Нанесение лакокрасочных покрытий на металл. Технологический процесс нанесения лакокрасочных покрытий - защита нефтяных резервуаров от коррозии - металл - железо. Методы нанесения жидких ЛКМ

Лакокрасочные материалы применяются, как правило, комплектно. При создании лакокрасочных покрытий на изделие последовательно наносят грунт, шпатлевку, эмаль и лак. Общая толщина покрытия составляет 60-100 мкм, а иногда и больше. Все слои наносятся тонким слоем для создания оптимальных условий для испарения растворителей и отверждения материалов. Поэтому лакокрасочные покрытия формируют в несколько слоев, каждый последующий слой наносят после высыхания предыдущего. Технологические операции процесса окраски называют в соответствии с названием наносимого материала: грунтованием, шпатлеванием, окраской, лакированием.

При нанесении лакокрасочных материалов большое влияние на качество покрытия оказывает подготовка окрашиваемой поверхности.

Для увеличения адгезионной связи покрытия с поверхностью окрашиваемого изделия ее тщательно очищают от загрязнений и придают ей необходимую шероховатость.

Очистку поверхности производят механическими и химическими способами. При механических способах используют механизированный абразивный инструмент, пескоструйную и гидроабразивную обработку, а также галтовку, применяемую для очистки поверхности мелких металлических деталей. Галтовка осуществляется во вращающемся барабане, в который загружают очищаемые детали и очищающие чугунные мелкие изделия с острыми гранями.

Химическая очистка предназначена для удаления грязи и масла с поверхности окрашиваемых изделий. Для этого используют щелочные растворы, в которые добавляют эмульгаторы и поверхностно-активные вещества, легкокипящие жидкости (растворители) или эмульсию растворителя в воде. У каждого из этих способов есть свои преимущества и недостатки, поэтому при выборе материала для обезжиривания поверхности руководствуются технологической целесообразностью и возможностями производства.

Иногда для очистки металлических изделий используют травление поверхности с помощью кислот и щелочей.

Для улучшения адгезии лакокрасочных покрытий к металлу производят его фосфатирование и оксидирование. Фосфатирование заключается в образовании на металлической поверхности пористой пленки солей ортофосфорной кислоты - Zn 3 (P0 4) 2 Fe 3 (P04)2. Фосфатная пленка имеет мелкокристаллическую структуру и обладает высокой прочностью при ударе и изгибе.

Для подготовки к окраске алюминиевых изделий их поверхность оксидируют, т. е. на ней создают тончайшую (5-25 мкм) прочную оксидную пленку. Чаще всего применяют анодное оксидирование, при котором оксидная пленка создается с использованием в качестве электролита 20%-ного раствора серной кислоты. При химическом оксидировании используют сложные растворы окислителей.

При окрашивании металлов на подготовленную поверхность сначала наносят грунтовку, которая служит подслоем для нанесения лакокрасочного покрытия. Иногда грунтовка применяется в качестве самостоятельного защитного покрытия. Грунтовка должна обеспечивать высокую адгезию покрытия к металлу и обладать защитными свойствами. Это достигается сочетанием соответствующих пленкообразующих полимеров со специальными пигментами - ингибиторами коррозии металла, введением в композицию различных поверхностно-активных веществ и других добавок.

Грунтовки для металлов подразделяют на несколько типов.

Пассивирующие грунтовки содержат в своем составе наряду с пигментами хроматы и фосфаты.

Фосфатирующие грунтовки помимо пассивирующего действия, обеспечиваемого хроматными пигментами, фосфатируют металл вследствие присутствия в них фосфорной кислоты.

Протекторные грунтовки содержат большое количество цинковой пыли, что обеспечивает катодную защиту металлов, особенно эффективную в морской воде.

Изолирующие грунтовки содержат в качестве пигментов железный сурик и цинковые белила и защищают металл от проникновения влаги.

Преобразователи ржавчины содержат фосфорную кислоту, вступающую в химическое взаимодействие с продуктами коррозии на поверхности металла и преобразующую их в подслой под лакокрасочные покрытия.

Для выравнивания и исправления микро- и макродефектов поверхности применяют полимерные шпатлевки , которые производят на лаковой, масляной или клеевой основе. Шпатлевки содержат большое количество пигментов и наполнителей. Сухой остаток в шпатлевках достигает 80 %. Толщина слоя шпатлевки в отдельных случаях может доходить до 1 мм, а иногда и больше. Во избежание растрескивания на таких участках шпатлевка наносится в несколько слоев. Каждый последующий слой наносится после отверждения предыдущего.

Шпатлевки представляют собой пастообразную массу, которую наносят на поверхность шпателем. Некоторые жидкие шпатлевки наносят пневмораспылителем или кистью. После сушки зашпатлеван- ные участки подвергаются шлифованию ручным или механизированным способом.

Нанесение лакокрасочных материалов производится следующими способами:

  • пневматическим распылением с помощью сжатого воздуха;
  • безвоздушным распылением под высоким давлением;
  • распылением в электрическом поле высокого напряжения;
  • аэрозольным распылением с использованием в составе лакокрасочного материала сжиженных газов;
  • окунанием;
  • обливанием;
  • электроосаждением в ванне с водоразбавляемым лакокрасочным материалом;
  • валиками и кистями с использованием трафарета и без него.

Электроосаждение на катоде или аноде из водоразбавляемых лакокрасочных материалов, называемое электрофорезом, является наиболее экономичным способом нанесения лакокрасочных покрытий, особенно на изделия со сложной геометрией, например, кузов автомобиля.

Благодаря высокой проникающей способности водоразбавляемых лакокрасочных материалов метод электрофореза позволяет наносить их тонким равномерным слоем и на наружные, и на скрытые внутренние поверхности окрашиваемого изделия.

Порошковые краски, не содержащие растворители, наносят напылением в электрическом поле. При этом окрашиваемому изделию и порошкообразной полимерной краске сообщают заряды противоположного знака, в результате чего частицы дисперсной краски осаждаются на поверхности противоположно заряженного изделия, а затем сплавляются в печи.

Отверждение лакокрасочных материалов производится следующими способами:

  • сушкой при температуре окружающего воздуха. Ее применение ограничено, так как многие лакокрасочные материалы, пленко- образование которых осуществляется в результате химического взаимодействия компонентов, не позволяют получать покрытия с высоким качеством без нагрева;
  • конвективным нагревом горячим воздухом в специальных камерах;
  • радиационным нагревом под действием инфракрасного излучения;
  • индукционным нагревом в переменном электромагнитном поле;
  • под воздействием ультрафиолетовых лучей. Этот способ применяется для сушки лакокрасочных материалов на основе растворов олигомеров в мономерах, способных к совместной полимеризации, например, для полиакрилатных эмалей.

Выбор технологии отверждения определяется химической природой лакокрасочного материала, необходимой для его отверждения температурой и возможностями нагрева окрашиваемого изделия. В тех случаях, когда производят окраску изделий из полимеров или других материалов с низкой теплостойкостью, температура отверждения лакокрасочного материала должна быть существенно ниже допустимой температуры их нагрева. Например, для изделий из аморфных полимеров температура отверждения должна быть на 30-40 °С ниже их температуры стеклования.

  • 3.2. Наружная мойка автомобиля и агрегатов
  • Глава 4. Разборка автомобилей и агрегатов
  • 4.1. Организация разборочных работ
  • 4.2. Особенности разборки резьбовых соединений
  • 4.3. Разборка соединений с натягом
  • 4.4. Организация рабочих мест и техника безопасности при выполнении разборочных работ
  • Глава 5. Мойка и очистка деталей
  • 5.1. Особенности и характер загрязнений транспортных средств
  • 5.2. Механизм действия моющих средств
  • 5.3. Моющие средства
  • 5.4. Очистка деталей от продуктов преобразования тсм,
  • 5.5. Установки для мойки и очистки
  • 11111 П11illu-lj
  • 5.6. Технологический процесс моечно-очистных работ
  • 5.7. Техника безопасности при использовании моечного
  • 5.8. Очистка сточных вод
  • Глава 6. Оценка технического состояния составных частей автомобилей
  • 6.1. Виды дефектов и их характеристика
  • 6.2. Дефектация деталей
  • Форсированного изнашивания
  • Из магистрали
  • Двух оправок и кольца
  • 6.3. Диагностирование составных частей двигателей
  • * В скобках приведены предельные значения
  • Глава 7. Комплектование деталей и сборка агрегатов
  • 7.1. Комплектование деталей
  • 7.2. Методы обеспечения точности сборки
  • 7.3. Виды сборки
  • 7.4. Виды соединений и технология их сборки
  • Рукоятка
  • Стрелкой
  • 7.5. Контроль качества сборки
  • 7.6. Балансировка деталей и сборочных единиц
  • 7.7. Технологические процессы сборки составных частей
  • 7.8. Механизация и автоматизация процессов сборки
  • Глава 8. Приработка и испытание составных
  • 8.1. Задачи и классификация испытаний
  • 8.2. Испытания отремонтированных деталей
  • 8.3. Испытания отремонтированных агрегатов
  • Глава 9. Общая сборка, испытание и выдача
  • 9.1. Организация сборки автомобилей
  • 9.2. Механизация сборочных работ
  • 9.3. Испытание и выдача автомобилей из ремонта
  • Раздел III. Способы восстановления деталей
  • Глава 10. Классификация способов восстановления деталей
  • Глава 11. Восстановление деталей слесарно-
  • 11.1. Обработка деталей под ремонтный размер
  • 11.2. Постановка дополнительной ремонтной детали
  • 11.3. Заделка трещин в корпусных деталях
  • Отверстия; 8 - деталь
  • 11.4. Восстановление резьбовых поверхностей
  • Отверстие детали
  • 11.5. Восстановление посадочных отверстий свертными втулками
  • Параметры стальной ленты в зависимости от износа восстанавливаемого отверстия
  • Глава 12. Восстановление деталей способом пластического деформирования
  • 12.1. Сущность процесса
  • Интервалы температур горячей обработки металлов давлением, °с
  • 12.2. Восстановление размеров изношенных поверхностей деталей методами пластического деформирования
  • 12.3. Восстановление формы деталей
  • 12.4. Восстановление механических свойств деталей поверхностным пластическим деформированием
  • Глава 13. Восстановление деталей сваркой
  • 13.1. Общие сведения
  • 13.2. Сварка и наплавка
  • 13.3.Техника безопасности при выполнении сварочно-наплавочных работ
  • Глава 14. Газотермическое напыление
  • 14.1. Физика и сущность процесса
  • 14.2. Газоэлектрические методы напыления
  • 14.3. Газопламенное напыление
  • Штырь; 5 - пробка; 6 - наконечник
  • 14.4. Детонационное напыление
  • 14.5. Материалы для напыления
  • 14.6. Свойства газотермических покрытий
  • 14.7. Техника безопасности при выполнении газотермических работ
  • Глава 15. Восстановление деталей пайкой
  • 15.1. Общие сведения
  • 15.2. Технологические процессы паяния и лужения
  • 15.3. Припои и флюсы
  • 15.4. Техника безопасности при выполнении паяльных работ
  • Глава 16. Электрохимические способы восстановления деталей
  • 16.1. Технологический процесс электролитического осаждения металлов
  • 16.2. Хромирование
  • 16.3. Железнение
  • 16.4. Защитно-декоративные покрытия
  • 16.5. Оборудование для нанесения покрытий. Автоматизация процесса нанесения покрытий
  • 16.6. Производственная санитария и техника безопасности
  • Глава 17. Применение лакокрасочных покрытий в авторемонтном производстве
  • 17.1. Назначение лакокрасочных покрытий
  • 17.2. Лакокрасочные материалы и их характеристика,
  • 17.3. Технологический процесс нанесения лакокрасочных покрытий
  • 17.4. Производственная санитария и техника безопасности
  • Глава 18. Восстановление деталей с применением синтетических материалов
  • 18.1. Общие сведения
  • 18.2. Характеристика и области применения синтетических
  • 18.3. Технологии использования синтетических материалов
  • 18*4. Нанесение полимеров
  • 18.6. Нанесение покрытий и изготовление деталей
  • 18.7. Техника безопасности работы с синтетическими
  • Для защиты кожи применяют силиконовый крем, который тон­ким слоем наносят на лицо и руки.Раздел IV. Технология восстановления деталей и ремонт узлов и приборов
  • Глава 19. Общие сведения
  • Глава 20. Проектирование технологических процессов
  • 20.1. Исходные данные
  • 20.2. Структура технологического процесса восстановления деталей
  • Этапы разработки технологических процессов
  • 1 Анализ конструкций г деталей по чертежам и техническим услови- " ям) программ выпуска *и типа производства
  • Этапы разработки технологических процессов
  • Разработка технологических операций
  • 20.3. Выбор технологических баз
  • 20.4. Анализ дефектов детали и оформление
  • 20.5. Выбор способов устранения дефектов
  • 20.6. Последовательность выполнения операций
  • 20.7. Технологическая документация на восстановление детали
  • 20.8. Особенности учета затрат на ремонт
  • 20.9. Разработка технологических процессов сборки
  • Глава 21. Восстановление деталей
  • 21.1. Класс деталей «корпусные»
  • Приваривание прутка
  • 21.2. Класс деталей «круглые стержни»
  • Технологический маршрут типового технологического процесса восстановления деталей класса «круглые стержни»
  • 21.3. Класс деталей «полые цилиндры»
  • Глава 22. Ремонт узлов и приборов
  • 22.1. Ремонт топливных баков и топливопроводов
  • 22.2. Ремонт топливного и топливоподкачивающего насосов
  • 22.3. Ремонт топливного насоса высокого давления
  • Глава 23. Ремонт приборов электрооборудования
  • 23.1. Ремонт генераторов
  • Замыканий
  • 23.2. Ремонт стартеров
  • 23.3. Ремонт распределителей
  • Глава 24. Ремонт автомобильных шин
  • 24.1. Причины возникновения дефектов в шинах
  • 24.2. Ремонт покрышек с местным повреждением
  • Шарошками
  • 7. Обрезка лишней части стержняРис. 24.5. Технология ремонта бескамерной шинЫ с использованием автоаптечки
  • 1 2 Карагодии
  • 24.3. Технология восстановительного ремонта покрышек
  • 24.4. Технология ремонта камер
  • 24.5. Гарантийные обязательства
  • Глава 25. Ремонт кузовов и кабин
  • 25.1. Дефекты кузовов и кабин
  • 25.2. Технологический процесс ремонта кузовов и кабин
  • 25.3 Ремонт оборудования и механизмов кузова и кабин
  • 25.4. Ремонт неметаллических деталей кузовов
  • 25.5. Сборка и контроль кузовов и кабин
  • Глава 26. Качество ремонта автомобилей
  • 26.1. Общие положения
  • 26.2. Оценка качества ремонта автомобилей и их агрегатов
  • 26.3. Контроль качества ремонта автомобилей
  • 26.4. Сертификация услуг по ремонту автомобилей
  • Глава 27. Классификация приспособлений
  • Классификация приспособлений
  • Глава 28. Приводы
  • Поршень
  • Глава 29. Методика конструирования технологической оснастки
  • Глава 30. Методы технического нормирования труда
  • Глава 31. Техническое нормирование
  • 31.1. Общие положения
  • 31.2. Расчет основного (машинного) времени
  • * На горизонтально-фрезерных станках. ** На зуборезных полуавтоматах.
  • Глава 32. Техническое нормирование ремонтных
  • 32.1. Нормирование разборочно-сборочных работ
  • 32.2. Нормирование операций контроля
  • 32.3. Нормирование слесарных работ
  • 32.4. Нормирование работ, связанных с обработкой
  • 32.5. Нормирование жестяницких, паяльных
  • 32.6. Нормирование сварочных и наплавочных работ
  • 32.7. Нормирование работ газотермического напыления
  • 32.8. Нормирование гальванических работ
  • 32.9. Нормирование работ, связанных с использованием
  • 15 Карагодии
  • Раздел VII. Основы проектирования авторемонтных предприятий
  • Глава 33. Стадии и этапы проектирования авторемонтных предприятий
  • Глава 34. Технологический расчет основных
  • 34.1. Производственный состав ремонтного предприятия
  • 34.2. Режим работы и годовые фонды времени предприятия
  • 34.3. Способы расчета годовых объемов работ ремонтных
  • 17.3. Технологический процесс нанесения лакокрасочных покрытий

    В зависимости от масштаба и вида производства окрасочные работы сосредоточены в одном или нескольких местах. Это вызва­но необходимостью предохранить готовые детали от появления на них коррозионных разрушений при их перемещении и хранении. При такой организации производства окрасочные работы выпол­няют на участках (или в окрасочных отделениях).

    Принятую технологию окрашивания отражают в маршрутных картах технологических процессов, которые разрабатываются для отдельных видов изделий. В картах указываются все стадии процес­са окрашивания, применяемые материалы, нормы расхода этих материалов, режим сушки и некоторые другие показатели.

    Выбор способа окрашивания зависит от ряда условий, напри­мер от требований, предъявляемых к покрытию (класс покрытия), от вида применяемых лакокрасочных материалов, конфигурации и размеров изделий, масштаба и вида производства. При окраши­вании изделий могут применять несколько способов. В каждом кон­кретном случае вопрос выбора способа окрашивания решается возможностью производства и экономической целесообразностью.

    Технологический процесс окрашивания складывается из сле­дующих основных операций: подготовки поверхности, грунтова­ния, шпатлевания, нанесения покрывных материалов (краски, эмали, лака) и сушки покрытий.

    Приготовление окрасочных материалов . Перед употреблением ок­расочные материалы тщательно перемешивают электромеханичес­ким или вибрационным способом, процеживают и разбавляют соот­ветствующими растворителями до необходимой рабочей вязкости.

    Подготовка поверхности детали к окраске производится с це­лью удаления различного рода загрязнений, влаги, коррозионных повреждений, старой краски и др. Примерно 90 % трудозатрат при­ходится на подготовительные работы и только 10 % - на окраши­вание и сушку. От качества подготовки поверхностей в значитель­ной степени зависит долговечность лакокрасочного покрытия.

    9 Krip.iiодин

    Окрашиваемая поверхность в зависимости от применяемого способа ее рчистки может иметь различную степень шероховатос­ти, отличающуюся размером выступов и глубиной впадин. Для обеспечения защиты металла от коррозии толщина слоя краски должна превышать выступающие на металле гребешки в 2... 3 раза.

    Подготовка поверхностей к окраске включает очистку деталей, обезжиривание, мойку и сушку. Очистка деталей от загрязнений производится механической обработкой (механическим инструмен­том, сухим абразивом, гидроабразивной очисткой и др.) или хи­мическим способом (обезжириванием, одновременным обезжи­риванием и травлением, фосфатированием и др.). Загрязнения не­жирового происхождения удаляются водой или щетками. Влажные поверхности протирают сухой ветошью.

    В ремонтной практике применяют три способа удаления старой краски - это огневой, механический и химический.

    При огневом способе старая краска выжигается с повер­хности детали пламенем газовой горелки или паяльной лампы (для удаления старой краски с деталей кузова и оперения этот способ применять не рекомендуется), а при механическом - с по­мощью щеток с механическим приводом, дробью и т.д. Хими­ческий способ удаления старой краски - это наиболее эф­фективный как по качеству, так и по производительности способ. Старую краску чаще всего удаляют органическими смывками (СД, АФТ-1, АФТ-8, СП-6, СП-7, СПС-1) и щелочными растворами (растворы едкого натра (каустика) с концентрацией 8... 10 г/л, смеси каустика с кальцинированной содой и т.д.). Последователь­ность удаления старой краски смывками: очистка от грязи, жира, мойка деталей или кузова; сушка после мойки; нанесение смывки на поверхность детали кузова кистью; выдержка 15... 30 мин (в зави­симости от марки смывки и вида материала покрытия) до полного вспучивания старой краски; удаление старой вспученной краски механическим способом (щетками, скребками и т.п.); промывка, обезжиривание поверхности уайт-спиритом или другими органи­ческими растворителями; сушка после промывки, обезжиривание.

    Щелочные растворы используют для удаления старой краски в ваннах. Последовательность удаления старой краски: очистка от грязи, обезжиривание, промывка; сушка после промывки; погружение и выдержка в ванне со щелочным раствором (при температуре раст­вора 50...60°С); нейтрализация в ванне с раствором фосфорной кислоты с концентрацией 8,5...9,0 г/л фосфорной кислоты (при концентрации 10 г/л каустика в щелочной ванне) или 5...6 г/л фосфорной кислоты в кислотной ванне (при концентрации 10 г/л кальцинированной соды в щелочной ванне); промывка в ванне с проточной водой при температуре 50...70°С; сушка после промывки.

    После удаления старой краски и продуктов коррозии проводят операции обезжиривания, травления, фосфатирования и пасси­вирования.

    Детали из черных металлов, никеля, меди обезжиривают в ще­лочных растворах. Изделия из олова, свинца, алюминия, цинка и и х сплавов обезжиривают в растворах солей с меньшей свободной щелочностью (углекислый или фосфорный натрий, углекислый к алий, жидкое стекло).

    Травление - очистка металлических деталей от коррозии в растворах кислот, кислых солей или щелочей. На практике опера­ции травления и обезжиривания совмещают.

    Фосфатирование - процесс химической обработки сталь­ных деталей для получения на их поверхности слоя фосфорнокис­лых соединений, не растворимого в воде. Этот слой увеличивает срок службы лакокрасочного покрытия, улучшает сцепление их с металлом и замедляет развитие коррозии в местах нарушения лако­красочной пленки. Детали кузова и кабины подлежат фосфатиро- ванию в обязательном порядке.

    Пассивирование необходимо для повышения коррозион­ной стойкости лакокрасочного покрытия, нанесенного на фос­фатную пленку. Ее проводят в ваннах, струйных камерах или нане­сением раствора двухромовокислого калия или двухромовокисло- го натрия (3... 5 г/л) волосяными щетками при температуре 70... 80°С продолжительностью обработки 1...3 мин.

    Перед нанесением лакокрасочного покрытия поверхность изде­лий должна быть сухой. Наличие влаги под пленкой краски исключает хорошую ее сцепляемость и вызывает коррозию металла. Сушка обыч­но производится воздухом, нагретым до температуры 115... 125°С, в течение 1... 3 мин до удаления видимых следов влаги.

    Процесс окрашивания должен быть организован так, чтобы после подготовки поверхности она сразу же была загрунтована, так как при больших перерывах между окончанием подготовки и грунтованием, особенно черных металлов, поверхность окисляет­ся и загрязняется.

    Грунтование. Применение той или иной грунтовки определяется в основном видом защищаемого материала, условиями эксплуатации, а также маркой наносимых покрывных эмалей, красок и возмо­жностью применения горячей сушки. Сцепление (адгезия) грунто­вочного слоя с поверхностью определяется качеством ее подготовки.

    Грунтовку нельзя наносить толстым слоем. Ее наносят равно­мерным слоем толщиной 12...20 мкм, а фосфатирующие грунтов­ки - толщиной 5... 8 мкм. Нанесение грунтовок производят всеми описанными ранее способами. Для получения грунтовочного слоя с хорошими защитными свойствами, не разрушающегося при на­несении шпатлевки или эмали, его необходимо высушить, но не пересушивать. Режим сушки грунтовки указан в нормативно-тех- нической документации, по которой производят окрашивание дан­ных изделий. При пересушке необратимых грунтовок (феноломасля- ных, алкидных, эпоксидных и др.) резко ухудшается сцепление с ними наносимых покрывных эмалей, особенно быстро сохнущих.

    Шпатлевание . На поверхностях деталей могут быть вмятины, небольшие углубления, раковины, несплошность в местах стыков, царапины и другие дефекты, которые заделывают нанесением на поверхность шпатлевки. Шпатлевка способствует значительному улучшению внешнего вида покрытий, но так как содержит боль­шое количество наполнителей и пигментов, то ухудшает механи­ческие свойства, эластичность и вибростойкость покрытий.

    Шпатлевание применяют в тех случаях, когда другими метода­ми (подготовкой, грунтованием и др.) невозможно удалить де­фекты поверхностей.

    Выравнивание поверхностей производят несколькими тонки­ми слоями. Нанесение каждого последующего слоя выполняют толь­ко после полного высыхания предыдущего. Общая толщина быст­росохнущих шпатлевок не должна быть более 0,5...0,6 мм. Эпок­сидные шпатлевки, не содержащие растворителей, допускается наносить толщиной до 3 мм. При нанесении шпатлевки толстыми слоями высыхание ее протекает неравномерно, что приводит к растрескиванию шпатлевки и отслаиванию окрасочного слоя.

    Шпатлевку наносят на предварительно загрунтованную и хоро­шо просушенную поверхность. Для улучшения сцепления с грун­товкой проводят обработку загрунтованной поверхности шлифо­вальной шкуркой с последующим удалением продуктов зачистки. Сначала проводят шпатлевание наиболее значительных углубле­ний и неровностей, затем шпатлевку сушат и обрабатывают шкур­кой, после чего производят шпатлевание всей поверхности.

    Шпатлевку наносят на поверхность методом пневматического рас­пыления, механическим или ручным шпателем. Зашпатлеванную поверхность после высыхания шпатлевки тщательно шлифуют.

    Шлифование. Для удаления с зашпатлеванной поверхности шеро­ховатостей, неровностей, а также соринок, частиц пыли и других дефектов производят шлифование. Для шлифования применяют раз­личные абразивные материалы в порошкообразном виде или в виде абразивных шкурок и лент на бумажной и тканевой основе. Шлифо­вать можно только полностью высохшие слои покрытия. Такой слой должен быть твердым, не сдираться при шлифовании, а абразив не должен сразу «засаливаться» от покрытия. Операцию шлифования проводят вручную или с помощью механизированного инструмента.

    Используют шлифование «сухое» и «мокрое». В последнем слу­чае поверхность смачивают водой или каким-либо инертным раст­ворителем, шлифовальную шкурку также время от времени сма­чивают водой либо растворителем, промывая ее от загрязнения шлифовочной пылью. Вследствие этого уменьшается количество пыли, увеличивается срок службы шкурки и улучшается каче­ство шлифования.

    Нанесение внешних слоев покрытий. После нанесения грунтовки и шпатлевки (если она необходима) наносят внешние слои по­крытия. Число слоев и выбор лакокрасочного материала определя- jotch требованиями к внешнему виду и условиями, в которых из­делие будет эксплуатироваться.

    Первый слой эмали по шпатлевке является «выявительным», его заносят более тонко, чем последующие. Выявительный слой служит для обнаружения дефектов на зашпатлеванной поверхности. Выяв­ленные дефекты устраняют быстросохнущими шпатлевками. Высу­шенные зашпатлеванные участки обрабатывают шкуркой и удаляют продукты зачистки. После устранения дефектов наносят несколько тонких слоев эмали. Нанесение эмалей производят распылителем.

    Для получения покрытий хорошего качества с красивым вне­шним видом в участке (отделении) должно быть чисто, простор­но, много света; температура помещения должна поддерживаться в пределах 15...25°С при влажности не выше 75... 80%. Вытяжная вентиляция должна обеспечивать отсос паров растворителей, пре­пятствовать оседанию красочной пыли, которая сильно загрязня­ет поверхность и ухудшает внешний вид покрытия.

    Каждый последующий слой эмали наносят на хорошо просу­шенный предыдущий слой и после устранения дефектов.

    Последний слой покрытия полируют полировочной пастой для придания более красивого внешнего вида.

    Полирование . Для придания всей окрашенной поверхности рав­номерного зеркального блеска производят полирование. Для этого используют специальные полировочные пасты (№ 291 и др.). По­лирование проводят небольшими участками. Эту операцию можно осуществлять вручную (фланелевым тампоном) или с помощью механических приспособлений.

    Сушка. После нанесения каждого слоя лакокрасочных материа­лов проводится сушка. Она может быть естественной и искусствен­ной. Процессы естественной сушки ускоряют интенсивная солнеч­ная радиация и достаточная скорость ветра. Чаще всего естествен­ная сушка применяется для быстросохнущих лакокрасочных материалов. Основные способы искусственной сушки: конвекци­онная, терморадиационная, комбинированная.

    Конвекционная сушка. Она выполняется в сушильных камерах потоком горячего воздуха. Тепло идет от верхнего слоя лакокрасочного покрытия к металлу изделия, образуя верхнюю корку, которая препятствует удалению летучих компонентов, и тем самым замедляется процесс сушки. Температура сушки в зави­симости от вида лакокрасочного покрытия колеблется в пределах 70... 140°С. Продолжительность сушки от 0,3...8 ч.

    Терморадиационная сушка. Окрашенная деталь облу­чается инфракрасными лучами, а сушка начинается с поверхнос­ти металла, распространяясь к поверхности покрытия.

    Комбинированная сушка (терморадиационно-конвек- Ционная). Суть его состоит в том, что кроме облучения изделий инфракрасными лучами производится дополнительный нагрев го­рячим воздухом.

    Перспективными методами сушки лакокрасочных покрытий яв­ляется ультрафиолетовое облучение и электронно-лучевая сушка.

    Контроль качества окраски изделий. Контроль осуществляют вне­шним осмотром, измерениями толщины нанесенного слоя плен­ки и адгезионных свойств подготовленной поверхности.

    Внешним осмотром выявляют наличие блеска покрытия, сор­ности, рисок, потеков и других дефектов окрашенной поверхнос­ти. На поверхности допускаются на 1 дм 2 площади не более 4 шт. соринок размерами не более 0,5 х 0,5 мм, незначительная шагрень, отдельные риски и штрихи. Лакокрасочное покрытие не должно иметь подтеков, волнистости и разнооттеночности.

    Определение степени сушки лакокрасочных материалов по осаж­дению на поверхности пыли является наиболее распространен­ным на практике способом и заключается в испытании состояния высыхающей поверхности прикосновением пальца. Пробу паль­цем проводят каждые 15 мин, затем каждые 30 мин, субъективно определяя степень высыхания пленки. Принимают, что пленка освободилась от пыли, если при легком проведении пальцем на ней не остается следов. На высохшей от пыли пленке еще возмо­жен сильный отлип.

    Степень практического высыхания наиболее просто и надежно можно определить отпечатком пальца. Пленка считается практи­чески высохшей, если при нажатии на нее пальцем (без особого усилия) она не дает отлипа и на ней не остается отпечатка.

    Толщина лакокрасочной пленки без нарушения ее целостности определяется магнитным толщиномером ИТП-1, имеющим диа­пазон измерений 10...500 мкм. Действие прибора основано на из­мерении силы притяжения магнита к ферромагнитной подложке в зависимости от толщины немагнитной пленки.

    Контроль адгезии (прилипаемости) покрытия к металлу вы­полняется методом решетчатого надреза. На внутренней поверхно­сти изделия делают 5...7 параллельных надрезов до основного ме­талла скальпелем по линейке на расстоянии 1 ...2 мм в зависимос­ти от толщины покрытия и столько же надрезов перпендикулярно. В результате образуется решетка из квадратов. Затем поверхность очищают кистью и оценивают по четырехбалльной системе. Пол­ное или частичное (более 35% площади) отслаивание покрытия соответствует четвертому баллу. Первый балл присваивают покры­тию, когда отслаивание его кусочков не наблюдается.

    В процессе нанесения лакокрасочных покрытий на подготовленную поверхность, как правило, различают три стадии: грунтование, шпатлевание, нанесение требуемого числа лакокрасочных слоев. В результате последовательного выполнения этих операций получают защитную систему, которая обеспечивает высокую адгезию покрытия с защищаемым металлом, а также стойкость покрытия к действию окружающей коррозионной среды.

    Большое значение имеет стадия грунтования металла, которая является первой операций, следующей, по возможности, немедленно после подготовки поверхности. Понимание сущности этой ответственной операции позволяет получить высококачественное покрытие. Дело в том, что в первые минуты и часы очищенная поверхность металла еще лишена окисных пленок и является поэтому очень активной для адгезии различных материалов. Грунтовочный слой может наноситься из покрывных материалов, но значительно меньшей вязкости. Это делается для того, чтобы жидкий слой ЛКМ проник во все поры шероховатой поверхности металла.

    В связи с тем, что при нанесении слоя грунтовки воздушным и, отчасти, безвоздушным распылением под жидким слоем возможно защемление микроскопических пузырьков воздуха, снижающих площадь адгезии покрытия с металлом, в ответственных случаях рекомендуется после грунтования распылением пройтись по нанесенному слою кистью или, что лучше, валиком, и втереть грунтовку в поры металла, одновременно удаляя из нее пузырьки воздуха. Это особенно важно делать, если между процессом пескоструйной очистки поверхности и нанесением грунтовки проходит несколько часов. Во влажную погоду образующаяся на металле невидимая пленка воды растушевывается и удаляется кистью или валиком, обеспечивая получение высокого качества покрытия.

    Сушку грунтовочного слоя при обычной температуре проводят в соответствии с режимом, предусмотренным ГОСТом, ТУ или установленной технологией. Важно подчеркнуть, что во время нанесения грунтовочного слоя и его сушки не рекомендуется проводить пылеобразующие очистные работы. Следовательно, надо рассчитать так величину площади очистки поверхности, чтобы за одну или две смены можно было закончить нанесение грунтовки, а в нерабочее время (ночью) эта грунтовка успела высохнуть. После этого очистные операции можно продолжить, пока вся защищаемая поверхность резервуара не будет загрунтована.

    Операция шпатлевания проводится после или одновременно с процессом грунтовки. Она предназначается для выравнивания загрунтованного металла, если на нем есть глубокие царапины, оспины и т.д. Шпатлевке в обязательном порядке подвергаются сварные швы. Шпатлевку наносят тонким слоем толщиной не более 0,5 мм во избежание ее растрескивания.

    Далее идет сам процесс нанесения требуемого числа покрывных слоев с их междуслойной сушкой до состояния «до отлива». Время нанесения одного и последующих слоев не регламентируется, но особенно затягивать этот процесс нежелательно. Целесообразно при осуществлении локального процесса очистки и грунтования перед началом новой стадии очистки нанести и осушить один покрывной слой. Это гарантирует высокое качество наносимых защитных покрытий.


    В случае применения пневматических краскораспылителей направление струи ЛКМ должно быть перпендикулярным к окрашиваемой поверхности. Для получения ровного сплошного слоя лакокрасочный материал наносят сначала вертикальными, а затем горизонтальными полосами. При этом край каждой последующей полосы должен захватывать край ранее нанесенной. Краску необходимо периодически перемешивать, особенно при использовании красконагнетательных бачков. Технические характеристики наиболее пригодных для противокоррозионной защиты резервуаров пневматических краскораспылителей приведены в табл. 8.18, а вспомогательное оборудование - в табл. 8.19.



    Основным недостатком воздушных (пневматических) окрасочных установок является потеря лакокрасочного материала на туманообразование (появление красочного аэрозоля), который не доходит до окрашиваемой поверхности и заполняет окружающее пространство, создавая взрывоопасную концентрацию краски и вредные для здоровья условия. По этой причине при использовании пневматических установок требуется очень высокая кратность обмена воздуха (более 10) и интенсивная вентиляция внутренней полости резервуара в рабочей зоне окраски.

    В связи с этим для нанесения лакокрасочных материалов в резервуарах предпочтительны установки безвоздушного распыления, когда ЛКМ распыляется под давлением красочной жидкости. Туманообразование при этом заметно снижается.



    В табл. 8.20, 8.21 представлены наиболее высокопроизводительные установки безвоздушного распыления (УБР), выпускаемые сейчас.



    Особенно совершенны УБР марок 2600Н 7000Н, выпускаемые Вильнюсским ПО строительно-отделочных машин по зарубежной лицензии. Достоинством этих установок является: небольшие потери ЛКМ на бесполезное образование аэрозоля, незначительное защемление воздуха в порах металла благодаря отсутствию воздушной компоненты в наносимом на поверхность материале, возможность нанесения высоковязких ЛКМ,что позволяет снизить число наносимых слоев и, следовательно, сократить время, которое надо затратить на межслойную сушку. Приведенные в перечне зарубежные установки Виза-1 и Виза-3 (Чехия) также имеют высокие технико-экономические показатели и малый вес.

    Среди отечественных агрегатов обращает на себя внимание установка комбинированного распыления ЛКМ «Заря-1», выпускаемая АО «НИИ Лакокраспокрытие» (г. Хотьково). Она сочетает в себе два известных метода распыления: безвоздушный и пневматический. При этом подача воздуха в выходящую из аппарата струю ЛКМ производится таким образом (по кольцевой щели), чтобы эта струя шла только на окрашиваемую поверхность. Получается значительная экономия ЛКМ и предотвращается образование вредного окрасочного аэрозоля. Распыление ЛКМ этой установкой производится при давлении 1,5 - 7,0 МПа, а дополнительным воздействием на факел сжатого воздуха под давлением 0,1 - 0,2 МПа сокращается расход ЛКМ, повышается качество получаемого покрытия, снижаются энергозатраты. Установка «Заря-1» комплектуется специальным краскораспылителем комбинированного распыления, шлангами высокого давления длиной до 12 м и всасывающим шлангом до 1,5 м, позволяющим осуществлять забор ЛКМ из любой емкости, в т. ч. расположенной вне резервуара. Такие установки наиболее эффективны для применения внутри резервуаров.

    Весьма полезна при выполнении отдельных работ внутри резервуаров малогабаритная переносная (11 кг) установка безвоздушного распыления «Спутник-1» (АО «НИИ Лакокраспокрытие»). Предназначена для нанесения ЛКМ в условиях частой смены места окрашивания и постоянного перемещения оператора в резервуаре. Особенно она пригодна для выполнения окрасочных работ на высоте при производстве восстановительных и ремонтных работ на уже нанесенном покрытии. Установки «Спутник-1» укомплектованы шлангом высокого давления длиной до 12 м, краскораспылителем КРБ-1 с набором сопел с расходом краски 400, 600 и 800 г/мин и всасывающим шлангом длиной 1,5 м.

    Заслуживает внимания установка УБР «Янтарь», выпускаемая в системе морского судостроения. Предназначена для грунтовки и окраски подводных и надводных частей,корпусов судов,надстроек и т.д. Обладает высокой производительностью. Общая масса аппарата 21 - 39 кг, в зависимости от этого он размещен на тележке или подставке. Широко применяется в окрасочных работах крупногабаритных изделий и поэтому может быть рекомендована при противокоррозионной защите стальных резервуаров различной емкости. При эксплуатации этих установок необходимо тщательно соблюдать периодичность операций по перемешиванию и, особенно, по фильтрованию ЛКМ, поскольку наличие даже мельчайших частиц выводит распылитель и установку из строя - закупоривает все подводящие и распыляющие каналы. Требования к чистоте сжатого воздуха здесь также повышены. Соблюдение правил эксплуатации УВР И УБР гарантирует их высокопроизводительную работу.

    Большинство установок УВР и УБР (кроме 2600Н и 7000Н) способны наносить ЛКМ средней вязкости (40 - 50 с по ВЗ-246), что требует использования трех-четырех слоев ЛКМ.

    Нанесение высоковязких (безрастворительных) двухкомпонентных материалов на основе эпоксидных и, особенно, полиэфирных смол представляет собой довольно сложную техническую проблему, хотя применение новых установок позволяет ограничиться нанесением всего одного-двух слоев покрытия с требуемой толщиной (150 - 500 мкм).



    В нашей стране выпускаются два типа установок для нанесения высоковязких двухупаковочных эпоксидных и полиуретановых материалов - УНДП (АО «НИИ Лакокраспокрытие») и ТОН (судостроительная промышленность) . Техническая характеристика установок УНДП-4, ТОН-301 и ТОН-601 представлены в табл. 8.22.

    Установка ТОН предназначена для механизации окраски поверхности замкнутых судовых объемов (балластных цистерн, танков и др.) двухкомпонентными ЛКМ, не содержащими растворители. Поэтому установки ТОН рекомендуются для защиты стальных резервуаров.

    Принцип действия установок основан на методах безвоздушного распыления и раздельной подачи компонентов эпоксидных и полиуретановых смол к пистолету.

    Установки ТОН состоят из двух автономных блоков, смонтированных на транспортных тележках: нагнетательного блока и блока нагрева. Нагнетательный блок включает расходные баки основы и отвердителя, дозатор компонентов, фильтры грубой и тонкой очистки, обогреваемые напорные шланги основы и отвердителя, смесительную камеру, гибкий участок напорного шланга и распылительный пистолет.

    Блок нагрева состоит из расходного бака промежуточного теплоносителя (горячая вода), системы электрообогрева и циркуляционного насоса.

    Конструктивные особенности установок ТОН, благодаря которым достигаются преимущества перед аналогичными отечественными (УНДП-4) и зарубежными образцами:

    Встроенные в пневмопровод дозирующие и циркуляционные насосы, обеспечивающие портативность и повышенные показатели назначения;

    Раздельное исполнение смесительной камеры и распылительного пистолета, позволяющее производить окраску труднодоступных мест;

    Автономное использование блока нагрева, обеспечивающее взрывобезопасность и исключающее опасность поражения операторов электрическим током.

    Применение установки позволяет:

    Исключить тяжелый физический труд при окраске поверхностей в замкнутых объемах;

    Улучшить условия проведения работ благодаря отсутствию растворителей в применяемых ЛКМ и незначительности туманообразования (красочный аэрозоль);

    Снизить расход ЛКМ благодаря исключению потерь на полимеризацию в расходных емкостях;

    Снизить трудоемкость работ благодаря уменьшению количества слоев покрытия, увеличению производительности окраски, а также исключению непроизводительного приготовления двухкомпонентных материалов малыми партиями и транспортировки их к месту работы.

    Все составные части установок ТОН объединяются техническими условиями ТУ 5.981-13333-81 «Комплект оборудования ТОН». Запрос документации и справки можно получить по адресу: 198188, Санкт-Петербург, ЦНИИ «Румб». Изготовление установок производится по заявке.

    Установка УНДП-4 по сравнению с установками ТОН менее совершенна и менее производительна, и, главное, рассчитана на пневматическое распыление, что вызывает некоторое туманообразование. Регулируемое соотношение компонентов от 1:1 до 1:10. Установка состоит из двух емкостей для материалов с общей рубашкой для подогрева и перемешивающими устройствами, трех блоков-насосов, трех распылителей; имеется отдельная емкость для растворителя, снабжена шлангами для подачи воздуха, воды-теплоносителя. Распылитель подогревается, в нем происходит внутреннее перемешивание компонентов.

    Вязкость распыления - не более 200 с по ВЗ-246 (или 1,0 Па.с). Рабочее давление - 0,5 МПа. Исходная вязкость (например, эмали ЭП-7105) при 20"С - 8,29 Па.с, а при температуре 70"С - 0,25 Па.с, что позволяет подобные ЛКМ легко распылять.

    Общим недостатком всех этих установок является необходимость подогрева применяющихся ЛКМ и их компонентов, что ограничивает применение данных установок для противокоррозионных работ внутри резервуаров в зимнее время. Однако, если резервуары будут теплоизолироваться, поскольку это основное условие для проведения антикоррозионных работ в зимнее время, тогда недостатки установок снимаются. Важно подчеркнуть, что при отсутствии летучих и взрывоопасных растворителей в составе ЛКМ, ограничением их нанесения 1 - 2 слоями можно существенно поднять безопасность работ и ускорить их ведение в зимнее время.

    Применение высоковязких (двух- трехупаковочных) быстро отверждающихся полиэфирных смол делает ограниченным использование и указанных выше установок. В нашей стране пока нет механизированных установок для нанесения высоковязких полиэфирных композиций, разработанных институтом химии АН Украины. В настоящее время немецкая фирма «Глас-Крафт» («Глас-Мейт») такую установку создала и продемонстрировала на Московской выставке. Отличительные свойства данной установки - смешение компонентов в факеле на выходе из особого трехканального пистолета-распылителя. Поэтому быстрое отверждение покрытия неопасно для этой установки, а ее подводящие каналы не забиваются полимеризованной смолой. Очистка всех подводящих каналов установки от компонентов смолы происходит с помощью сжатого воздуха. По имеющимся данным, такая установка создана в нашей стране в системе «Энергия», ею пользуются для нанесения вязких материалов.



    В табл. 8.23 приведены технические характеристики выпускаемых в нашей стране подводящих шлангов. АО «НИИ Лакокраспокрытие» выпускает шланги ШВД-200 до 30 м длиной, с заделками как из конструкционных, так и коррозионно-стойких сталей (ТУ 6-10-1471-78).

    В передвижной сушильной установке УСПО-1 применяется для осушки оптическое излучение. Может быть использована для быстрой сушки и отверждения нанесенных покрытий в ходе восстановительных или ремонтных работ внутри резервуара. Несколько таких установок, помещенных на тележки, можно использовать для ускорения сушки или отверждения лакокрасочных покрытий, нанесенных на днище и нижние пояса резервуаров.



    Контроль качества нанесенных грунтовок и лакокрасочных покрытий осуществляется приборами, приведенными в табл. 8.24. Сюда же включена портативная ультракоротковолновая радиостанция, которая может существенно повысить безопасность и качество проводимых внутри резервуаров антикоррозионных работ в условиях ограниченной видимости и затрудненности общения работников, выполняющих работу в закрытом помещении и на большой высоте.

    Наибольшее распространение получили два способа нанесения жидкостных лакокрасочных покрытий - пневматическое распыление и нанесение в электростатическом поле.

    Пневматическое распыление является одним из наиболее распространенных способов окраски деталей СП. Этим способом можно наносить материалы на основе почти всех видов пленкообразователей на изделия всех групп сложности. Производительность окраски пневмораспылением достаточно высокая. Качество покрытия удовлетворительное. Недостатками этого способа являются значительные потери лакокрасочных материалов на туманообразование (до 50%); высокая токсичность и вследствие этого необходимость применения окрасочных камер с устройствами вытяжки и очистки загрязненного воздуха, пожароопасность; значительный расход растворителей для разведения лакокрасочных материалов до рабочей вязкости.

    Качество покрытия при этом способе в значительной степени определяется степенью очистки сжатого воздуха, поскольку наличие влаги и масел вызывает брак. Поэтому воздух, поступающей от пневмосмеси, подвергается очистке в специальных маслоотделителях. Для поддержания заданной вязкости лакокрасочного материала используются различные растворители

    Для повышения эффективности окраски способом пневпораспыления, экономии растворителей (до 40%) и сокращения числа наносимых слоев применяется нанесение лакокрасочных материалов с подогревом.

    Безвоздушное распыление . Сущность способа заключается в том, что распыление лакокрасочного материала происходит без сжатого воздуха под воздействием высокого гидростатического давления, создаваемого во внутренней полости распыляющего устройства и вытесняющего материал через отверстие сопла. Безвоздушное распыление осуществляется следующим образом. Краску подогревают в замкнутой системе до 70-100°С и под давлением 4-6 МПа подают к распылителю. Поскольку при выходе краски из сопла в атмосферу происходит перепад давлений от 4-6 до 0,1 МПа, то при этом имеет место резкое увеличение объема и дробление частиц краски. Так как факел распыляемой краски защищен от окружающей среды оболочкой паров растворителя, туман не образуется.

    Установка безвоздушного распыления работает следующим образом. Из бачка 1 краска насосом 4 через нагреватель 5 подается к распылителю 6. Неиспользованная часть краски сбрасывается под давлением через систему шлангов 2 и обратный клапан 3 в бачок, Таким образом создается непрерывная циркуляция краски, необходимая для поддержания постоянной температуры и давления на распылителе.

    Данный способ имеет существенные преимущества перед пневматическим распылением: уменьшение расхода лакокрасочных материалов на 20-25% благодаря уменьшению потерь на туманообразование; снижение затрат на эксплуатацию распылительных камер из-за их более легкой очистки; улучшение условий труда и др.

    Окраска в электростатическом поле является основным способом нанесения лакокрасочных покрытий на детали СП. Способ основан на переносе заряженных частиц эмали в электростатическом поле высокого напряжения, создаваемом между системой коронирующих электродов-распылителей и окрашиваемыми изделиями.

    Частицы краски, приобретая заряд, движутся вдоль силовых линий электрического поля и осаждаются на поверхности детали. Обычно коронирующий электрод подключают к отрицательному полюсу (окрашивающий материал при этом получает отрицательный заряд), а изделие - к положительному полюсу источника высокого напряжения. Несущий изделия конвейер, как правило, заземляют.

    Схема электростатических распылителей приведена на рисунке. На движущийся заземленный конвейер 3 навешиваются детали 2, которые, проходя между чашками-краскораспылителями 7, подвергаются окрашиванию. Краска к чашкам-краскораспылителям подается из бачка 4. Для увеличения облака краски, а следовательно, и площади окраски чашки-краскораспылители вращаются вокруг своей оси, разбрасывая частицы краски под действием центробежной силы. Обычно в окрасочной камере находится по две чашки-краскораспылители с каждой стороны окрашиваемого изделия. Межэлектродное расстояние 200-300 мм. Напряжение, создаваемое на чашках-краскораспылителях, до 80 кВ. Равномерное движение конвейера обеспечивает равномерность нанесения покрытия. Преимуществами способа является высокое качество покрытия, низкий расход материала, недостатками – высокая стоимость оборудования.

    Окунание (погружение) в ванну является весьма производительным и простым по технике выполнения. Окунание широко применяется при лакировании изделий. Этот способ может быть применен только к изделиям обтекаемой формы, т.е. таким, на которых при выгрузке из ванны не задерживалась бы краска. При окраске окунанием изделия погружают в ванну на определенное время, затем вынимают, дают возможность краске стечь и направляют на сушку.

    Преимуществами этого способа являются его простота и отсутствие необходимости применения дорогостоящего оборудования. Недостатками являются значительное испарение материала, натеки краски при сливе и неравномерность покрытия. Изменяя состав и вязкость краски, можно получать покрытия толщиной 30-40 мкм и более.

    Вязкость краски влияет не только на толщину покрытия, но и на скорость ее стекания с окрашенной поверхности, уменьшая толщину. С увеличением скорости поднятия изделия из ванны толщина пленки увеличивается.

    Для улучшения качества покрытия применяются специальные приемы. Такие, как установка над лотком стекания краски металлической сетки, заряженной положительно. Конвейер получает отрицательный заряд, и между изделиями и сеткой образуется электрическое поле, стягивающее отрицательно заряженные капли краски с изделия. Применяется также технология окраски окунанием с выдержкой в парах растворителя. Во время выдержки происходит выравнивание толщины покрытия благодаря более интенсивному удалению излишков краски в нижней зоне изделия.

    Струйный облив. Этим способом окрашиваются изделия, к которым предъявляются невысокие требования к качеству отделки. Принципиально окраска обливом мало отличается от окраски окунанием. Толщина покрытия может достигать 60 мкм.

    Сущность этого способа заключается в том, что изделия на конвейере 2 поступают в окрасочную камеру 3, где их обливают краской из специальных сопел-форсунок 4. Избыток краски стекает по лотку в резервуар, откуда насосом 1 через фильтры снова подается к форсункам. Система вентиляции, включающая в себя патрубки 6 и вентилятор 5, обеспечивает непрерывную циркуляцию паров растворителя в тоннеле 7. Пары отсасываются из окрасочной камеры 3, а также из начала зоны стекания в тоннеле и возвращаются в верхнюю часть конца туннеля. Излишки паров сверх допускаемой концентрации выбрасываются в атмосферу. Концентрация паров регулируется специальным автоматическим дросселем-клапаном. Входной и выходной тамбуры имеют воздушные завесы с тем, чтобы предотвратить попадание паров растворителя в помещение цеха.

    К преимуществам струйного облива относятся: возможность одновременного окрашивания изделий разной конфигурации, относительно высокое качество покрытия, отсутствие громоздкого оборудования и незначительная потребность в производственных площадях, высокая производительность и полная автоматизация процесса; возможно получение утолщенного до 50 мкм слоя покрытия, что позволяет избежать многослойного окрашивания с применением пневмораспылителей.

    К недостаткам следует отнести: значительные потери растворителя из-за многократной циркуляции лакокрасочного материала, сложность замены цвета лакокрасочного материала, необходимость частой очистки конвейера из-за обрастания краской.

    Окраска электроосаждением (электрофорез) - весьма перспективный способ получения покрытий водорастворимыми эмалями. Сущность этого способа заключается в осаждении пленкообразующего материала из водного раствора на изделие с помощью постоянного электрического тока.

    Изделия подвешиваются на конвейер 4 и поступают в ванну 1, изготовленную из нержавеющей стали и являющуюся отрицательно заряженным электродом - катодом. Иногда для улучшения качества покрытия в ванну вводят дополнительные катоды (угольные или стальные стержни) и аноды - в виде сетки 3, а также создают принудительное перемешивание краски с помощью насоса 5. Конвейер и подвешенные на нем изделия имеют положительный заряд (анод), создаваемый генератором постоянного тока. В ванне создается электрическое поле, под действием которого частицы краски 2 устремляются к изделию и осаждаются на нем. В начале процесса электроосаждения окрашиваются участки поверхности, на которых градиент напряженности силового электрического поля максимален - кромки, выступы и т.д. По мере того как эти участки покрываются слоем краски, возрастает изолирующее действие нанесенного слоя и начинают прокрашиваться другие части поверхности изделия. В результате на изделии образуется плотная беспористая пленка покрытия одинаковой толщины. Установлено, что при электрофорезе протекают процессы осмоса, при этом вода вытесняется из осадка, в результате чего частицы краски уплотняются и прочно прилипают к поверхности детали.

    Толщина получаемого при этом покрытия 15-30 мкм. Лучшие результаты дает окраска стальных изделий, несколько хуже - алюминиевых. Плохо окрашивается цинк. После осаждения покрытия изделия промывают водой и подвергают сушке с предварительной выдержкой окрашенных изделий на воздухе в течение 20-25 мин.

    Технологические процессы получения лакокрасочных покрытий разнообразны. Это связано с функциональным назначением окрашиваемого изделия, условиями его эксплуатации, характером окрашиваемой поверхности, применяемыми методами окрашивания и формирования покрытий.

    Процесс получения лакокрасочного покрытия заключается в осуществлении следующих обязательных стадий:

    • * подготовка поверхности перед окрашиванием
    • * нанесение лакокрасочного материала
    • * отверждение лакокрасочного материала

    Каждая из этих стадий влияет на качество получаемого покрытия и его долговечность. Рассмотрим влияние указанных факторов на долговечность покрытий в отдельности.

    Подготовка поверхности перед окрашиванием играет существенную роль в обеспечении долговечности. Многолетний опыт применения лакокрасочных покрытий в различных отраслях промышленности показывают, что их долговечность приблизительно на 80 % определяется качеством подготовки поверхности перед окрашиванием. Некачественная подготовка поверхности металла перед окрашиванием вызывает ряд нежелательных последствий, приводящих к ухудшению защитных свойств покрытий:

    • - ухудшение адгезии покрытия к подложке
    • - развитие под покрытием коррозионных процессов
    • - растрескивание и расслоение покрытий
    • - ухудшение декоративных свойств

    Между долговечностью покрытий и степенью очистки поверхности существует четко проявляющаяся зависимость.

    В случае механических способов подготовки поверхности ориентировочные коэффициенты повышения сроков службы систем покрытий в зависимости от подготовки поверхности могут быть представлены следующим образом:

    • - окрашивание по неподготовленной поверхности - 1,0;
    • - очистка ручным способом - 2,0-1,5;
    • - абразивная очистка - 3,5-4,0.

    Технологический процесс получения лакокрасочного покрытия включает операции подготовки поверхности, нанесения отдельных слоев, сушку лакокрасочных покрытий и их отделку.

    Общий метод получения смол заключается во взаимодействии многоосновных органических кислот с многоатомными спиртами при высокой температуре.

    Синтез лаков производится азеотропным методом, обеспечивающим высокое качество продукции при минимальных потерях сырья и минимальном количестве отходов и загрязнений, образующихся в процессе синтеза.

    Объём производства установок регламентируется объемом базового аппарата синтеза от 3,2 до 32 м3.

    Наиболее часто применяемая установка с объёмом реактора 6,3м3 позволяет получать около 3000 тонн 50% лака в год при 300 рабочих днях.

    Эмалевой краской (или сокращенно эмалью) называют композицию из лака и пигмента. Пленкообразующими веществами в эмалевых красках являются полимеры - глифталевые, перхлорвиниловые, алкидно-стирольные, синтетические смолы, эфиры, целлюлозы.

    Строительные эмали из глифталевых смол чаще всего используют для внутренних отделочных работ по штукатурке и дереву, а также для заводской отделки асбестоцементых листов, древесно-волокнистых плит.

    Нитроглифталевые и пентафталевые эмали применяют для внутренних и наружных малярных работ. Перхлорвиниловые эмалевые краски водостойки: их применяют преимущественно для наружной отделки. Битумную эмалевую краску получают, вводя в битумно-масляный лак алюминиевый пигмент (алюминиевую пудру). Эти эмали стойки к действию воды, поэтому их предназначают для окраски санитарно-технического оборудования, стальных оконных рам, решеток.

    Силиконовые краски наносятся кистью, распылителем и др. Некоторые из них высыхают при комнатной температуре, другие - при нагревании до 260°С. На основе кремнийорганических смол получают также эмали общего назначения. Они представляют собой суспензию пигментов и наполнителей в кремнийорганическом лаке (с добавлением растворителя).

    Эмали выпускают разных цветов, их используют в качестве защитных декоративных покрытий. Лакокрасочная защита строительных конструкций привлекает сравнительной простотой выполнения покрытия, возможностью легко возобновить защиту, относительной экономичностью по сравнению с другими видами защиты (оклеечная изоляция, футеровка).

    Масляные краски изготовляют на основе олиф - полимеризованных растительных масел (льняного, конопляного) или жидких алкидных смол.

    Эмали представляют собой взвеси тонко измельчённых пигментов в растворах лаков - плёнкообразующих веществ. Так называемые эмульсионные краски производят на основе водных дисперсий полимеров, например поливинилацетата, полиакрилатов, а порошковые краски-- на основе сухих полимеров (полиэтилена, поливинилхлорида и др.), образующих при нагреве до определённой температуры прочные плёночные покрытия.

    Для получения порошковых красок применяют три разных способа: сухое смешение дисперсных компонентов; смешение в расплаве с последующим измельчением плава; диспергирование пигментов в растворе пленкообразователей с последующей отгонкой растворителя из жидкого материала. Сухое смешение применяется при пигментировании предварительно измельченных термопластичных полимеров. При использовании этого способа нерасслаивающиеся стабильные композиции получаются только в том случае, если при смешении происходит дезагрегация зерен исходных материалов и образование новых смешанных агрегатов с большой контактной поверхностью между разнородными частицами. При сухом смешивании без измельчения зерен полимеров частицы пигментов и наполнителей только "опудривают" поверхность зерен полимеров снаружи. Полярные полимеры (поливинилбутираль, полиамиды, эфиры целлюлозы и др.) имеют хорошую адгезию к дисперсным пигментам и наполнителям. Неполярные полимеры (полиолефины, фторопласты и др.) значительно труднее смешиваются с наполнителями. Жидкие компоненты - пластификаторы, отвердители, модификаторы как правило предварительно перетирают с пигментами и наполнителями, а затем смешивают с полимерами в шаровых, вибрационных и др. мельницах. Сухое смешение - наиболее простой способ, осуществляемый в различных смесителях, но получаемый при этом конечный продукт имеет недостаточно равномерное распределение пигментов.

    Смешение в расплавах производится при температуре несколько выше температуры текучести пленкообразователя. При этом пигментные частицы смачиваются и проникают внутрь частиц пленкообразователя, создавая более однородные макро- и микроструктуры еще до стадии пленкообразования. Смешение компонентов в расплавах возможно для любых пленкообразователей, но наибольшее применение находит для эпоксидных, полиэфирных, акрилатных, уретановых олигомеров, низкомолекулярного поливонилхлорида и др.

    Появление порошковых материалов - закономерный результат эволюции лакокрасочной индустрии. Лакокрасочные материалы с высокой долей нелетучих веществ, во-первых, более экономичны в плане нанесения, а во-вторых, их широкое использование позволяет если не оздоровить, то хотя бы улучшить экологическую обстановку.

    Отдельную группу лакокрасочных материалов представляют собой Водоразбавляемые красочные составы, которые приготовляют с использованием в качестве связующих неорганических вяжущих веществ или клеев. Такие составы перед нанесение разбавляются водой.

    Известковые краски изготовляют из извести, щелочестойких пигментов и небольших добавок, например олифы для придания пленке небольшого блеска. Образование красочной пленки происходит благодаря карбонизации извести. Известковые краски не обладают высокой прочностью и долговечностью, но они дешевы и подготовка поверхности для их нанесения проста. Применяют известковые краски в основном для окраски фасадов: кирпичных, бетонных, оштукатуренных.

    Цементные краски состоят из цемента, щелочестойких пигментов, извести, хлористого кальция и гидрофобизующих добавок. Образование пленки происходит вследствие реакций гидратации цемента. Известь и хлористый кальций повышают водоудерживающую способность краски, что необходимо для приобретения прочности красочной пленки. Применяют цементные краски для окраски по влажным пористым поверхностям: бетонным, штукатурным, кирпичным.

    Силикатные краски состоят из растворимого калийного стекла, минеральных щелочестойких пигментов и кремнеземистых добавок (трепела, диатомита, тонкомолотого песка). Образование красочной пленки происходит в результате гидролиза силиката калия и образования нерастворимых силикатов кальция и водного кремнезема. Наиболее атмосферостойкие покрытия получают при нанесении силикатной краски на основания, содержащие свободную известь (поверхность свежего бетона, цементной или известковой штукатурки). При окраске по дереву силикатные краски служат для защиты древесины от возгорания.

    Клеевые краски представляют собой суспензии пигментов и мела в водном коллоидном растворе клея. Приготовляют клеевые краски на месте производства работ. Красочная пленка в клеевых красках образуется по мере удаления из них воды, вследствие ее испарения и впитывания окрашиваемым основанием. Клеевые краски не прочны и не водостойки, поэтому их применяют лишь для внутренней окраски сухих помещений.

    Казеиновые клеевые краски выпускают в виде сухих смесей, состоящих из казеина, пигментов, щелочи, извести и антисептика. Для получения состава требуемой консистенции сухую краску на месте производства работ разбавляют водой. Казеиновые клеевые составы более водостойки, чем составы на животных клеях. Их применяют для внутренней и наружной окраски.

    Силиконовые краски. Силиконоэмульсионные краски сочетают в себе лучшие свойства акриловых и силикатных красок: паропроницаемость у них почти так же высока, как у силикатных, следовательно, они тоже подходят для зданий с плохой гидроизоляцией фундаментов, и к тому же они не поддерживают развитие микроорганизмов. Связующим в этих материалах является кремнийорганическая силиконовая смола. Разводят их водой. После высыхания краски поверхность выглядит как натуральный природный материал. Краска образует водонепроницаемую пленку, структура пленки обладает способностью к самоочищению так называемый эффект лотоса. Они совместимы как с минеральными, так и с акрилатными красками, допускают перекрашивание старых силикатных красок.

    Модифицированные материалы. Они представляют собой усовершенствованный вариант акриловых систем, в состав которых добавлены силиконовые смолы или силоксан (промежуточный продукт при производстве силиконовых смол). Силикон или силоксанмодифицированные покрытия обладают хорошей адгезией, лучше пропускают углекислый газ и отталкивают воду, обеспечивают защиту от УФ-излучения, обладают большей эластичностью, а значит, и долговечностью. Их можно наносить практически на все имеющиеся в строительной практике минеральные подложки.

    Некоторые водоразбавляемые краски выпускаются как в матовом, так и в полуматовом (а иногда и в полуглянцевом) исполнении. Как правило, стойкость матовой краски несколько ниже, чем полуматовой, а тем более полуглянцевой краски той же марки.

    Водно-дисперсионные краски, предназначенные для использования во влажных и сырых помещениях, должны обладать повышенной водостойкостью и фунгицидными свойствами. Испытание на водостойкость проводят тем же методом, что и испытания на стойкость к мытью, с той лишь разницей, что окрашенная поверхность предварительно подвергается воздействию влаги от мокрой ткани, соприкасающейся с тестируемой поверхностью в течение определенного времени. Способность материалов этой группы препятствовать возникновению плесени обеспечивается присутствием в составе красок фунгицидных добавок. Среди всех водоразбавляемых красок водостойкие составы отличаются наибольшей стойкостью к мытью и истиранию (более 10 тыс. проходов щеткой).

    Ежегодно в мире производится около 10 млн. тонн лакокрасочных материалов. Этого количества хватило бы для того, чтобы покрыть Землю по экватору красочным поясом шириной 2,5 км. О взрывчатых свойствах нитроцеллюлозы известно практически каждому школьнику. Но не все знают, что её применение началось благодаря перепроизводству взрывчатых веществ после Первой мировой войны в автомобильной промышленности. При этом успешно была решена проблема утилизации опасного вещества (нитроцеллюлозы) и начато производство лакокрасочных материалов на основе нитроцеллюлозы для окраски автомобильных кузовов.

    gastroguru © 2017