мне (и моей семье) лишний раз засиживаться в душной комнате. Но самое главное он прекратил вечную войну между лагерями тех кому жарко и тех кому дует (это был я), в пользу первых.

Далее будет QR код, просканировав который приложением Blynk (AppSore , Android) можно узнать, какой микроклимат был у меня дома последние 3 месяца.


Проект работает, прошу ничего не ломать.

gastroguru © 2017