Математическая логика и компьютер исследовательская работа. Исследовательская работа "логические задачи". Актуальность выбранной темы

Применение тригонометрии в физике и ее задачах

Практическое применение тригонометрических уравнений в реальной жизни

Существует множество областей, в которых применяются тригонометрия. Например, метод триангуляции используется в астрономии для измерения расстояния до ближайших звезд, в географии для измерения расстояний между объектами, а также в спутниковые навигационных системах. Синус и косинус имеют фундаментальное значение для теории периодических функций, например при описании звуковых и световых волн.

Тригонометрия используются в астрономии (особенно для расчётов положения небесных объектов, когда требуется сферическая тригонометрия), в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятностей, в статистике, в биологии, в медицинской визуализации (например, компьютерная томография и ультразвук), в аптеках, в химии, в теории чисел, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.


В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

Камень брошен на склоне горы под углом α к ее поверхности. Определите дальность полета камня, если начальная скорость камня равна v 0 , угол наклона горы к горизонту β. Сопротивление воздуха не учитывать.

Решение. Сложное движение камня по параболе нужно представить как результат наложения двух прямолинейных движений: одного вдоль поверхности Земли, другого - по нормали к ней.

Выберем прямоугольную систему координат с началом отсчета в точке бросания камня так, чтобы оси OX и OY совпали с указанными направлениями, и найдем составляющие векторов начальной скорости v 0 и ускорения свободного падения g по осям. Проекции этих составляющих на оси OX и OY равны соответственно:
v 0 cosα v 0 ; -g sinβ -g cosβ



После этого сложное движение можно рассматривать как два более простых: равнозамедленное движение вдоль поверхности Земли с ускорением g sinβ и равнопеременное движение, перпендикулярное склону горы, с ускорением g cosβ .

Составляем уравнения движения для каждого направления с учетом того, что за время t всего движения перемещение камня по нормали к поверхности (по оси OY ) оказалось равным нулю, а вдоль поверхности (по оси OX ) - равным s:

По условию задачи v 0 ,α и β нам заданы, поэтому в составленных уравнениях имеется две неизвестные величины s и t1.

Из первого уравнения определяем время полета камня:

Подставляя это выражение во второе уравнение, находим:

S= v 0 cosα∙ =
=

Анализируя решение приведенной задачи, можно сделать вывод, что математика имеет аппарат и использование его при реализации меж предметной связи физики и математики ведет к осознанию единства мира и интеграции научных знаний.

Математика выступает как своеобразный язык, необходимый для кодирования содержательной физической информации.

Использование меж предметной связи физики и математики ведет к сравниванию этих двух наук и позволяет усиливать качественную теоретическую и практическую подготовку обучаемых.


Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты - широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. - ок. 120 до н. э.)

Родикова Валерия, Типсин Эльдар

Первые математические знания появляются в глубокой древности (IV-III век до нашей эры) в Древней Греции. В XVII-XVIII веках происходит фундаментальное наполнение науки. Ученые разных стран в разные периоды развития цивилизации вносили свой вклад в становление современной математики. Область математики, изучающая тригонометрические функции, называется тригонометрией. Люди самых разных профессий используют элементы тригонометрии в своей работе. Это - исследователи в различных научных и прикладных областях, физики, конструкторы, специалисты по компьютерным технологиям, дизайнеры, авторы мультимедиа-презентаций, медики, специалисты в разных областях. В данном проекте исследовалось применение тригонометрии в архитектуре.

Скачать:

Предварительный просмотр:

https://accounts.google.com


Подписи к слайдам:

Работу выполнили: Родикова Валерия, Типсин Эльдар, обучающиеся 10«А» класса МБОУ «Белоярская СОШ №1» Руководитель: Желнирович Н.В., учитель математики Тригонометрия в архитектуре 2013 г. Районная научно-исследовательская конференция обучающихся «Будущая элита Верхнекетья »

ТРИГОНОМЕТРИЯ – (от греч. trigwnon – треугольник и metrew – измеряю) –наука, изучающая зависимости между углами и сторонами треугольников и тригонометрические функции.

Мы предположили, что тригонометрия применяется не только в началах анализа и алгебре, но и во многих других науках, например в архитектуре Гипотеза

Знакомство со сферами применения тригонометрии в архитектуре. Цели работы

Узнать, как тригонометрия применяется в архитектуре Исследовать применение тригонометрии в этой области задачи

Заха Хадид Заха Хадид (31 октября 1950, Багдад, Ирак) - британский архитектор арабского происхождения. Представительница деконструктивизма. В 2004 году стала первой в истории женщиной-архитектором, награждённой Притцкеровской премией. Деконструктиви́зм - направление в современной архитектуре. Для деконструктивистских проектов характерны визуальная усложнённость, неожиданные изломанные и нарочито деструктивные формы, а также подчёркнуто агрессивное вторжение в городскую среду.

мост Шейха Зайда в Абу- Даби,ОАЭ

Анто́ни Пла́сид Гильем Гауди́-и-Курне́т - испанский архитектор, большинство причудливо-фантастических работ которого возведено в Барселоне. Стиль, в котором творил Гауди, относят к модерну. Однако в своём творчестве он использовал элементы самых различных стилей, подвергая их переработке. Моде́рн - художественное направление в искусстве, е го отличительными особенностями является отказ от прямых линий и углов в пользу более естественных, «природных» линий.

Детская школа Гауди в Барселоне, испания

Поверхности Гауди k =1, a =1

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сантьяго Калатрава Вальс - испанский архитектор и скульптор, автор многих футуристических построек в разных странах мира.

Винодельня « Бодегас Исиос » испания

КАНДЕ́ЛА Феликс (1910-1997), мексиканский архитектор и инженер. Создатель разнообразных железобетонных сводов-оболочек; разработал тонкостенные покрытия в форме гиперболических параболоидов.

Ресторан в Лос- Манантиалесе, аргентина [ a d cos (t) + d d t , b d sin (t), c d t + e d t 2 ]

Страховая корпорация Swiss Re в Лондоне, Великобритания x = λ y = f (λ) cos θ z = f (λ) sin θ

Готическая архитектура Собор Парижской Богоматери 1163г. – середина XIV века.

Берлинские синусоиды, германия

РЕЗУЛЬТАТЫ Проект «Школы будущего»

: Мы выяснили, что тригонометрия применяется не только в алгебре и началах анализа, но и во многих других науках Тригонометрия является основой для создания многих шедевров искусства и архитектуры Научились видеть тригонометрию в постройке моделей зданий. Вывод

Спасибо за внимание!

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Тригонометрия - это раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Что такое тригонометрия?

3 слайд

Описание слайда:

Что такое биоритмы? БИОЛОГИЧЕСКИЕ РИТМЫ (биоритмы), периодически повторяющиеся изменения характера и интенсивности биологических процессов, свойственных живым организмам. Иначе говоря, это «повторение подобного в подобных промежутках времени». Биологические ритмы свойственны растениям, животным, человеку. Проявляются на всех уровнях организации жизни: молекулярно-генетическом, клеточном, тканевом, организменном, популяционно-видовом, биоценотическом и биосферном.

4 слайд

Описание слайда:

Связь тригонометрии и биоритмов человека. Все живые существа на Земле - от растений до высших млекопитающих - подчиняются суточным биологическим ритмам. У человека в зависимости от времени суток циклически меняются физиологическое состояние, интеллектуальные возможности и даже настроение. Ученые доказали, что виной тому колебания концентраций гормонов в крови. В последние годы в науке о биоритмах, хронобиологии было сделано многое, чтобы установить механизм возникновения суточных гормональных циклов. Ученые обнаружили в головном мозге "циркадный центр", а в нем - так называемые "часовые гены" биологических ритмов здоровья. То есть, другими словами - биоритмы это цикличные изменения и колебания в разные периоды суток.

5 слайд

Описание слайда:

Для расчета значений биоритмов использовались формулы: =SIN(2*PI()*(А10-$D$5)/23 (физическое состояние); =SIN(2*PI()*(А10-$D$5)/28 (эмоциональное состояние); =SIN(2*PI()*(А10-$D$5)/33 (интеллектуальное состояние)

6 слайд

Описание слайда:

Синусовый узел, синус сонный, синус каротидный Возможно вы знаете что такое синусовый узел, синус сонный, синус каротидный. Функцию водителя ритма в норме выполняет синусовый узел, он расположен в месте впадения верхней полой вены в правое предсердие. Синусовый узел имеет длину 15 мм и ширину 2-3 мм, в 60% случаев кровоснабжается ветвью синусового узла (которая отходит от правой коронарной артерии), в 40% случаев - огибающей артерией. Выйдя за пределы синусового узла и окружающих его тканей, возбуждение проходит по предсердиям и достигает АВ-узла.

7 слайд

Описание слайда:

На электрическую активность синусового узла и АВ-узла оказывает существенное влияние вегетативная нервная система. Парасимпатические нервы подавляют автоматизм синусового узла, замедляют проводимость и удлиняют рефрактерный период в синусовом узле и прилежащих к нему тканях и в АВ-узле. Симпатические нервы оказывают противоположное действие.

8 слайд

Описание слайда:

Синус каротидный. (carotid sinus) - небольшое расширение у начала сонной артерии в месте ее разделения на наружную и внутреннюю сонные артерии; в нем присутствуют рецепторы, которые участвуют в регуляции артериального давления. Когда происходит повышение давления крови, импульсы от этих рецепторов поступают в вазомоторный центр головного мозга, который инициирует рефлекс вазодилатации; в результате происходит замедление частоты сердечных сокращений и снижение кровяного давления до нормы.

9 слайд

Описание слайда:

10 слайд

Описание слайда:

Венозный синус. Это тонкостенная камера, образованная слиянием больших вен, входящих в сердце. Так как срастание зачатков сердца начинается с их краниальных концов и продолжается в каудальную сторону, венозный синус образуется последним и проявляет поэтому лишь слабую дифференциацию.

11 слайд

Описание слайда:

12 слайд

Описание слайда:

Движение рыб. Когда рыба перемещается в своей родной среде – воде, то её тело совершает сложные колебания, благодаря которым рыба может развить очень большие скорости, недоступные современным надводным и подводным кораблям. Рыбы используют, по крайней мере, два способа плавания – волнообразно извиваясь всем телом или двигая в основном только хвостом. Рыбы, имеющие змееобразную форму (например, угорь), плавают первым способом, так что изгиб тела движется от головы к хвосту, «отталкивая» назад воду, в результате чего рыба движется вперёд. При втором способе воду «отталкивает» назад только быстро распрямляющийся хвост рыбы. Но даже в самом простом случае туловище и хвост изгибаются в противофазе, образуя синусоподобную кривую.

13 слайд

Описание слайда:

Связь между тригонометрией и движением рыб. Итак, расположим в воде согнутую в виде синусоиды проволоку, неподвижно закрепленную. Наденем на проволоку тонкую каучуковую трубку, которая может скользить вдоль синусоиды. Движение трубки при равномерном перемещении одного ее конца в определенном направлении представляет в точности движение ужа или угря. Мы можем сказать, что движение совершается по неподвижной в пространстве волне. Более сложны движения обычных рыб, имеющих тело в виде весьма сплюснутого эллипсоида. У них движение вызывается волновым процессом, распространяющимся от головы к хвосту и увеличивающимся по амплитуде в этом направлении. Таким образом, при перемещении по прямой каждая точка тела рыбы дает маятникообразное колебание с фазой, линейно возрастающей от головы, движущейся прямолинейно, к хвостовому концу, причем амплитуда колебаний также растет в том же направлении.

align=center>

Тригонометрия - микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.
Существует множество областей, в которых применяются тригонометрия и тригонометрические функции. Тригонометрия или тригонометрические функции используются в астрономии, в морской и воздушной навигации, в акустике, в оптике, в электронике, в архитектуре и в других областях.

История создания тригонометрии

История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Историки полагают, что тригонометрию создали древние астрономы, немного позднее её стали использовать в архитектуре. Со временем область применения тригонометрии постоянно расширялась, в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности.

Ранние века

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают , II век до н. э.).

Главным достижением этого периода стало соотношение катетов и гипотенузы в прямоугольном треугольнике, позже получившее имя теоремы Пифагора .

Древняя Греция

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии. Греческие математики ещё не выделяли тригонометрию как отдельную науку, для них она была частью астрономии.
Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной).
Прикладные тригонометрические задачи отличаются большим разнообразием - например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).
Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей - системы небесных координат, теории картографических проекций, технологии астрономических приборов.

Средневековье

В IV веке, после гибели античной науки, центр развития математики переместился в Индию. Они изменили некоторые концепции тригонометрии, приблизив их к современным: к примеру, они первыми ввели в использование косинус.

Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного (X-XI век) «Книга ключей науки астрономии» (995-996 годы). Целый курс тригонометрии содержал главный труд Аль-Бируни - «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15") Аль-Бируни дал таблицы тангенсов (с шагом 1°).

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу , два перевода которого были выполнены в XII веке.

Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома Ричарда Уоллингфордского (около 1320 г.). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV-XV веков. Тогда же тригонометрия заняла место среди университетских курсов.

Новое время

Развитие тригонометрии в Новое время стало чрезвычайно важным не только для астрономии и астрологии, но и для других приложений, в первую очередь артиллерии, оптики и навигации при дальних морских путешествиях. Поэтому после XVI века этой темой занимались многие выдающиеся учёные, в том числе Николай Коперник , Иоганн Кеплер , Франсуа Виет . Коперник посвятил тригонометрии две главы в своём трактате «О вращении небесных сфер» (1543). Вскоре (1551) появились 15-значные тригонометрические таблицы Ретика , ученика Коперника. Кеплер опубликовал труд «Оптическая часть астрономии» (1604).

Виет в первой части своего «Математического канона» (1579) поместил разнообразные таблицы, в том числе тригонометрические, а во второй части дал обстоятельное и систематическое, хотя и без доказательств, изложение плоской и сферической тригонометрии. В 1593 году Виет подготовил расширенное издание этого капитального труда.
Благодаря трудам Альбрехта Дюрера , на свет появилась синусоида.

XVIII век

Современный вид тригонометрии придал . В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному, и соответственно определил обратные функции.

Эйлер рассматривал как допустимые отрицательные углы и углы, большие 360°, что позволило определить тригонометрические функции на всей вещественной числовой прямой, а затем продолжить их на комплексную плоскость. Когда встал вопрос о распространении тригонометрических функций на тупые углы, знаки этих функций до Эйлера нередко выбирались ошибочно; многие математики считали, например, косинус и тангенс тупого угла положительными. Эйлер определил эти знаки для углов в разных координатных квадрантах, исходя из формул приведения.
Общей теорией тригонометрических рядов Эйлер не занимался и сходимость полученных рядов не исследовал, но получил несколько важных результатов. В частности, он вывел разложения целых степеней синуса и косинуса.

Применение тригонометрии

По своему правы те, кто говорит, что тригонометрия в реальной жизни не нужна. Ну, каковы ее обычные прикладные задачи? Измерять расстояние между недоступными объектами.
Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография и т.д.
Вывод: тригонометрия - огромная помощница в нашей повседневной жизни.

Другие разделы

Слово «тригонометрия» впервые встречается (1505 г.) в заглавии книги немецкого теолога и математика Питискуса. Происхождение этого слова греческое: xpiyrovov - треугольник, цетресо - мера. Иными словами, тригонометрия - наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Длительную историю имеет понятие
синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III в. до н. э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (1в. н.э.), хотя и не приобрели специального названия.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В IV-V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты (476 - ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива
.

Позднее привилось более краткое название джива. Арабскими математиками в IX в. слово джива (или джиба) было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в XII в. это слово было заменено латинским
синус (sinus - изгиб, кривизна).

Слово косинус намного моложе.
Косинус - это сокращение латинского выражения complementy sinus, т. е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cos а = sin (90° - а)).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс, секанс и косеканс) введен в X в. арабским математиком Абул-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XIV в. сначала английским ученым Т. Бравердином, а позднее немецким математиком, астрономом Региомонтаном (1467 г.). 

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов - это касательная к единичной окружности).


Современные обозначения
arcsin и arctg появляются в 1772 г. в работах венского математика Шерфера и известного французского ученого Лагранжа, хотя несколько ранее их уже рассматривал Я. Бернулли, который употреблял иную символику. Но общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка «арк» происходит от латинского arcus (лук, дуга), что вполне согласуется со смыслом понятия: arcsin х, например, - это угол (а можно сказать, и дуга), синус которого равен х.

Длительное время тригонометрия развивалась как часть геометрии
. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затмений и т. д.).

Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере.


Во всяком случае в геометрической форме многие формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками. (Правда, формулы разности тригонометрических функций стали известны только в XVII в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)


Принципиальное значение имело составление К. Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.


Современный вид тригонометрии придал крупнейший математик XVIII столетия Л . Эйлер (1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь Эйлер успел сделать в математике: он оставил свыше 800 работ, доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. (Несмотря на то что в 1776 г. Эйлер потерял зрение, он до последних дней продолжал диктовать все новые и новые работы.)

После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

Область применения тригонометрии охватывает самые разные сферы математики, некоторые разделы естествознания и техники.

Тригонометрия имеет несколько разновидностей:

    Сферическая тригонометрия занимается изучением сферических треугольников.

    Прямолинейная или плоская тригонометрия изучает обычнее треугольники.


Значительно развили тригонометрию древнегреческие и эллинистические ученые. Однако в работах Евклида и Архимеда тригонометрия представлена в геометрическом виде. Теоремы о длине хорд применяются в законах синусов. А теорема Архимеда для деления хорд соответствует формулам для синусов суммы и разности углов.

В настоящее время математики используют новую запись известных теорем, например, sin α/ sin β < α/β < tan α/ tan β, где 0° < β < α < 90°, тем самым, компенсируют недостатки таблиц хорд, времен Аристарха Самосского.

Предположительно первые тригонометрические таблицы были составлены Гиппархом Никейским , которого по праву считают «отцом тригонометрии». Ему принадлежит заслуга в создании сводной таблицы величин дуг и хорд для серии углов. Более того именно Гиппарх Никейский впервые стал использовать 360° окружности.

Клавдий Птолемей значительно развил и расширил учение Гиппарха. Теорема Птолемея гласит: сумма произведений противоположных сторон циклического четырехугольника равна произведению диагоналей. Следствием теоремы Птолемея стало понимание эквивалентности четырех формул суммы и разности для синуса и косинуса. Кроме того, Птолемей вывел формулу половинного угла. Все свои результаты Птолемей использовал при составлении тригонометрических таблиц. К сожалению, ни одной подлинной тригонометрической таблицы Гиппарха и Птолемея не сохранилось до наших дней.

Тригонометрические вычисления нашли свое применение почти во всех областях геометрии, физики и инженерного дела.
С помощью тригонометрии (техника триангуляции) можно измерять расстояния между звездами, между ориентирами в географии, производить контроль над системами навигации спутников.


Тригонометрия успешно применяется в технике навигации, теории музыки, акустике, оптике, при анализе финансовых рынков, электронике, теории вероятности, статистике, биологии и медицине, химии и теории чисел (криптографии), сейсмологии, метеорологии, океанологии, картографии, топографии и геодезии, архитектуре и фонетике, машиностроении и компьютерной график
е .

gastroguru © 2017