Формула для расчета общей дисперсии. Показатели вариации: понятие, виды, формулы для вычислений. Примеры решения задач

Теория вероятности - особый раздел математики, который изучают только студенты высших учебных заведений. Вы любите расчёты и формулы? Вас не пугают перспективы знакомства с нормальным распределением, энтропией ансамбля, математическим ожиданием и дисперсией дискретной случайной величины? Тогда этот предмет вам будет очень интересен. Давайте познакомимся с несколькими важнейшими базовыми понятиями этого раздела науки.

Вспомним основы

Даже если вы помните самые простые понятия теории вероятности, не пренебрегайте первыми абзацами статьи. Дело в том, что без четкого понимания основ вы не сможете работать с формулами, рассматриваемыми далее.

Итак, происходит некоторое случайное событие, некий эксперимент. В результате производимых действий мы можем получить несколько исходов - одни из них встречаются чаще, другие - реже. Вероятность события - это отношение количества реально полученных исходов одного типа к общему числу возможных. Только зная классическое определение данного понятия, вы сможете приступить к изучению математического ожидания и дисперсии непрерывных случайных величин.

Среднее арифметическое

Ещё в школе на уроках математики вы начинали работать со средним арифметическим. Это понятие широко используется в теории вероятности, и потому его нельзя обойти стороной. Главным для нас на данный момент является то, что мы столкнемся с ним в формулах математического ожидания и дисперсии случайной величины.

Мы имеем последовательность чисел и хотим найти среднее арифметическое. Всё, что от нас требуется - просуммировать всё имеющееся и разделить на количество элементов в последовательности. Пусть мы имеем числа от 1 до 9. Сумма элементов будет равна 45, и это значение мы разделим на 9. Ответ: - 5.

Дисперсия

Говоря научным языком, дисперсия - это средний квадрат отклонений полученных значений признака от среднего арифметического. Обозначается одна заглавной латинской буквой D. Что нужно, чтобы её рассчитать? Для каждого элемента последовательности посчитаем разность между имеющимся числом и средним арифметическим и возведем в квадрат. Значений получится ровно столько, сколько может быть исходов у рассматриваемого нами события. Далее мы суммируем всё полученное и делим на количество элементов в последовательности. Если у нас возможны пять исходов, то делим на пять.

У дисперсии есть и свойства, которые нужно запомнить, чтобы применять при решении задач. Например, при увеличении случайной величины в X раз, дисперсия увеличивается в X в квадрате раз (т. е. X*X). Она никогда не бывает меньше нуля и не зависит от сдвига значений на равное значение в большую или меньшую сторону. Кроме того, для независимых испытаний дисперсия суммы равна сумме дисперсий.

Теперь нам обязательно нужно рассмотреть примеры дисперсии дискретной случайной величины и математического ожидания.

Предположим, что мы провели 21 эксперимент и получили 7 различных исходов. Каждый из них мы наблюдали, соответственно, 1,2,2,3,4,4 и 5 раз. Чему будет равна дисперсия?

Сначала посчитаем среднее арифметическое: сумма элементов, разумеется, равна 21. Делим её на 7, получая 3. Теперь из каждого числа исходной последовательности вычтем 3, каждое значение возведем в квадрат, а результаты сложим вместе. Получится 12. Теперь нам остается разделить число на количество элементов, и, казалось бы, всё. Но есть загвоздка! Давайте её обсудим.

Зависимость от количества экспериментов

Оказывается, при расчёте дисперсии в знаменателе может стоять одно из двух чисел: либо N, либо N-1. Здесь N - это число проведенных экспериментов или число элементов в последовательности (что, по сути, одно и то же). От чего это зависит?

Если количество испытаний измеряется сотнями, то мы должны ставить в знаменатель N. Если единицами, то N-1. Границу ученые решили провести достаточно символически: на сегодняшний день она проходит по цифре 30. Если экспериментов мы провели менее 30, то делить сумму будем на N-1, а если более - то на N.

Задача

Давайте вернемся к нашему примеру решения задачи на дисперсию и математическое ожидание. Мы получили промежуточное число 12, которое нужно было разделить на N или N-1. Поскольку экспериментов мы провели 21, что меньше 30, выберем второй вариант. Итак, ответ: дисперсия равна 12 / 2 = 2.

Математическое ожидание

Перейдем ко второму понятию, которое мы обязательно должны рассмотреть данной статье. Математическое ожидание - это результат сложения всех возможных исходов, помноженных на соответствующие вероятности. Важно понимать, что полученное значение, как и результат расчёта дисперсии, получается всего один раз для целой задачи, сколько бы исходов в ней не рассматривалось.

Формула математического ожидания достаточно проста: берем исход, умножаем на его вероятность, прибавляем то же самое для второго, третьего результата и т. д. Всё, связанное с этим понятием, рассчитывается несложно. Например, сумма матожиданий равна матожиданию суммы. Для произведения актуально то же самое. Такие простые операции позволяет с собой выполнять далеко не каждая величина в теории вероятности. Давайте возьмем задачу и посчитаем значение сразу двух изученных нами понятий. Кроме того, мы отвлекались на теорию - пришло время попрактиковаться.

Ещё один пример

Мы провели 50 испытаний и получили 10 видов исходов - цифры от 0 до 9 - появляющихся в различном процентном отношении. Это, соответственно: 2%, 10%, 4%, 14%, 2%,18%, 6%, 16%, 10%, 18%. Напомним, что для получения вероятностей требуется разделить значения в процентах на 100. Таким образом, получим 0,02; 0,1 и т.д. Представим для дисперсии случайной величины и математического ожидания пример решения задачи.

Среднее арифметическое рассчитаем по формуле, которую помним с младшей школы: 50/10 = 5.

Теперь переведем вероятности в количество исходов «в штуках», чтобы было удобнее считать. Получим 1, 5, 2, 7, 1, 9, 3, 8, 5 и 9. Из каждого полученного значения вычтем среднее арифметическое, после чего каждый из полученных результатов возведем в квадрат. Посмотрите, как это сделать, на примере первого элемента: 1 - 5 = (-4). Далее: (-4) * (-4) = 16. Для остальных значений проделайте эти операции самостоятельно. Если вы всё сделали правильно, то после сложения всех вы получите 90.

Продолжим расчёт дисперсии и математического ожидания, разделив 90 на N. Почему мы выбираем N, а не N-1? Правильно, потому что количество проведенных экспериментов превышает 30. Итак: 90/10 = 9. Дисперсию мы получили. Если у вас вышло другое число, не отчаивайтесь. Скорее всего, вы допустили банальную ошибку при расчётах. Перепроверьте написанное, и наверняка всё встанет на свои места.

Наконец, вспомним формулу математического ожидания. Не будем приводить всех расчётов, напишем лишь ответ, с которым вы сможете свериться, закончив все требуемые процедуры. Матожидание будет равно 5,48. Напомним лишь, как осуществлять операции, на примере первых элементов: 0*0,02 + 1*0,1… и так далее. Как видите, мы просто умножаем значение исхода на его вероятность.

Отклонение

Ещё одно понятие, тесно связанное с дисперсией и математическим ожиданием - среднее квадратичное отклонение. Обозначается оно либо латинскими буквами sd, либо греческой строчной «сигмой». Данное понятие показывает, насколько в среднем отклоняются значения от центрального признака. Чтобы найти её значение, требуется рассчитать квадратный корень из дисперсии.

Если вы построите график нормального распределения и захотите увидеть непосредственно на нём квадратичного отклонения, это можно сделать в несколько этапов. Возьмите половину изображения слева или справа от моды (центрального значения), проведите перпендикуляр к горизонтальной оси так, чтобы площади получившихся фигур были равны. Величина отрезка между серединой распределения и получившейся проекцией на горизонтальную ось и будет представлять собой среднее квадратичное отклонение.

Программное обеспечение

Как видно из описаний формул и представленных примеров, расчеты дисперсии и математического ожидания - не самая простая процедура с арифметической точки зрения. Чтобы не тратить время, имеет смысл воспользоваться программой, используемой в высших учебных заведениях - она называется «R». В ней есть функции, позволяющие рассчитывать значения для многих понятий из статистики и теории вероятности.

Например, вы задаете вектор значений. Делается это следующим образом: vector <-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.

В заключение

Дисперсия и математическое ожидание - это без которых сложно в дальнейшем что-либо рассчитать. В основном курсе лекций в вузах они рассматриваются уже в первые месяцы изучения предмета. Именно из-за непонимания этих простейших понятий и неумения их рассчитать многие студенты сразу начинают отставать по программе и позже получают плохие отметки по результатам сессии, что лишает их стипендии.

Потренируйтесь хотя бы одну неделю по полчаса в день, решая задания, схожие с представленными в данной статье. Тогда на любой контрольной по теории вероятности вы справитесь с примерами без посторонних подсказок и шпаргалок.

Дисперсия случайной величины - мера разброса данной случайной величины , то есть её отклонения от математического ожидания. В статистике для обозначения дисперсии часто употребляется обозначение (сигма в квадрате). Квадратный корень из дисперсии , равный , называется стандартным отклонением или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Хотя для оценки всей выборки очень удобно использовать лишь одно значение (такое как среднее значение или моду и медиану), этот подход легко может привести к неправильным выводам. Причина такого положения лежит не в самой величине, а в том, что одна величина никак не отражает разброс значений данных.

Например, в выборке:

среднее значение равно 5.

Однако, в самой выборке нет ни одного элемента со значением 5. Возможно, Вам потребуется знать степень близости каждого элемента выборки к ее среднему значению. Или, другими словами, вам потребуется знать дисперсию значений. Зная степень изменения данных, Вы можете лучше интерпретировать среднее значение , медиану и моду . Степень изменения значений выборки определяется путем вычисления их дисперсии и стандартного отклонения.



Дисперсия и квадратный корень из дисперсии, называемый стандартным отклонением, характеризуют среднее отклонение от среднего значения выборки. Среди этих двух величин наибольшее значение имеет стандартное отклонение . Это значение можно представить как среднее расстояние, на котором находятся элементы от среднего элемента выборки.

Дисперсию трудно интерпретировать содержательно. Однако, квадратный корень из этого значения является стандартным отклонением и хорошо поддается интерпретации.

Стандартное отклонение вычисляется путем определения сначала дисперсии и затем вычисления квадратного корня из дисперсии.

Например, для массива данных, приведенных на рисунке, будут получены следующие значения:

Рисунок 1

Здесь среднее значение квадратов разностей равно 717,43. Для получения стандартного отклонения осталось лишь взять квадратный корень из этого числа.

Результат составит приблизительно 26,78.

Следует помнить, что стандартное отклонение интерпретируется как среднее расстояние, на котором находятся элементы от среднего значения выборки.

Стандартное отклонение показывает, насколько хорошо среднее значение описывает всю выборку.

Допустим, Вы являетесь руководителем производственного отдела по сборке ПК. В квартальном отчете говорится, что выпуск за последний квартал составил 2500 ПК. Плохо это или хорошо? Вы попросили (или уже в отчете есть эта графа) в отчете отобразить стандартное отклонение по этим данным. Цифра стандартного отклонения, например, равна 2000. Становится понятным для Вас, как руководителя отдела, что производственная линия требует лучшего управления (слишком большие отклонения по количеству собираемых ПК).

Вспомним: при большой величине стандартного отклонения данные широко разбросаны относительно среднего значения, а при маленькой – они группируются близко к среднему значению.

Четыре статистические функции ДИСП(), ДИСПР(), СТАНДОТКЛОН() и СТАНДОТКЛОНП() – предназначены для вычисления дисперсии и стандартного отклонения чисел в интервале ячеек. Перед тем как вычислять дисперсию и стандартное отклонение набора данных, нужно определить, представляют ли эти данные генеральную совокупность или выборку из генеральной совокупности. В случае выборки из генеральной совокупности следует использовать функции ДИСП() и СТАНДОТКЛОН(), а в случае генеральной совокупности – функции ДИСПР() и СТАНДОТЛОНП():

Генеральная совокупность Функция

ДИСПР()

СТАНДОТЛОНП()
Выборка

ДИСП()

СТАНДОТКЛОН()

Дисперсия (а так же стандартное отклонение), как мы отмечали, свидетельствуют о том, в какой степени входящие в набор данных величины разбросаны вокруг среднего арифметического.

Малое значение дисперсии или стандартного отклонения говорит о том, что все данные сосредоточены вокруг среднего арифметического, а большое значение этих величин – о том, что данные разбросаны в широком диапазоне значений.

Дисперсию достаточно трудно интерпретировать содержательно (что значит малое значение, большое значение?). Выполнение Задания 3 позволит визуально, на графике, показать смысл дисперсии для набора данных.

Задания

· Задание 1.

· 2.1. Дать понятия: дисперсия и стандартное отклонение; их символьное обозначение при статистической обработке данных.

· 2.2. Оформить рабочий лист в соответствии с рисунком 1 и произвести необходимые расчеты.

· 2.3. Привести основные формулы, используемые при расчетах

· 2.4. Пояснить все обозначения ( , , )

· 2.5. Пояснить практическое значение понятия дисперсия и стандартное отклонение.

Задание 2.

1.1. Дать понятия: генеральная совокупность и выборка; математическое ожидание и среднее арифметическое их символьное обозначение при статистической обработке данных.

1.2. В соответствии с рисунком 2 оформить рабочий лист и произвести расчеты.

1.3. Привести основные формулы, используемые при расчетах (для генеральной совокупности и выборке).

Рисунок 2

1.4. Объяснить, почему возможны получения таких значений средних арифметических в выборках как 46,43 и 48,78 (см. файл Приложение). Сделать выводы.

Задание 3.

Имеется две выборки с различным набором данных, но среднее для них будет одинаковым:

Рисунок 3

3.1. Оформить рабочий лист в соответствии с рисунком 3 и произвести необходимые расчеты.

3.2. Приведите основные формулы расчета.

3.3. Постройте графики в соответствии с рисунками 4, 5.

3.4. Поясните полученные зависимости.

3.5. Аналогичные вычисления проведите для данных двух выборок.

Исходная выборка 11119999

Значения второй выборки подбираете так, что бы среднее арифметическое для второй выборки было таким же, например,:

Подберите значения для второй выборки самостоятельно. Оформите вычисления и построения графиков подобно рисункам 3, 4, 5. Покажите основные формулы, которые использовали при вычислениях.

Сделайте соответствующие выводы.

Все задания оформить в виде отчета со всеми необходимыми рисунками, графиками, формулами и краткими пояснениями.

Примечание: построение графиков обязательно пояснить с рисунками и краткими пояснениями.

Виды дисперсий:

Общая дисперсия характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле

где - общая средняя арифметическая всей исследуемой совокупности.

Средняя внутригрупповая дисперсия свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам (), затем рассчитывается средняя внутригрупповая дисперсия:

где n i - число единиц в группе

Межгрупповая дисперсия (дисперсия групповых средних) характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки.

где - средняя величина по отдельной группе.

Все три вида дисперсии связаны между собой: общая дисперсия равна сумме средней внутригрупповой дисперсии и межгрупповой дисперсии:

Свойства:

25 Относительные показатели вариации

Коэффициент осцилляции

Относительное линейное отклонение

Коэффициент вариации

Коэф. Осц. о тражает относительную колеблемость крайних значений признака вокруг средней. Отн. лин. откл . характеризует долю усредненного значения признака абсолютных отклонений от средней величины. Коэф. Вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

    Закономерность рядов распределения. Моменты распределения. Показатели формы распределения

В вариационных рядах существует связь между частотами и значениями варьирующего признака: с увеличением признака величина частоты сначала возрастает до определённой границы, а потом уменьшается. Такие изменения называются закономерностями распределения.

Форму распределения изучают с помощью показателей асимметрии и эксцесса. При исчислении указанных показателей используют моменты распределения.

Моментом k-го порядка называют среднюю из k-х степеней отклонений вариантов значений признака от некоторой постоянной величины. Порядок момента определяется величиной k. При анализе вариационных рядов ограничиваются расчетом моментов первых четырех порядков. При исчислении моментов в качестве весов могут быть использованы частоты или частости. В зависимости от выбора постоянной величины различают начальные, условные и центральные моменты.

Показатели формы распределения:

Асимметрия (As) показатель характеризующий степень асимметричности распределения.

Следовательно, при (левосторонней) отрицательной асимметрии . При (правосторонней) положительной асимметрии.

Для расчета асимметрии можно использовать центральные моменты. Тогда:

,

где μ 3 – центральный момент третьего порядка.

- эксцесс (Е к ) характеризует крутизну графика функции в сравнении с с нормальным распределением при той же силе вариации:

,

где μ 4 – центральный момент 4-ого порядка.

    Закон нормального распределения

Для нормального распределения (распределения Гаусса) функция распределения имеет следующий вид:

Матожидание- стандартное отклонение

Нормальное распределение симметрично и для него характерно следующее соотношение: Хср=Ме=Мо

Эксцесс нормального распределения равен 3, а коэффициент асимметрии 0.

Кривая нормального распределения представляет собой полигон(симметричная колокобразная прямая)

    Виды дисперсий. Правило сложения дисперсий. Сущность эмпирического коэффициента детерминации.

Если исходная совокупность разделена на группы по какому-то существенному признаку, то вычисляют следующие виды дисперсий:

    Общая дисперсия исходной совокупности:

где - общая средняя величина исходной совокупности;f– частоты исходной совокупности. Общая дисперсия характеризует отклонение индивидуальных значений признака от общей средней величины исходной совокупности.

    Внутригрупповые дисперсии:

где j- номер группы;- средняя величина в каждойj-ой группе;- частотыj-ой группы. Внутригрупповые дисперсии характеризуют отклонение индивидуального значения признака в каждой группе от групповой средней величины. Из всех внутригрупповых дисперсий вычисляют среднюю по формуле:, где- численность единиц в каждойj-ой группе.

    Межгрупповая дисперсия:

Межгрупповая дисперсия характеризует отклонение групповых средних величин от общей средней величины исходной совокупности.

Правило сложения дисперсий заключается в том, что общая дисперсия исходной совокупности должна быть равна сумме межгрупповой и средней из внутригрупповых дисперсий:

Эмпирический коэффициент детерминации показывает долю вариации изучаемого признака, обусловленную вариацией группировочного признака, и рассчитывается по формуле:

    Способ отсчета от условного нуля (способ моментов) для расчета средней величины и дисперсии

Расчет дисперсии способом моментов основан на использовании формулы и 3 и 4 свойств дисперсии.

(3.Если все значения признака (варианты) увеличить (уменьшить) на какое-то постоянное число А, то дисперсия новой совокупности не изменится.

4.Если все значения признака (варианты) увеличить (умножить) в К раз, где К – постоянное число, то дисперсия новой совокупности увеличится (уменьшится) в К 2 раз.)

Получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:

А- условный ноль, равный варианте с максимальной частотой (середина интервала с максимальной частотой)

Расчет средней величины способом моментов также основан на использовании свойств средней.

    Понятие о выборочном наблюдении. Этапы исследования экономических явлений выборочным методом

Выборочным называют наблюдение, при котором обследованию и изучению подвергаются не все единицы исходной совокупности, а только часть единиц, при этом результат обследования части совокупности распространяется на всю исходную совокупность. Совокупность, из которой производится отбор единиц для дальнейшего обследования и изучения называется генеральной и все показатели, характеризующие эту совокупность, называютсягенеральными .

Возможные пределы отклонений выборочной средней величины от генеральной средней величины называют ошибкой выборки .

Совокупность отобранных единиц называется выборочной и все показатели, характеризующие эту совокупность, называютсявыборочными .

Выборочное исследование включает следующие этапы:

Характеристика объекта исследования (массовые экономические явления). Если генеральная совокупность небольшая, то выборку проводить не рекомендуется, необходимо сплошное исследование;

Расчет объема выборки. Важно определить оптимальный объем, который позволит при наименьших затратах получить ошибку выборки в пределах допустимой;

Проведение отбора единиц наблюдения с учетом требований случайности, пропорциональности.

Доказательство репрезентативности, основанное на оценке ошибки выборки. Для случайной выборки ошибка рассчитывается с использованием формул. Для целевой выборки репрезентативность оценивается с помощью качественных методов (сравнения, эксперимента);

Анализ выборочной совокупности. Если сформированная выборка отвечает требованиям репрезентативности, то проводится ее анализ с использованием аналитических показателей (средних, относительных и проч.)

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго - 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 - 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 - - - 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 - - - 23040000

Дисперсия в статистике определяется как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. Распространенный способ расчета квадратов отклонений вариантов от средней с их последующим усреднением.

В экономически-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения, оно представляет собой корень квадратный из дисперсии.

(3)

Характеризует абсолютную колеблемость значений варьирующего признака выражается в тех же единицах измерения, что и варианты. В статистике часто возникает необходимость сравнения вариации различных признаков. Для таких сравнений используется относительный показатель вариации, коэффициент вариации.

Свойства дисперсии:

1)если из всех вариант вычесть какое-либо число, то дисперсия от этого не изменится;

2) если все значения вариант разделить на какое-либо число b, то дисперсия уменьшится в b^2 раз, т.е.

3) если исчислить средний квадрат отклонений от какого-либо числа с неравного средней арифметической, то он будет больше дисперсии . При этом на вполне определенную величину на квадрат разности между средней величиной поc.

Дисперсию можно определить как разницу между средним квадратом и средней в квадрате.

17. Групповая и межгрупповая вариации. Правило сложения дисперсии

Если статистическая совокупность разбита на группы или части по изучаемому признаку, то для такой совокупности могут быть исчислены следующие виды дисперсии: групповые (частные), средне групповые (частных), и межгрупповая.

Общая дисперсия – отражает вариацию признака за счет всех условий и причин, действующих в данной статистической совокупности.

Групповая дисперсия - равна среднему квадрату отклонений отдельных значений признака внутри группы от средней арифметической этой группы, называемой групповой средней. При этом групповая средняя не совпадает с общей средней для всей совокупности.

Групповая дисперсия отражает вариацию признака только за счет условий и причин, действующих внутри группы.

Средняя групповых дисперсий - определяется как среднее взвешенное арифметическое из дисперсий групповых, причем весами являются объемы групп.

Межгрупповая дисперсия - равна среднему квадрату отклонений групповых средних от общей средней.

Межгрупповая дисперсия характеризует вариацию результативного признака за счет группировочного признака.

Между рассмотренными видами дисперсий существует определенное соотношение: общая дисперсия равна сумме средней групповой и межгрупповой дисперсии.

Это соотношение называется правилом сложения дисперсии.

18. Динамический ряд и его составные элементы. Виды динамических рядов.

Ряд в статистике - это цифровые данные, показывающие, изменение явления во времени или в пространстве и дающие возможность производить статистическое сравнение явлений как в процессе их развития во времени, так и по различным формам и видам процессов. Благодаря этому можно обнаружить взаимную зависимость явлений.

Процесс развития движения социальных явлений во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики (хронологические, временные), которые представляют собой ряды изменяющихся во времени значений статистического показателя (например, число осуждённых за 10 лет), расположенных в хронологическом порядке. Их составными элементами являются цифровые значения данного показателя и периоды или моменты времени, к которым они относятся.

Важнейшая характеристика рядов динамики - их размер (объём, величина) того или иного явления, достигнутых в определённых период или к определённому моменту. Соответственно, величина членов ряда динамики - его уровень. Различают начальный, средний и конечный уровни динамического ряда. Начальный уровень показывает величину первого, конечный - величину последнего члена ряда. Средний уровень представляет собой среднюю хронологическую вариационного рада и исчисляется в зависимости от того, является ли динамический ряд интервальным или моментным.

Ещё одна важная характеристика динамического ряда - время, прошедшее от начального до конечного наблюдения, или число таких наблюдений.

Существуют различные виды рядов динамики, их можно классифицировать по следующим признакам.

1) В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных и производных показателей (относительных и средних величин).

2) В зависимости от того, как выражают уровни ряда состояние явления на определённые моменты времени (на начало месяца, квартала, года и т.п.) или его величину за определённые интервалы времени (например, за сутки, месяц, год и т.п.), различают соответственно моментные и интервальные ряды динамики. Моментные ряды в аналитической работе правоохранительных органов используются сравнительно редко.

В теории статистики выделяют рады динамики и по ряду других классификационных признаков: в зависимости от расстояния между уровнями - с равностоящими уровнями и неравностоящими уровнями во времени; в зависимости от наличия основной тенденции изучаемого процесса - стационарные и не стационарные. При анализе динамических рядов исходят из следующего уровни ряда представляют в виде составляющих:

Y t = TP + Е (t)

где ТР – детерминированная составляющая определяющая общую тенденцию изменения во времени или тренд.

Е (t) – случайная компонента, вызывающая колеблимость уровней.

gastroguru © 2017