Что в сопротивлении матерьялов значит у. Основные понятия и определения сопромата. Внутренние силы. Метод сечений

  • 2.6. Предел прочности
  • 2.7. Условие прочности
  • 3.Внутренние силовые факторы (всф)
  • 3.1. Случай воздействия внешних сил в одной плоскости
  • 3.2. Основные соотношения между погонной силой q, поперечной силой Qy и изгибающим моментом Mx
  • Отсюда вытекает соотношение, называемое первым уравнением равновесия элемента балки
  • 4.Эпюры всф
  • 5. Правила контроля построения эпюр
  • 6. Общий случай напряженного состояния
  • 6.1.Нормальные и касательные напряжения
  • 6.2. Закон парности касательных напряжений
  • 7. Деформации
  • 8. Основные предположения и законы, используемые в сопротивлении материалов
  • 8.1. Основные предположения, используемые в сопротивлении материалов
  • 8.2. Основные законы, используемые в сопротивлении материалов
  • При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур.
  • 9. Примеры использования законов механики для расчета строительных сооружений
  • 9.1. Расчет статически неопределимых систем
  • 9.1.1. Статически неопределимая железобетонная колонна
  • 9.1.2 Температурные напряжения
  • 9.1.3. Монтажные напряжения
  • 9.1.4. Расчет колонны по теории предельного равновесия
  • 9.2. Особенности температурных и монтажных напряжений
  • 9.2.1. Независимость температурных напряжений от размеров тела
  • 9.2.2. Независимость монтажных напряжений от размеров тела
  • 9.2.3. О температурных и монтажных напряжениях в статически определимых системах
  • 9.3. Независимость предельной нагрузки от самоуравновешенных начальных напряжений
  • 9.4. Некоторые особенности деформирования стержней при растяжении и сжатии с учетом силы тяжести
  • 9.5. Расчет элементов конструкций с трещинами
  • Порядок расчета тел с трещинами
  • 9.6. Расчет конструкций на долговечность
  • 9.6.1. Долговечность железобетонной колонны при наличии ползучести бетона
  • 9.6.2. Условие независимости напряжений от времени в конструкциях из вязкоупругих материалов
  • 9.7 Теория накопления микроповреждений
  • 10. Расчет стержней и стерневых систем на жесткость
  • Составные стержни
  • Стержневые системы
  • 10.1. Формула Мора для вычисления перемещения конструкции
  • 10.2. Формула Мора для стержневых систем
  • 11. Закономерности разрушения материала
  • 11.1. Закономерности сложного напряженного состояния
  • 11.2. Зависимость иот касательных напряжений
  • 11.3. Главные напряжения
  • Вычисление
  • 11.4. Виды разрушений материалов
  • 11.5.Теории кратковременной прочности
  • 11.5.1.Первая теория прочности
  • 11.5.2.Вторая теория прочности
  • 11.5.3.Третья теория прочности (теория максимальных касательных напряжений)
  • 11.5.4.Четвертая теория (энергетическая)
  • 11.5.5. Пятая теория – критерий Мора
  • 12. Краткое изложение теорий прочности в задачах сопротивления материалов
  • 13. Расчет цилиндрической оболочки под воздействием внутреннего давления
  • 14. Усталостное разрушение (циклическая прочность)
  • 14.1. Расчет сооружений при циклическом нагружении с помощью диграммы Вёлера
  • 14.2. Расчет сооружений при циклическом нагружении по теории развивающихся трещин
  • 15. Изгиб балок
  • 15.1. Нормальные напряжения. Формула Навье
  • 15.2. Определение положения нейтральной линии (оси х) в сечении
  • 15.3 Момент сопротивления
  • 15.4 Ошибка Галилея
  • 15.5 Касательные напряжения в балке
  • 15.6. Касательные напряжения в полке двутавра
  • 15.7. Анализ формул для напряжений
  • 15.8. Эффект Эмерсона
  • 15.9. Парадоксы формулы Журавского
  • 15.10. О максимальных касательных напряжениях (τzy)max
  • 15.11. Расчеты балки на прочность
  • 1. Разрушение изломом
  • 2.Разрушение срезом (расслоение).
  • 3. Расчет балки по главным напряжениям.
  • 4. Расчет по III и IV теориям прочности.
  • 16. Расчет балки на жесткость
  • 16.1. Формула Мора для вычисления прогиба
  • 16.1.1 Методы вычисления интегралов. Формулы трапеций и Симпсона
  • Формула трапеций
  • Формула Симпсона
  • . Вычисление прогибов на основе решения дифференциального уравнения изогнутой оси балки
  • 16.2.1 Решение дифференциального уравнения изогнутой оси балки
  • 16.2.2 Правила Клебша
  • 16.2.3 Условия для определения с и d
  • Пример вычисления прогиба
  • 16.2.4. Балки на упругом основании. Закон Винклера
  • 16.4. Уравнение изогнутой оси балки на упругом основании
  • 16.5. Бесконечная балка на упругом основании
  • 17. Потеря устойчивости
  • 17.1 Формула Эйлера
  • 17.2 Другие условия закрепления.
  • 17.3 Предельная гибкость. Длинный стержень.
  • 17.4 Формула Ясинского.
  • 17.5 Продольный изгиб
  • 18. Кручение валов
  • 18.1. Кручение круглых валов
  • 18.2. Напряжения в сечениях вала
  • 18.3. Расчет вала на жесткость
  • 18.4. Свободное кручение тонкостенных стержней
  • 18.5. Напряжения при свободном кручении тонкостенных стержней замкнутого профиля
  • 18.6. Угол закрутки тонкостенных стержней замкнутого профиля
  • 18.7. Кручение стержней открытого профиля
  • 19. Сложная деформация
  • 19.1. Эпюры внутренних силовых факторов (всф)
  • 19.2. Растяжение с изгибом
  • 19.3. Максимальные напряжения при растяжении с изгибом
  • 19.4 Косой изгиб
  • 19.5. Проверка прочности круглых стержней при кручении с изгибом
  • 19.6 Внецентренное сжатие. Ядро сечения
  • 19.7 Построение ядра сечения
  • 20. Динамические задачи
  • 20.1. Удар
  • 20.2 Область применения формулы для коэффициента динамичности
  • Выражение коэффициента динамичности через скорость ударяющего тела
  • 20.4. Принцип Даламбера
  • 20.5. Колебания упругих стержней
  • 20.5.1. Свободные колебания
  • 20.5.2. Вынужденные колебания
  • Способы борьбы с резонансом
  • 20.5.3 Вынужденные колебания стержня с демпфером
  • 21. Теория предельного равновесия и её использование при расчете конструкций
  • 21.1. Задача изгиба балки Предельный момент.
  • 21.2. Применение теории предельного равновесия для расчета
  • Литература
  • Содержание
  • 8.2. Основные законы, используемые в сопротивлении материалов

      Соотношения статики. Их записывают в виде следующих уравнений равновесия.

      Закон Гука (1678 год): чем больше сила, тем больше деформация, причем, прямо пропорционально силе . Физически это означает, что все тела это пружины, но с большой жесткостью. При простом растяжении бруса продольной силой N = F этот закон можно записать в виде:

    Здесь
    продольная сила,l - длина бруса, А - площадь его поперечного сечения, Е - коэффициент упругости первого рода (модуль Юнга ).

    С учетом формул для напряжений и деформаций, закон Гука записывают следующим образом:
    .

    Аналогичная связь наблюдается в экспериментах и между касательными напряжениями и углом сдвига:

    .

    G называют модулем сдвига , реже – модулем упругости второго рода. Как и любой закон, имеет предел применимости и закон Гука. Напряжение
    , до которого справедлив закон Гука, называетсяпределом пропорциональности (это важнейшая характеристика в сопромате).

    Изобразим зависимость от графически (рис.8.1). Эта картина называется диаграммой растяжения . После точки В (т.е. при
    ) эта зависимость перестает быть прямолинейной.

    При
    после разгрузки в теле появляются остаточные деформации, поэтомуназываетсяпределом упругости .

    При достижении напряжением величины σ = σ т многие металлы начинают проявлять свойство, которое называется текучестью . Это означает, что даже при постоянной нагрузке материал продолжает деформироваться (то есть ведет себя как жидкость). Графически это означает, что диаграмма параллельна абсциссе (участок DL). Напряжение σ т, при котором материал течет, называется пределом текучести .

    Некоторые материалы (Ст.3 - строительная сталь) после непродолжительного течения снова начинают сопротивляться. Сопротивление материала продолжается до некоторого максимального значения σ пр, в дальнейшем начинается постепенное разрушение. Величина σ пр - называется пределом прочности (синоним для стали: временное сопротивление, для бетона – кубиковая или призменная прочность). Применяют также и следующие обозначения:

    =R b

    Аналогичная зависимость наблюдается в экспериментах между касательными напряжениями и сдвигами.

    3) Закон Дюгамеля – Неймана (линейного температурного расширения):

    При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур.

    Пусть имеется перепад температур
    . Тогда этот закон имеет вид:

    Здесь α - коэффициент линейного температурного расширения , l - длина стержня, Δ l - его удлинение.

    4) Закон ползучести .

    Исследования показали, что все материалы сильно неоднородны в малом. Схематическое строение стали изображено на рис.8.2.

    Некоторые из составляющих обладают свойствами жидкости, поэтому многие материалы под нагрузкой с течением времени получает дополнительное удлинение
    (рис.8.3.) (металлы при высоких температурах, бетон, дерево, пластики – при обычных температурах). Это явление называетсяползучестью материала.

    Для жидкости справедлив закон: чем больше сила, тем больше скорость движения тела в жидкости . Если это соотношение линейно (т.е. сила пропорциональна скорости), то можно записать его в виде:

    Е
    сли перейти к относительным силам и относительным удлинениям, то получим

    Здесь индекс « cr » означает, что рассматривается та часть удлинения, которая вызвана ползучестью материала. Механическая характеристика называется коэффициентом вязкости.

      Закон сохранения энергии.

    Рассмотрим нагруженный брус

    Введем понятие перемещения точки, например,

    - вертикальное перемещение точки В;

    - горизонтальное смещение точки С.

    Силы
    при этом совершают некоторую работуU . Учитывая, что силы
    начинают возрастать постепенно и предполагая, что возрастают они пропорционально перемещениям, получим:

    .

    Согласно закону сохранения: никакая работа не исчезает, она тратится на совершение другой работы или переходит в другую энергию (энергия – это работа, которую может совершить тело.).

    Работа сил
    , тратится на преодоление сопротивления упругих сил, возникающих в нашем теле. Чтобы подсчитать эту работу учтем, что тело можно считать состоящим из малых упругих частиц. Рассмотрим одну из них:

    Со стороны соседних частиц на него действует напряжение . Равнодействующая напряжений будет

    Под действием частица удлинится. Согласно определению относительное удлинение это удлинение на единицу длины. Тогда:

    Вычислим работу dW , которую совершает сила dN (здесь также учитывается, что силы dN начинают возрастать постепенно и возрастают они пропорциональны перемещениям):

    Для всего тела получим:

    .

    Работа W , которую совершило , называютэнергией упругой деформации.

    Согласно закону сохранения энергии:

    6)Принцип возможных перемещений .

    Это один из вариантов записизакона сохранения энергии.

    Пусть на брус действуют силы F 1 , F 2 ,. Они вызывают в теле перемещения точки
    и напряжения
    . Дадим телудополнительные малые возможные перемещения
    . В механике запись вида
    означает фразу «возможное значение величиныа ». Эти возможные перемещения вызовут в теле дополнительные возможные деформации
    . Они приведут к появлению дополнительных внешних сил и напряжений
    , δ.

    Вычислим работу внешних сил на дополнительных возможных малых перемещениях:

    Здесь
    - дополнительные перемещения тех точек, в которых приложены силыF 1 , F 2 ,

    Рассмотрим снова малый элемент с поперечным сечением dA и длиной dz (см. рис.8.5. и 8.6.). Согласно определению дополнительное удлинение dz этого элемента вычисляется по формуле:

    dz =  dz.

    Сила растяжения элемента будет:

    dN = (+δ) dA dA ..

    Работа внутренних сил на дополнительных перемещениях вычисляется для малого элемента следующим образом:

    dW = dN dz = dA  dz =  dV

    С
    уммируя энергию деформации всех малых элементов получим полную энергию деформации:

    Закон сохранения энергии W = U дает:

    .

    Это соотношение и называется принципом возможных перемещений (его называют также принципом виртуальных перемещений). Аналогично можно рассмотреть случай, когда действуют еще и касательные напряжения. Тогда можно получить, что к энергии деформации W добавится следующее слагаемое:

    Здесь  - касательное напряжение,  -сдвиг малого элемента. Тогда принцип возможных перемещений примет вид:

    В отличие от предыдущей формы записи закона сохранения энергии здесь нет предположения о том, что силы начинают возрастать постепенно, и возрастают они пропорционально перемещениям

    7) Эффект Пуассона.

    Рассмотрим картину удлинения образца:

    Явление укорочения элемента тела поперек направления удлинения называется эффектом Пуассона .

    Найдем продольную относительную деформацию.

    Поперечная относительная деформация будет:

    Коэффициентом Пуассона называется величина:

    Для изотропных материалов (сталь, чугун, бетон) коэффициент Пуассона

    Это означает, что в поперечном направлении деформация меньше продольной.

    Примечание : современные технологии могут создать композиционные материалы, у которых коэффициент Пуассон >1, то есть поперечная деформация будет больше, чем продольная. Например, это имеет место для материала, армированного жесткими волокнами под малым углом
    <<1 (см. рис.8.8.). Оказывается, что коэффициент Пуассона при этом почти пропорционален величине
    , т.е. чем меньше, тем больше коэффициент Пуассона.

    Рис.8.8. Рис.8.9

    Еще более удивительным является материал, приведенный на (рис.8.9.), причем для такого армирования имеет место парадоксальный результат – продольное удлинение ведет к увеличению размеров тела и в поперечном направлении.

    8) Обобщенный закон Гука.

    Рассмотрим элемент, который растягивается в продольном и поперечном направлениях. Найдем деформацию, возникающую в этих направлениях.

    Вычислим деформацию , возникающую от действия:

    Рассмотрим деформацию от действия , которая возникает в результате эффекта Пуассона:

    Общая деформация будет:

    Если действует и , то добавиться еще одно укорочение в направлении осиx
    .

    Следовательно:

    Аналогично:

    Эти соотношения называются обобщенным законом Гука.

    Интересно, что при записи закона Гука делается предположение о независимости деформаций удлинения от деформаций сдвига (о независимости от касательных напряжений, что одно и то же) и наоборот. Эксперименты хорошо подтверждают эти предположения. Забегая вперед, отметим, что прочность напротив сильно зависит от сочетания касательных и нормальных напряжений.

    Примечание: Приведенные выше законы и предположения подтверждаются многочисленными прямыми и косвенными экспериментами, но, как и все другие законы, имеют ограниченную область применимости.


    Сопротивление материалов – раздел механики деформируемого твердого тела, в котором рассматриваются методы расчета элементов машин и сооружений на прочность, жесткость и устойчивость.

    Прочностью называется способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций. Расчеты на прочность дают возможность определить размеры и форму деталей, выдерживающих заданную нагрузку, при наименьшей затрате материала.

    Жесткостью называется способность тела сопротивляться образованию деформаций. Расчеты на жесткость гарантируют, что изменения формы и размеров тела не превзойдут допустимых норм.

    Устойчивостью называется способность конструкций сопротивляться усилиям, стремящимся вывести их из состояния равновесия. Расчеты на устойчивость предотвращают внезапную потерю равновесия и искривление элементов конструкции.

    Долговечность состоит в способности конструкции сохранять необходимые для эксплуатации служебные свойства в течение заранее предусмотренного срока времени.

    Брус (рис.1, а - в) представляет собой тело, размеры перечного сечения которого малы по сравнению с длиной. Ось бруса, это линия, соединяющая центры тяжести его поперечных сечений. Различают брусья постоянного или переменного поперечного сечения. Брус может иметь прямолинейную или криволинейную ось. Брус с прямолинейной осью называется стержнем (рис.1, а, б). Тонкостенные элементы конструкции разделяют на пластины и оболочки.

    Оболочка (рис.1, г) это тело, один из размеров которого (толщина) намного меньше остальных. Если поверхность оболочки представляет собой плоскость, то объект называют пластиной (рис.1, д). Массивами называются тела, у которых все размеры одного порядка (рис.1, е). К ним относятся фундаменты сооружений, подпорные стены и др.



    Эти элементы в сопротивлении материалов используются для составления расчетной схемы реального объекта и проведения ее инженерного анализа. Под расчетной схемой понимается некоторая идеализированная модель реальной конструкции, в которой отброшены все малосущественные факторы, влияющие на ее поведение под нагрузкой

    Допущения о свойствах материала

    Материал считается сплошным, однородным, изотропным и идеально упругим.
    Сплошность – материал считается непрерывным. Однородность –физические свойства материала одинаковы во всех его точках.
    Изотропность – свойства материала одинаковы по всем направлениям.
    Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

    Допущения о деформациях

    1. Гипотеза об отсутствии первоначальных внутренних усилий.

    2. Принцип неизменности начальных размеров – деформации малы по сравнению с первоначальными размерами тела.

    3. Гипотеза о линейной деформируемости тел – деформации прямо пропорциональны приложенным силам (закон Гука).

    4. Принцип независимости действия сил.

    5. Гипотеза плоских сечений Бернулли – плоские поперечные сечения бруса до деформации остаются плоскими и нормальными к оси бруса после деформации.

    6. Принцип Сен-Венана – напряженное состояние тела на достаточном удалении от области действия локальных нагрузок очень мало зависит от детального способа их приложения

    Внешние силы

    Действие на конструкцию окружающих тел заменяют силами, которые называют внешними силами или нагрузками. Рассмотрим их классификацию. К нагрузкам относятся активные силы (для восприятия которых создана конструкция), и реактивные (реакции связей) - уравновешивающие конструкцию силы. По способу приложения внешние силы можно разделить на сосредоточенные и распределенные. Распределенные нагрузки характеризуются ин- тенсивностью, и могут быть линейно, поверхностно или объемно распределенными. По характеру воздействия нагрузки внешние силы бывают статические и динамические . К статическим силам относят нагрузки, изменения которых во времени малы, т.е. ускорениями точек элементов конструкций (силами инерции) можно пренебречь. Динамические нагрузки вызывают в конструкции или отдельных ее элементах такие ускорения, которыми при расчетах пренебрегать нельзя

    Внутренние силы. Метод сечений.

    Действие на тело внешних сил приводит к его деформации (меняется взаимное расположение частиц тела). Вследствие этого между частицами возникают дополнительные силы взаимодействия. Это силы сопротивления изменению формы и размеров тела под действием нагрузки, называют внутренними силами (усилиями). С увеличением нагрузки внутренние усилия возрастают. Выход из строя элемента конструкции наступает при превышении внешних сил некоторого предельного для данной конструкции уровня внутренних усилий. Поэтому оценка прочности нагруженной конструкции требует знания величины и направления возникающих внутренних усилий. Значения и направления внутренних сил в нагруженном теле определяют при заданных внешних нагрузках методом сечений.

    Метод сечений (см. рис. 2) состоит в том, что брус, находящийся в равновесии под действием системы внешних сил, мысленно рассекают на две части (рис. 2, а), и рассматривают равновесие одной из них, заменяя действие отброшенной части бруса системой внутренних сил, распределенных по сечению (рис. 2, б). Заметим, что внутренние силы для бруса в целом, становятся внешними для одной из его частей. Причем во всех случаях внутренние усилия уравновешивают внешние силы, действующие на отсеченную часть бруса.

    В соответствии с правилом параллельного переноса сил статики приведем все распределенные внутренние силы к центру тяжести сечения. В результате получим их главный вектор R и главный момент M системы внутренних сил (рис. 2, в). Выбрав систему координат O xyz так, чтобы ось z являлась продольной осью бруса и проецируя главный вектор R и главный момент M внутренних сил на оси, получим шесть внутренних силовых факторов в сечении бруса: продольную силу N, поперечные силы Q x и Q y , изгибающие моменты М x и M y , а также крутящий момент Т. По виду внутренних силовых факторов можно определить характер нагружения бруса. Если в поперечных сечениях бруса возникает только продольная сила N, а другие силовые факторы отсутствуют, то имеет место «растяжение» или «сжатие» бруса (в зависимости от направления силы N). Если в сечениях действуют только поперечная сила Q x или Q y - это случай «чистого сдвига». При «кручении» в сечениях бруса действуют только крутящие моменты Т. При «чистом изгибе» - только изгибающие моменты М. Возможнытакже комбинированные виды нагружения (изгиб с растяжением, кручение с изгибом и др.) – это случаи «сложного сопротивления». Для наглядного представления характера изменения внутренних силовых факторов вдоль оси бруса строят их графики, называемые эпюрами . Эпюры позволяют определить наиболее нагруженные участки бруса и установить опасные сечения.

    19-08-2012: Степан

    Низкий вам поклон за доступно изложенные материалы по сопромату!)
    В институте курил бамбук и как-то не до сопромата было, курс выветривался в течение месяца)))
    Сейчас работаю архитектором-проектировщиком и постоянно встаю в тупик при необходимости в расчетах, зарываюсь в жиже формул и разных методик и понимаю что упустил азы..
    Читая Ваши статьи в голове постепенно наводится порядок - все наглядно и очень доступно!

    24-01-2013: wany

    спасибо вам человек!!))
    у мня 1 единственыый вопрос если максимальная нагрузка на 1 м равен 1 кг*м то на 2 метра?
    2 кг*м или 0,5кг*м??????????

    24-01-2013: Доктор Лом

    Если имеется в виду распределенная нагрузка на погонный метр, то распределенная нагрузка 1кг/1м равна распределенной нагрузке 2кг/2м, что в итоге все равно дает 1кг/м. А сосредоточенная нагрузка измеряется просто в килограммах или Ньютонах.

    30-01-2013: Владимир

    Формулы это хорошо! но как и какими формулами расчитать конструкцию для навеса а самое главное какой металл (профильную трубу) размером должен быть???

    30-01-2013: Доктор Лом

    Если Вы обратили внимание, то данная статья посвящена исключительно теоретической части, а если Вы еще и проявите сообразительность, то без особого труда найдете примера расчета конструкций в соответсвующем разделе сайта: Расчет конструкций. Для этого достаточно перейти на главную страницу и найти там этот раздел.

    05-02-2013: Лео

    Не во всех формулах описываются все учавствующие переменные ((
    Так же есть путаница с обозначениями, сперва иксом обозначается расстояние от левой опы до приложенной силы Q, а двумя абзацами ниже иск это уже функция, потом выводятся формули и поехала путаница.

    05-02-2013: Доктор Лом

    Как-то так получилось, что при решении различных математических задач используется переменная х. Почему? Х его знает. Определение реакций опор при переменной точке приложения силы (сосредоточенной нагрузки) и определение значения момента в некоторой переменной точке относительно одной из опор - это две разные задачи. Более того, в каждой из задач определяется переменная относительно оси х.
    Если Вас это запутывает и Вы не можете разобраться в столь элементарных вещах, то ничего поделать не могу. Жалуйтесь в общество защиты прав математиков. А еще я бы на Вашем месте подал жалобу на учебники по строительной механике и сопромату, а то действительно, что это такое? Мало что ли букв и иероглифов в алфавитах?
    И еще у меня к Вам встречный вопрос: Вы когда в третьем классе задачки на сложение-вычитание яблок решали, наличие х в десяти задачах на странице Вас тоже путало или как-то справлялись?

    05-02-2013: Лео

    Я конечно понимаю, что это не труд какой-то оплачиваемый, но тем не менее. Если идёт формула, то под ней должно быть описание всех её переменых, у Вас же нужно это выискивыть сверху из контекста. А кое где и вообще нет и в контексте упоминания. Я отнюдь не жалуюсь. Я говорю о недостатках работы (за которую уже кстати Вас благодарил). Что касается переменных икс как функции и потом введении ещё одной переменной икс как отрезка, без указаний всех переменный под выводимой формулой вводит путаницу дело тут не в устоявшихся обозначениях, а в целесообразности ведения такого изложения материала.
    Кстати вас арказм не уместен, потому как вы излагаете всё на одной странице и без указания всех переменных непонятно, что вы вообще имеете в виду. К примеру в программировании всегда указываются все перменные. Кстати если Вы делаете это всё для народа, то Вам не мешало бы узнать про то какой вклад в математику внёс Кисилёв как педагог, а не как математик, может тогда Вы поймёте о чём я говорю.

    05-02-2013: Доктор Лом

    Мне кажется, Вы все-таки не совсем правильно понимаете смысл данной статьи и не берете в расчет основную массу читателей. Главная цель была - максимально простыми средствами донести до людей, не всегда имеющих соответствующее высшее образование, основные понятия, используемые в теории сопротивления материалов и строительной механике и зачем все это вообще нужно. Понятное дело, приходилось чем-то жертвовать. Но.
    Правильных учебников, где все разложено по полочкам, главам, разделам и томам и описано по всем правилам, хватает и без моих статей. А вот людей, способных сходу разобраться в этих томах, не так уж и много. Во времена моего обучения две трети студентов не понимали смысла сопромата даже приблизительно, а что говорить о простых людях, занимающихся ремонтом или строительством и задумавших рассчитать перемычку или балку? А ведь мой сайт предназначен в первую очередь для таких людей. Я считаю, что наглядность и простота, намного важнее, чем буквальное соблюдение протокола.
    Я думал о том, чтобы разбить эту статью на отдельные главы, но при этом необратимо теряется общий смысл, а значит и понимание, зачем это нужно.
    Пример с программированием считаю некорректным, по той простой причине, что программы пишутся для компьютеров, а компьютеры по умолчанию тупые. А вот люди - другое дело. Когда жена или подруга говорит Вам: "Хлеб закончился", то Вы без дополнительных уточнений, определений и команд отправитесь в магазин, в котором обычно покупаете хлеб, купите там именно такой хлеб, который обычно покупаете, и именно столько, сколько обычно покупаете. При этом всю необходимую информацию для совершения данного действия Вы по умолчанию извлекаете из контекста предыдущего общения с женой или подругой, имеющихся привычек и других на первый взгляд малозначимых факторов. И при этом заметьте, Вы даже не получаете прямого указания купить хлеб. В этом и есть разница между человеком и компьютером.
    Но в главном могу с Вами согласиться, статья не совершенна, как впрочем и все остальное в окружающем нас мире. А на иронию не обижайтесь, в этом мире слишком много серьезности, хочется иногда ее разбавить.

    28-02-2013: Иван

    Добрый день!
    Ниже формулы 1.2 приводится формула реакции опор для равномерной нагрузки по всей длине балки А=В=ql/2. Мне кажется, что должно быть А=В=q/2, или я чего-то не понимаю?

    28-02-2013: Доктор Лом

    В тексте статьи все правильно, ведь равномерно распределенная нагрузка означает, какая нагрузка приложена на участке длины балки, и измеряется распределеннная нагрузкка в кг/м. Чтобы определить реакцию опроры, мы сначала находим, чему будет равна суммарная нагрузка, т.е. по всей длине балки.

    28-02-2013: Иван

    28-02-2013: Доктор Лом

    Q - это сосредоточенная нагрузка, какая бы длина балки ни была, значение реакций опор будет постоянным при постоянном значении Q. q - это нагрузка, распределенная по некоторой длине, и потому, чем больше длина балки, тем больше значение реакций опор, при постоянном значении q. Пример сосредоточенной нагрузки - человек, стоящий на мосту, пример распределенной нагрузки - собственный вес конструкций моста.

    28-02-2013: Иван

    Вот оно! Теперь понятно. В тексте нет указания, что q - это распределенная нагрузка, просто появляется переменная "ку маленькая", это ввело в заблуждение:-)

    28-02-2013: Доктор Лом

    Разница между сосредоточенной и распределенной нагрузкой описывается в вводной статье, ссылка на которую в самом начале статьи, рекомендую ознакомиться.

    16-03-2013: Владислав

    Не понятно, зачем рассказывать азы сопромата тем, кто строит или проектирует. Если они в вузе не поняли сопромат у грамотных педагогов, то их и близко нельзя допускать до проектирования, а популярные статьи только еще больше их запутают, так как часто содержат грубые ошибки.
    Каждый должен быть профессионалом в своей области.
    Кстати, изгибающие моменты в приведенных выше простых балках должны иметь положительный знак. Отрицательный знак, проставленный на эпюрах, противоречит всем общепринятым нормам.

    16-03-2013: Доктор Лом

    1. Далеко не все, кто строит, учились в ВУЗах. И почему-то такие люди, занимающиеся ремонтом в своем доме, за подбор сечения перемычки над дверным проемом в перегородке не хотят платить профессионалам. Почему? спросите у них.
    2. Опечаток хватает и в бумажных изданиях учебников, но путают людей не опечатки, а слишком абстрагированное изложение материала. В данном тексте тоже, возможно, есть опечатки, но в отличие от бумажных источников они будут исправлены сразу после того, как будут обнаружены. А вот насчет грубых ошибок, вынужден вас огорчить, здесь их нет.
    3. Если вы считаете, что эпюры моментов, построенные снизу оси должны иметь только положительный знак, то мне вас жаль. Во-первых, эпюра моментов достаточно условна и она лишь показывает изменение значения момента в поперечных сечениях изгибаемого элемента. При этом изгибающий момент вызывает в поперечном сечении как сжимающие так и растягивающие напряжения. Раньше было принято строить эпюру сверху оси, в таких случаях положительный знак эпюры был логичным. Затем для наглядности эпюру моментов стали строить так, как показано на рисунках, однако положительный знак эпюр сохранился по старой памяти. Но в принципе, как я уже сказал это не имеет принципиального значения для определения момента сопротивления. В статье по этому поводу сказано: "В данном случае значение момента считается отрицательным, если изгибающий момент пытается вращать балку по часовой стрелке относительно рассматриваемой точки сечения. В некоторых источниках считается наоборот, но это не более чем вопрос удобства". Впрочем объяснять это инженеру нет необходимости, лично я много раз сталкивался с различными вариантами отображения эпюр и никогда проблем это не вызывало. Но по всей видимости статью вы не читали, а ваши высказывания подтверждают, что даже основ сопромата вы не знаете, пытаясь подменить знание некими общепринятыми нормами, да еще и "всеми".

    18-03-2013: Владислав

    Уважаемый доктор Лом!
    Вы невнимательно прочитали мое сообщение. Я говорил об ошибках в знаке изгибающих моментов «в приведенных выше примерах», а не вообще – для этого достаточно открыть любой учебник по сопротивлению материалов, технической или прикладной механике, для вузов или техникумов, для строителей или машиностроителей, написанный полвека назад, 20 лет назад или 5 лет. Во всех без исключения книгах правило знаков для изгибающих моментов в балках при прямом изгибе одно и то же. Это я и имел в виду, говоря об общепринятых нормах. А с какой стороны балки откладывать ординаты – это уже другой вопрос. Поясню свою мысль.
    Знак на эпюрах ставят для того, чтобы определить направление внутреннего усилия. Но при этом необходимо договориться, какой знак – какому направлению соответствует. Эта договоренность и является так называемым правилом знаков.
    Берем несколько книг, рекомендуемых в качестве основной учебной литературы.
    1) Александров А.В. Сопротивление материалов, 2008, с. 34 – учебник для студентов строительных специальностей: «изгибающий момент считать положительным, если он изгибает элемент балки выпуклостью вниз, вызывая растяжение нижних волокон.». В приведенных примерах (во втором параграфе), очевидно, растягиваются нижние волокна, так почему знак на эпюре отрицательный? Или утверждение А. Александрова является чем-то особенным? Ничего подобного. Смотрим дальше.
    2) Потапов В.Д. и др. Строительная механика. Статика упругих систем, 2007, с. 27 – вузовский учебник для строителей: «момент считается положительным, если он вызывает растяжение нижних волокон балки».
    3) А.В. Дарков, Н.Н. Шапошников. Строительная механика, 1986, с. 27 – широко известный учебник также для строителей: «при положительном изгибающем моменте верхние волокна балки испытывают сжатие (укорочение), а нижние – растяжение (удлинение);». Как видим, правило то же самое. Может быть у машиностроителей все совсем по другому? Опять же нет.
    4) Г.М. Ицкович. Сопротивление материалов, 1986, с. 162 – учебник для учащихся машиностроительных техникумов: «Внешняя сила (момент), изгибающая эту часть (отсеченную часть балки) выпуклостью вниз, т.е. таким образом, что сжатые волокна находятся сверху, дает положительный изгибающий момент».
    Список можно продолжить, но зачем? Любой студент, сдавший сопромат хотя бы на 4, это знает.
    Вопрос, с какой стороны стержня откладывать ординаты эпюры изгибающих моментов, – это уже другое соглашение, которое может полностью заменить выше приведенное правило знаков. Поэтому при построении эпюр М в рамах знак на эпюрах не ставят, так как локальная система координат связана со стержнем, и меняет свою ориентацию при изменении положения стержня. В балках же все проще: это или горизонтальный или наклоненный под небольшим углом стержень. В балках эти два соглашения дублируют друг друга (но не противоречат при правильном понимании). И вопрос, с какой стороны откладывать ординаты, определялся не «раньше, а потом», как Вы пишите, а сложившимися традициями: строители всегда строили и строят эпюры на растянутых волокнах, а машиностроители – на сжатых (до сих пор!). Я бы мог объяснить, почему, но и так много написал. Если бы на эпюре М в приведенных задачах стоял знак «плюс», или вообще не стояло никакого знака (с указанием, что эпюра построена на растянутых волокнах – для определенности), то дискуссии вообще бы не было. А то, что знак М не влияет на прочность элементов при строительстве садового домика, так об этом никто и не спорит. Хотя и здесь можно выдумать особые ситуации.
    Вообще, эта дискуссия не плодотворна в виду тривиальности задачи. Каждый год, когда ко мне приходит новый поток студентов, приходится им объяснять эти простые истины, или подправлять мозги, запутанные, что греха таить, отдельными преподавателями.
    Отмечу, что из Вашего сайта я почерпнул и полезную, интересную информацию. Например, графическое сложение линий влияния опорных реакций: интересный прием, который не встречал в учебниках. Доказательство здесь элементарное: если сложить уравнения линий влияния, получим тождественно единицу. Наверное, сайт будет полезен умельцам, затеявшим строительство. Но все же, на мой взгляд, лучше пользоваться литературой, опирающейся на СНИП. Есть популярные издания, содержащие не только формулы сопромата, но и нормы проектирования. Там даны простые методики, содержащие и коэффициенты перегрузки, и сбор нормативных и расчетных нагрузок и др.

    18-03-2013: Anna

    отличный сайт, спасибо вам! Будьте добры, подскажите, если у меня точечая нагрузка 500 Н каждые полметра на балке длиной 1.4 м, могу я рассчитывать как равномерно распределеную нагрузку в 1000 Н/м? и чему тогда будет равно q?

    18-03-2013: Доктор Лом

    Владислав
    в такой форме я принимаю вашу критику, но все равно остаюсь при своем мнении. Например, есть очень старый Справочник по технической механике, под редакцией акад. А.Н. Динника, 1949, 734 с. Конечно же данный справочник давно устарел и никто им сейчас не пользуется, тем не менее в этом справочнике эпюры для балок строились на сжатых волокнах, а не так, как принято сейчас, и на эпюрах проставлялись знаки. Именно это я и имел в виду, когда говорил "раньше - потом". Еще через 20-50 лет принятые ныне критерии определения знаков эпюр могут опять поменяться, однако сути это, как вы понимаете, не изменит.
    Лично мне кажется, что отрицательный знак для эпюры, расположенной ниже оси, более логичен, чем положительный, так как с начальных классов нас учат, что все, что откладывается вверх по оси ординат - положительно, все что вниз - отрицательно. А ныне принятое обозначение - одно из многочисленных, хотя и не основных препятствий к пониманию предмета. Кроме того, у некоторых материалов расчетное сопротивление растяжению намного меньше расчетного сопротивления сжатию и потому отрицательный знак наглядно показывает опасную область для конструкции из такого материала, впрочем, это мое личное мнение. Но то, что ломать копья по этому вопросу не стоит - согласен.
    Согласен я и с тем, что лучше пользоваться проверенными и утвержденными источниками. Более того, именно это я постоянно советую своим читателям в начале большинства статей и добавляю, что статьи предназначены только для ознакомления и ни в коем случае не являются рекомендациями по расчетам. При этом право выбора остается за читателями, взрослые люди должны сами прекрасно понимать, что они читают, и что с этим делать.

    18-03-2013: Доктор Лом

    Anna
    Точечная нагрузка и равномерно распределенная нагрузка - это все-таки разные вещи и окончательные результаты расчетов для точечной нагрузки напрямую зависят от точек приложения сосредоточенной нагрузки.
    Судя по вашему описанию на балку действуют только две симметрично расположенные точечные нагрузки..html), чем переводить сосредоточенную нагрузку в равномерно распределенную.

    18-03-2013: Anna

    я знаю как рассчитывать, спасибо, не знаю вот какую схему взять правильней, 2 нагрузки через 0,45-0,5-0,45м или 3 через 0,2-0,5-0,5-0,2м условие сая знаю как рассчитывать, спасибо, не знаю вот какую схему взять правильней, 2 нагрузки через 0,45-0,5-0,45м или 3 через 0,2-0,5-0,5-0,2м условие самые неблагоприятные положения, опора на концах.

    18-03-2013: Доктор Лом

    Если вы ищете наиболее неблагоприятное положение нагрузок, к тому же их может быть не 2 а 3, то в целях надежности имеет смысл просчитать конструкцию по обоим указанным вами вариантам. Если навскидку, то вариант с 2 нагрузками представляется наиболее неблагоприятным, но как я уже говорил, желательно проверить оба варианта. Если запас прочности важнее точности расчета, то можете принять распределенную нагрузку 1000 кг/м и умножить ее на дополнительный коэффициент 1.4-1.6, учитывающий неравномерность распределения нагрузки.

    19-03-2013: Anna

    спасибо большое за подказку, ещё один вопрос: а если указанная мной нагрузка будет приложена не на балку, а на прямоугольную плоскость в 2 ряда, кот. жестко защемлена с одной большей стороны посередине, как тогда будет выглядеть эпюра или как тогда считать?

    19-03-2013: Доктор Лом

    Ваше описание слишком неопределенно. Я понял так, что вы пытаетесь рассчитать нагрузку на некий листовой материал, уложенный в два слоя. Что означает "жестко защемлена с одной большей стороны посередине" я так и не понял. Возможно вы имеете в виду, что опираться этой листовой материал будет по контуру, но что тогда означает посредине? Не знаю. Если листовой материал будет защемлен на одной из опор на небольшом участке посредине, то такое защемление вообще можно не учитывать и считать балку шарнирной. Если это однопролетная балка (не важно листовой это материал или профиль металлопроката) с жестким защемлением на одной из опор, то ее так и следует рассчитывать (см. статью "Расчетные схемы для статически неопределимых балок") Если это некая плита, опертая по контуру, то принципы расчета такой плиты можно посмотреть в соответствующей статье. Если листовой материал будет укладываться в два слоя и эти слои имеют одинаковую толщину, то расчетную нагрузку можно уменьшить в два раза.
    Однако листовой материал помимо всего прочего следует проверить на местное сжатие от сосредоточенной нагрузки.

    03-04-2013: Александр Сергеевич

    Огромное Вам спасибо! за все то, что вы делаете по простому разъяснению народу, основ расчета строительных конструкций. Мне это лично очень помогло при расчетах для себя лично, хотя у меня
    и законченный строительный техникум и институт, а сейчас я пенсионер и уже давно не открывал учебников и СНиПов но пришлось вот вспомнить что в молодости когда то учил и уж больно заумно в основном там все изложено и получается взрыв мозгов, а тут стало все понятно, потому что заработали старые дрожжи и пошла закваска мозгов бродить в нужном направлении. Спасибо еЩе раз.
    и

    09-04-2013: Александр

    Какие усилия действуют на шарнирную балку с равнораспределенной нагрузкой?

    09-04-2013: Доктор Лом

    Смотрите п.2.2

    11-04-2013: Anna

    вернулась я к вам, потому что ответа так и не нашла. Попробую объясниь понятнее. Это типа балкона 140*70 cм. Сторона 140 прикручена к стене 4 болтами посередине в виде квадрата 95*46mm. Само дно балкона состоит из перфорированного по центру(50*120) листа алюминиевого сплава и под низом приварены 3 прямоугольные полые профиля, кот. начинаются от точки крепления со стеной и расхoдятся в разные стороны одна паралельно боковой стороне, т.е. прямо, а две другие разные стороны, в углы противоположно закрепленой стороны По кругу есть бардюр 15 см высотой; на балконе могут находится 2 человека по 80 кг в самых неблагоприятных положениях + равнораспределеная нагрузка в 40 кг. Балки в стену не закреплены, всё держится на болтах. Так вот, как мне расчитать какой взять профиль и толщину листа, чтобы дно не дифoрmировалось? Это ведь нельзя считать балкой, всё ведь происходит в плоскости? или как?

    12-04-2013: Доктор Лом

    Вы знаете, Anna, ваше описание очень напоминает загадку бравого солдата Швейка, которую он задал медицинской комиссии.
    Не смотря на столь казалось бы подробное описание, совершенно непонятна расчетная схема, какую перфорацию имеет лист "алюминиевого сплава", как именно расположены и из какого материала изготовлены "прямоугольные полые профиля" - по контуру или от середины к углам, и что это за бардюр по кругу?. Впрочем, я не буду уподобляться медицинским светилам, входившим в состав комиссии и попробую вам ответить.
    1. Лист настила все равно можно считать балкой с расчетной длиной 0.7 м. А если лист будет приварен или просто оперт по контуру, то значение изгибающего момента посредине пролета действительно будет меньше. Статьи, посвященной расчету металлического настила, у меня пока нет, но есть статья "Расчет плиты, опертой по контуру", посвященная расчету железобетонных плит. А так как с точки зрения зрения строительной механики не важно, из какого материала изготавливается рассчитываемый элемент, то вы можете воспользоваться изложенными в этой статье рекомендациями по определению максимального изгибающего момента.
    2. Настил все равно будет деформироваться, так как абсолютно жесткие материалы пока еще существуют только в теории, а вот какую величину деформации считать в вашем случае допустимой, - это другой вопрос. Можете воспользоваться стандартным требованием - не более 1/250 длины пролета.

    14-04-2013: Ярослав

    Ужасно расстраивает на самом деле вот эта путаница со знаками) :(Вроде бы все понял, и геомхар, и подбор сечений, и устойчивость стержней. Обожаю сам физику, в частности, механику) Но логика этих знаков... >_< Причем в механике же четко со знаками момента, относительно точки. А тут) Когда пишут "положительный --> если выпуклостью вниз" это логикой понятно. Но в реальном случае - в одних примерах решения задач "+", в других - "-". И хоть ты тресни. Причем, более того, в одних и тех же случаях, например, левую реакцию RA балки по-разному, относительно другого конца, определят) Хех) Оно понятно, что разница коснется только знака "выпирающей части" конечной эпюры. Хотя... наверное, поэтому, и расстраиваться на эту тему не обязательно) :) Кстати, это тоже не все, иногда в примерах почему-то выбрасывают указанный момент заделки, в уравнениях РОЗУ, хотя в общем уравнении не выбрасывают) Короче, любил всегда классическую механику за идеальную точность и четкость формулировки) А тут... А это ещё теории упругости не было, не говоря о массивах)

    20-05-2013: ихтиандр

    Огромное спасибо.

    20-05-2013: Ихтиандр

    Здравствуйте. Будьте добры Приведите пример (задачу) с размерностью Q q L,M в разделе. Рисунок №1.2. Графическое отображение изменения реакций опор в зависимости от расстояния приложения нагрузки.

    20-05-2013: Доктор Лом

    Если я правильно понял, то вас интересует определение опорных реакций, поперечных сил и изгибающих моментов с помощью линий влияния. Более подробно эти вопросы рассматриваются в строительной механике, примеры можно посмотреть здесь - "Линии влияния опорных реакций для однопролетных и консольных балок"(http://knigu-besplatno.ru/item25.html) или здесь - "Линии влияния изгибающих моментов и поперечных сил для однопролетных и консольных балок"(http://knigu-besplatno.ru/item28.html).

    22-05-2013: Евгений

    Здравствуйте! Помогите, пожалуйста. У меня консольная балка, на нее по всей длине действует распределенная нагрузка, на крайнюю точку "снизу вверх" действует сосредоточенная сила. На расстоянии 1м от края балки крутящий момент М. Мне нужно построить эпюры поперечной силы и моментов. Не знаю как определить распределенную нагрузку в точке приложения момента. Или ее не нужно считать в этой точке?

    22-05-2013: Доктор Лом

    Распределенная нагрузка потому и распределенная, что распределена по всей длине и для некоторой точки можно определить только значение поперечных сил в сечении. Это означает, что на эпюре сил никакого скачка не будет. А вот на эпюре моментов, если момент изгибающий, а не вращающий, скачок будет. Как будут выглядеть эпюры от каждой из указанных вами нагрузок вы можете посмотреть в статье "Расчетные схемы для балок" (ссылка есть в тексте статьи перед п.3)

    22-05-2013: Евгений

    А как же приложенная к крайней точке балки сила F? Из-за нее не будет скачка на эпюре поперечных сил?

    22-05-2013: Доктор Лом

    Будет. В крайней точке (точке приложения силы) правильно построенная эпюра поперечных сил изменит свое значение с F на 0. Да это и так должно быть понятно, если вы внимательно прочитали статью.

    22-05-2013: Евгений

    Спасибо Вам, Доктор Лом. Врубился, как делать, все получилось. У вас очень полезные познавательные статьи! Пишите больше, премного Вам благодарен!

    18-06-2013: Никита

    Спасибо Вам за статью. Мои технари не могут справится с простой задачей: есть конструкция на четырех опорах, нагрузка от каждой опоры (подпятник 200*200мм)36 000 кг, шаг опор 6 000*6 000 мм. Какая должна быть распределенная нагрузка по полу, что бы выдержать данную конструкцию? (есть варианты 4 и 8 тонн/м2 - разброс очень большой). Спасибо.

    18-06-2013: Доктор Лом

    У вас задача обратного порядка, когда уже известны реакции опор, а по ним нужно определить нагрузку и тогда вопрос более правильно сформулировать так:" при какой равномерно распределенной нагрузке на перекрытие опорные реакции будут составлять 36 000 кг при шаге между опорами 6 м по оси х и по оси z?"
    Ответ: "4 тонны на м^2"
    Решение: сумма опорных реакций 36х4=144 т, площадь перекрытия 6х6=36 м^2, тогда равномерно распределенная нагрузка 144/36 =4 т/м^2. Это следует из уравнения (1.1), настолько простого, понять, как можно его не понять, очень трудно. И это действительно, очень простая задача.

    24-07-2013: Александр

    Две (три, десять) одинаковых балок (стопка) свободно сложенные друг на друга (концы не заделаны) выдержат большую нагрузку, чем одна?

    24-07-2013: Доктор Лом

    Да.
    Если не учитывать силу трения, возникающую между соприкасающимися поверхностями балок, то две сложенные друг на друга с одинаковым сечением балки выдержат в 2 раза большую нагрузку, 3 балки - в 3 раза большую нагрузку и так далее. Т.е. с точки зрения строительной механики нет разницы, лежат балки рядом или одна на другой.
    Однако такой подход к решению задач является неэффективным, так одна балка высотой, равной высоте двух одинаковых свободно сложенных балок, выдержит нагрузку в 2 раза большую, чем две свободно сложенные балки. А балка высотой, равной высоте 3 одинаковых свободно сложенных балок, выдержит нагрузку в 3 раза большую чем 3 свободно сложенные балки и так далее. Это следует из уравнения момента сопротивления.

    24-07-2013: Александр

    Спасибо.
    Доказываю это конструкторам на примере десантников и стопки кирпичей, тетрадь/одинокий лист.
    Не сдаются бабушки.
    Армированный бетон у них подчиняется другим законам, нежели дерево.

    24-07-2013: Доктор Лом

    В чем-то бабушки правы. Армированный бетон - это анизотропный материал и его действительно нельзя рассматривать как условно изотропную деревянную балку. И хотя для расчетов железобетонных конструкций часто используются специальные формулы, но суть расчета от этого не меняется. Для примера посмотрите статью "Определение момента сопротивления"

    27-07-2013: Дмитрий

    Спасибо за материал. Подскажите, пожалуйста, методику расчета одной нагрузки на 4 опоры на одной линии - 1 опора левее точки приложения нагрузки, 3 опоры - правее. Все расстояния и нагрузка известны.

    27-07-2013: Доктор Лом

    Посмотрите статью "Многопролетные неразрезные балки."

    04-08-2013: Илья

    Всё это очень неплохо и довольно доходчиво. НО... у меня вопрос к линеечкам. А вы не забыли при определении момента сопротивления линейки поделить на 6? Чево-то арифметика не сходится.

    04-08-2013: санитар Петрович

    А энто в какой же хвормуле не сходится? в 4.6, в 4.7, али в другой какой? Поточнее надобно мыслю выражать.

    15-08-2013: Алекс

    Я в шоке, -оказывается основательно подзабыл сопромат (иначе "технология материалов"))), но позже).
    Док спасибо за Ваш сайт читаю, вспоминаю, все очень интересно. Нашел случайно, - встала задача оценить что выгодней (по критерию минимальной стоимости материалов [принципиально без учета трудозатрат и расходов на оборудование/инструмент] применить в контрукции колонны из готовых профильных труб (квадрат) по расчету, либо приложить руки и сварить колонны самому(допустим из уголка). Эх тряпки-железки, студенчество, как давно это было. Да, ностальгия, есть немного.

    12-10-2013: Olegggan

    Добрый день.Зашел на сайт в надежде понять все же "физику" перехода распределенной нагрузки в сосредоточеную и распределение нормативной нагрузки на всю плоскость площадки, но смотрю что вы и мой предыдущий вопрос с вашим ответом убрали:((Мои расчетные металлоконструкции и так отлично работают (беру сосредоточенную нагрузку и все по ней просчитываю-благо сфера моей деятельности эт о вспомогательные приспособления,а не архитектура,чего и хватает с головой),но все же хотелось бы б понять про распределенную нагрузку в контексте кг/м2 - кг/м. У меня нет возможности сейчас узнать у кого либо по этому вопросу (сталкиваюсь с такими вопросами редко, а как сталкнусь начинаются рассуждения:(), нашел ваш сайт - адекватно все изложено, так же я понимаю что знания стоят денег. Скажите как и куда я могу вас "отблагодарить" , всего лишь за ответ по предыдущему моему вопросу про площадку,- для меня это действительно важно. Общение можно перенести в е-mail ную форму - мое мыло "[email protected]". Спасибо

    14-10-2013: Доктор Лом

    Я оформил нашу переписку в отдельную статью "Определение нагрузки на конструкции", все ответы там.

    17-10-2013: Артем

    Спасибо, имея высшее техническое образование было приятно почитать. Небольшое замечание - центр тяжести треугольника находится на пересечении МЕДИАН! (у Вас написано биссектрис).

    17-10-2013: Доктор Лом

    Все верно, замечание принимается - конечно же медиан.

    24-10-2013: Сергей

    Потребовалось узнать, во сколько увеличится изгибающий момент, если случайно выбить одну из промежуточных балок. Увидел квадратичную зависимость от расстояния, следовательно в 4 раза. Не пришлось лопатить учебник. Большое спасибо.

    24-10-2013: Доктор Лом

    Для неразрезных балок со множеством опор, все намного сложнее, так как момент будет не только в пролете но и на промежуточных опорах (смотрите статьи по неразрезным балкам). Но для предварительной оценки несущей способности можно использовать указанную квадратичную зависимость.

    15-11-2013: Павел

    Не могу понять. Как правильно рассчитать нагрузку для опалубки. Грунт ползет при копки,нужно выкопать яму под септик Д=4.5м,Ш=1.5м, В=2м. Хочу саму опалубку выполнить так: контур по периметру балка 100х100(верх, низ, середина(1м), далее доска сосна 2-сорт 2х0.15х0.05. делаем короб. Боюсь что не выдержит...т.к по моим расчетам доска выдержит 96 кг/м2. Развертка стен опалубки (4.5х2 +1.5х2)х2 = 24 м2. Обьем вынутого грунта 13500кг. 13500/24=562.5 кг/м2. Прав или нет...? И какой выход

    15-11-2013: Доктор Лом

    То, что стенки котлована осыпаются при такой большой глубине - это естественно и обуславливается свойствами грунта. Ничего страшного в этом нет, в таких грунтах траншеи и котлованы копаются со скосом боковых стенок. При необходимости стенки котлована укрепляются подпорными стенками и при расчете подпорных стенок действительно учитываются свойства грунта. При этом давление от грунта на подпорную стенку не постоянное по высоте, а условно равномерно изменяющееся от нуля вверху до максимального значения внизу, а вот значение этого давления зависит от свойств грунта. Если попробовать объяснить максимально просто, то чем больше угол скоса стенок котлована, то тем больше давление будет на подпорную стенку.
    Вы разделили массу всего вынутого грунта на площадь стенок, а это не правильно. Этак получается, что если при той же глубине ширина или длина котлована в два раза больше, то и давление на стенки будет в два раза больше. Для расчетов Вам нужно просто определить объемный вес грунта, как - отдельный вопрос, но в принципе сделать это не сложно.
    Формулу для определения давления в зависимости от высоты, объемного веса грунта и угла внутреннего трения здесь не привожу, к тому же вы вроде бы опалубку хотите рассчитать, а не подпорную стенку. В принципе давление на доски опалубки от бетонной смеси определяется по тому же принципу и даже немного проще, так как бетонную смесь можно условно рассматривать как жидкость, оказывающую одинаковое давление на дно и стенки сосуда. А если заливать стенки септика не сразу на всю высоту, а в два захода, то соответственно и максимальное давление от бетонной смеси будет в 2 раза меньше.
    Далее, доска, которую вы хотите использовать для опалубки (2х0.15х0.05), способна выдерживать очень большие нагрузки. Не знаю, как именно вы определяли несущую способность доски. Посмотрите статью "Расчет деревянного перекрытия".

    15-11-2013: Павел

    Спасибо доктор.Расчет я сделал не правильно, ошибку я понял. Если считать следующим образом: длина пролета 2м, доска сосна h=5см, b=15см тогда W=b*h2/6=25*15/6 = 375/6 =62.5см3
    M=W*R = 62.5*130 = 8125/100 = 81.25 кгм
    тогда q = 8M/l*l = 81.25*8/4 = 650/4 = 162кг/м или при шаге 1м 162кг/м2.
    Я не строитель, поэтому не совсем понимаю много это или мало для котлована куда мы хотим впихнуть септик из пластика, или наша опалубка треснет и мы не успеем это все сделать. Вот такая задача, если можете что-то еще подсказать - буду вам признателен...Спасибо еще раз.

    15-11-2013: Доктор Лом

    Ага. Вы все-таки хотите сделать подпорную стенку на время монтажа септика и, судя из вашего описания, собираетесь это сделать после того, как котлован будет выкопан. В этом случае нагрузка на доски будет создаваться осыпавшимся во время монтажа грунтом и потому будет минимальна и никаких особых расчетов не требуется.
    Если же вы собираетесь засыпать и утрамбовать грунт обратно до монтажа септика, то расчет действительно нужен. Вот только расчетную схему вы приняли не правильную. В вашем случае доску, крепящуюся к 3 балкам 100х100, следует рассматривать как двухпролетную неразрезную балку, пролеты у такой балки будут около 90 см, а значит и максимальная нагрузка, которую сможет выдержать 1 доска, будет значительно больше, чем определенная вами, хотя при этом следует еще учесть и неравномерность распределения нагрузки от грунта в зависимости от высоты. А заодно и проверить несущую способность балок работающих по длинной стороне 4.5 м.
    В принципе на сайте есть расчетные схемы, подходящие для вашего случая, а вот информации по расчету свойств грунта пока нет, впрочем это уже далеко не основы сопромата, да и по моему мнению вам такой точный расчет не нужен. Но в целом ваше стремление к пониманию сути процессов весьма похвально.

    18-11-2013: Павел

    Спасибо доктор! Мысль вашу понял, надо будет еще почитать ваш материал. Да септик нужно впихнуть так чтобы не произошло обрушения. Опалубка при этом должна выдержать, т.к. рядом на расстоянии 4м еще и фундамент и можно все это запросто обрушить. Поэтому я так беспокоюсь. Еще раз спасибо, вы меня обнадежили.

    18-12-2013: Адольф Сталин

    Док, в конце статьи, где вы приводите пример определения момента сопротивления, в обоих случаях забыли разделить на 6. Разница все равно получится в 7,5 раз, но цифры будут другие (0,08 и 0,6) а не 0,48 и 3,6

    18-12-2013: Доктор Лом

    Верно, была такая ошибка, исправил. Спасибо за внимательность.

    13-01-2014: Антон

    добрый день. У меня такой вопрос, как можно посчитать нагрузку на балку. если с одной стороны закрепление жесткое с другой нет закрепленя. длина балки 6 метров. Вот надо посчитать какая должна быть балка, лучше монорельса. макс нагрузка на не закрепленной стороне 2 тонны. заранее спасибо.

    13-01-2014: Доктор Лом

    Посчитайте, как консольную. Больше подробностей в статье "Расчетные схемы для балок".

    20-01-2014: yannay

    Если бы я не изучал сопрамат, то я бы, честно говоря ничего не понял. Если вы пишите популярно, то вы и расписывайте популярно. А то у вас вдруг что-то появляется непонятно откуда, что за х? почему х? почему вдруг x/2 и чем он отличается от l/2 и l? Вдруг появилась q. откуда? Может опечатка и нужно было обозначить Q. Неужели нельзя потробно описать. И момент про производные...Вы понимаете, что вы описываете то, что только вы понимаете. И тот кто читает это впервые он этого не поймет. Поэтому стоило либо расписать подробно, либо вообще удалить этот абзац. Я сам со второго раза понял о чем речь.

    20-01-2014: Доктор Лом

    Тут, к сожалению, ничем помочь не могу. Популярнее сущность неизвестных величин излагается только в начальных классах средней школы, и я полагаю, что хотя бы этот уровень образования читатели имеют.
    Внешняя сосредоточенная нагрузка Q так же отличается от равномерно распределенной нагрузки q, как и внутренние усилия Р от внутренних напряжений р. Более того, в данном случае рассматривается внешняя линейная равномерно распределенная нагрузка, а между тем внешняя нагрузка может быть распределенной и по плоскости и по объему, при этом распределение нагрузки далеко не всегда бывает равномерным. Тем не менее любую распределенную нагрузку обозначаемую маленькой литерой, всегда можно привести к равнодействующей силе Q.
    Впрочем, изложить все особенности строительной механики и теории сопротивления материалов в одной статье физически невозможно, для этого есть другие статьи. Почитайте, возможно, что-то прояснится.

    08-04-2014: Sveta

    Доктор! Не могли бы вы сделать пример расчета монолитного железобетонного участка как балку на 2х шарнирных опорах, при отношении сторон участка больше 2х

    09-04-2014: Доктор Лом

    В разделе "Расчет железобетонных конструкций" всяких примеров хватает. К тому же постичь глубокую суть вашей формулировки вопроса я так и не смог, особенно вот это: "при отношении сторон участка больше 2х"

    17-05-2014: владимир

    добрый. я первый раз встретил сапромат на вашем сайте заинтерисовался. пытаюсь разобраться в основах но понять эпюры Q не получается с М все понятно и ясно и их отличие тоже. Для распределенной Q я на веревку положил например танковый трак или каму что удобно. а на сосредоточенную Q я подвесил яблоко все логично. как на пальцах посмотреть эпюруQ. прошу не цетировать пословицу мне она не подходит я уже женат. спасибо

    17-05-2014: Доктор Лом

    Для начала рекомендую вас почитать статью "Основы сопромата. Основные понятия и определения", без этого может возникнуть недопонимание изложенного ниже. А теперь продолжу.
    Эпюра поперечных сил - условное название, более правильно - график, показывающий значения касательных напряжений, возникающих в поперечных сечениях балки. Таким образом по эпюре "Q" можно определить сечения, в которых значения касательных напряжений максимальны (что может понадобиться для дальнейших расчетов конструкции). Строится эпюра "Q" (как впрочем и любая другая эпюра), исходя из условий статического равновесия системы. Т.е. для определения касательных напряжений в некоторой точке часть балки в этой точке отсекается (потому и сечения), а для оставшейся части составляются уравнения равновесия системы.
    Теоретически у балки бесконечное множество поперечных сечений и потому составлять уравнения и определять значения касательных напряжений можно также бесконечно. Вот только нет никакой необходимости делать это на участках, где ничего ни добавляется ни убавляется, или изменение можно описать какой-либо математической закономерностью. Таким образом значения напряжений определяются только для нескольких характерных сечений.
    И еще эпюра "Q" показывает некоторое общее значение касательных напряжений для поперечных сечений. Для определения касательных напряжений по высоте поперечного сечения строится другая эпюра и вот она уже называется эпюрой касательных напряжений "т". Больше подробностей в статье "Основы сопромата. Определение касательных напряжений".

    Если на пальцах, то возьмем к примеру деревянную линейку и положим ее на две книжки, при этом книжки лежат на столе так, чтобы линейка опиралась на книжки краями. Таким образом получаем балку с шарнирными опорами, на которую действует равномерно распределенная нагрузка - собственный вес балки. Если мы распилим линейку пополам (где значение эпюры "Q" равно нулю) и одну из частей уберем (при этом опорная реакция условно останется прежней), то оставшаяся часть повернется относительно шарнирной опоры и местом распила упадет на стол. Чтобы этого не случилось, в месте распила нужно приложить изгибающий момент (значение момента определяется по эпюре "М" и момент посредине - максимальный), тогда линейка останется в прежнем положении. Это означает что в поперечном сечении линейки, расположенном посредине, действуют только нормальные напряжения, а касательные равны нулю. На опорах нормальные напряжения равны нулю, а касательные - максимальны. Во всех остальных сечениях действуют как нормальные так и касательные напряжения.

    17-07-2015: Павел

    Доктор Лом.
    Хочу поставить мини тельфер на поворотной консоли, саму консоль прикрепить к регулируемой по высоте металлической стойки(используется в строительных лесах). У стойки есть две площадки 140*140 мм. сверху и снизу. Устанавливаю стойку на деревянный пол, креплю снизу и в распор сверху. Креплю все шпилькой на гайки М10-10мм. Сам пролет 2м, шаг 0.6м, лага пола - обрезная доска 3.5см на 200см, пол шпунтованная доска 3.5 см., потолок лага - обрезная доска 3,5см на 150см., потолок шпунтованная доска 3.5 см. Все дерево сосна, 2-ой сорт нормальной влажности. Стойка весит 10кг, тельфер - 8кг. Поворотная консоль 16 кг, стрела поворотной консоли мах 1м, на стреле крепится сам тельфер в край стрелы. Хочу поднимать до 100кг веса на высоту до 2м. При этом груз после подьема будет стрелой поворачиваться в пределах 180град. Пытался выполнить расчет, но мне это оказалось не под силу. Хотя ваши расчеты по деревянным полам вроде понял. Спасибо, Сергей.

    18-07-2015: Доктор Лом

    Из вашего описания не понятно, что именно вы хотите рассчитать, по контексту можно предположить, что вы хотите проверить прочность деревянного перекрытия (параметры стойки, консоли и пр. вы определять не собираетесь).
    1. Выбор расчетной схемы.
    В этом случае ваш подъемный механизм следует рассматривать как сосредоточенную нагрузку, прикладываемую в месте крепления стойки. Будет ли эта нагрузка действовать на одну лагу или на две, будет зависеть от места крепления стойки. Больше подробностей смотрите в статье "Расчет пола в бильярдной комнате". Кроме того, на лаги обеих перекрытий и на доски будут действовать продольные силы и чем дальше груз будет от стойки, тем большее значение будут иметь эти силы. Как и почему объяснять долго, посмотрите статью "Определение вырывающего усилия (почему дюбель не держится в стене)".
    2. Сбор нагрузок
    Так как вы собираетесь поднимать грузы, то нагрузка будет не статическая, а как минимум динамическая, т.е. значение статической нагрузки от подъемного механизма следует умножить на соответствующий коэффициент (см. статью "Расчет на ударные нагрузки"). Ну при этом не стоит забывать и об остальной нагрузке (мебель, люди и др.).
    Так как вы собираетесь кроме шпилек использовать распор, то определить нагрузку от распора - самое трудоемкое занятие, т.к. сначала надо будет определить прогиб конструкций, а уже из значения прогиба определять действующую нагрузку.
    Примерно так.

    06-08-2015: LennyT

    Работаю инженером развертки сетей ИТ(не по профессии). Одна из причин моего ухода с проектирования были расчеты по формулам из области сопромата и термеха(приходилось искать подходящее по рук-вам Мельникова, Муханова итд.. :)) В институте, к лекциям по относился несерьезно. В результате получил пробелы. К моим пробелам в расчетах Гл. спецы относились безразлично, так как сильным всегда удобно когда выполняют их указания. В результате, моя мечта быть профессионалом в области проектирования не сбылась. Всегда беспокоила неуверенность в расчетах(хотя интерес был всегда), соответственно платили копейки.
    Спустя годы, мне уже 30, но в душе остается осадок. Лет 5 назад, такого открытого ресурса в интернете не существовало. Когда я вижу что все понятно изложено, хочется вернуться и учиться заново!)) Сам материал просто бесценный вклад в развитие таких как я))), а их возможно и тысячи... Думаю что они как и я будут Вам сильно признательно. СПАСИБО за проделанную работу!

    06-08-2015: Доктор Лом

    Не отчаивайтесь, учиться никогда не поздно. Часто в 30 лет жизнь только начинается. Рад, что смог помочь.

    09-09-2015: Сергей

    " М = А х - Q (x - a) + В(х - l) (1.5)
    Например, на опорах никакого изгибающего момента нет и действительно, решение уравнения (1.3) при х=0 дает нам 0 и решение уравнения (1.5) при х=l дает нам тоже 0."

    Не очень понял как решение уравнения 1.5 дает нам ноль. Если подставить l=x, то нулю равно только третье слагаемое В(x-l), а два других нет. Как же тогда М равно 0?

    09-09-2015: Доктор Лом

    А вы просто подставьте имеющиеся значения в формулу. Дело в том, что момент от опорной реакции А в конце пролета, равен моменту от приложенной нагрузки Q, вот только эти члены в уравнении имеют разные знаки, поэтому и получается ноль.
    Например при сосредоточенной нагрузке Q, приложенной посредине пролета опорная реакция А = В = Q/2, тогда уравнение моментов в конце пролета будет иметь следующий вид
    М = lxQ/2 - Qxl/2 + 0xQ/2 = Ql/2 - Ql/2 = 0.

    30-03-2016: Владимир я

    Если x расстояние приложения Q то, что такое а, от начала до... Н.: l=25см x=5см в цифрах на примере что будет а

    30-03-2016: Доктор Лом

    х - это расстояние от начала балки до рассматриваемого поперечного сечения балки. х может изменяться от 0 до l (эль, не единица), так как мы можем рассматривать любое поперечное сечение имеющейся балки. а - это расстояние от начала балки до точки приложения сосредоточенной силы Q. Т.е. при l = 25см, а = 5см х может иметь любое значение, в том числе и 5 см.

    30-03-2016: Владимир я

    Понял. Я почему-то рассматриваю сечение именно в точке приложения силы. Невижу необходимости рассматривать сечение между точками нагрузок так как оно испытывает меньшее воздействие чем последующая точка сосредоточенной нагрузки. Я неспорю просто мне нужно пересмотреть тему занова

    30-03-2016: Доктор Лом

    Иногда есть необходимость определить значение момента, поперечной силы других параметров не только в точке приложения сосредоточенной силы, но и для других поперечных сечений. Например при расчете балок переменного сечения.

    01-04-2016: Владимир

    Если приложить сосредоточенную нагрузку на некотором расстоянии от левой опоры - х. Q=1 l=25 x=5, то Rлев=А=1*(25-5)/25=0,8
    значение момента в любой точке нашей балки можно описать уравнением М = Р x. Отсюда M=A*x когда x несовподает с точкой приложения силы, пусть будет рассматриваемое сечение равно x=6, то получаем
    M=A*x=(1*(25-5)/25)*6=4,8. Когда я беру ручку и последовательно подставляют свои значения в формулы, то получаю путаницу. Мне надо различить иксы и одному из них присвоить другую букву. Пока я печатал разобрался основательно. Можете не публиковать, но может кому-то это понадобится.

    Доктор Лом

    Мы пользуемся принципом подобия прямоугольных треугольников. Т.е. треугольник, у которого один катет равен Q, а второй катет равен l, подобен треугольнику с катетами х - значение опорной реакции R и l - a (или а, в зависимости от того, какую именно опорную реакцию мы определяем), из чего следуют следующие уравнения (согласно рисунку 5.3)
    Rлев = Q(l - a)/l
    Rпр = Qa/l
    Не знаю, понятно ли объяснил, но подробнее вроде уже некуда.

    31-12-2016: Константин

    Огромное Вам спасибо за работу. Вы очень сильно помогаете многим, в том числе и мне, людям.Всё изложено просто и доходчиво

    04-01-2017: Ринат

    Здравствуйте. Если Вам не сложно, объясните каким образом вы получили (вывели) данное уравнение моментов):
    МB = Аl - Q(l - a) + В(l - l) (x = l) По полочкам, как говорится. Не сочтите за наглость, просто реально не понял.

    04-01-2017: Доктор Лом

    Вроде итак в статье все достаточно подробно объяснено, но попробую. Нас интересует значение момента в точке В - МВ. На балку в данном случае действуют 3 сосредоточенные силы - опорные реакции А и В и сила Q. Опорная реакция А приложена в точке А на расстоянии l от опоры В, соответственно она будет создавать момент равный Аl. Сила Q приложена на расстоянии (l - a) от опоры В, соответственно она будет создавать момент - Q(l - a). Минус потому, что Q направлена в сторону, противоположную опорным реакциям. Опорная реакция В приложена в точке В и никакого момента она не создает, точнее момент от этой опорной реакции в точке В будет равен нулю из-за нулевого плеча (l - l). Складываем эти значения и получаем уравнение (6.3).
    И да, l - это длина пролета, а не единица.

    11-05-2017: Андрей

    Здравствуйте! Спасибо за статью, всё намного понятнее и интереснее, чем в учебнике, я остановился на построении эпюры "Q" отображения изменения сил, ни как не могу понять почему эпюра слева устремляется к верху, а с права к низу, как я понял силы что на левой и на правой опоре действую зеркально, то есть сила балки (синяя) и реакции опоры (красная) должны отображаться с обеих сторон, можете объяснить?

    11-05-2017: Доктор Лом

    Более подробно этот вопрос рассматривается в статье "Построение эпюр для балки", здесь же скажу, что ничего удивительно в этом нет - в месте приложения сосредоточенной силы на эпюре поперечных сил всегда есть скачок, равный значению этой силы.

    09-03-2018: Сергей

    День добрый! Проконсультируйте см картинка https://yadi.sk/i/CCBLk3Nl3TCAP2. Железобетонная монолитная опора с консолями. Если я консоль делаю не обрезанную, а прямоугольную то по калькулятору сосредоточенная нагрузка на краю консоли 4т при прогибе 4мм, а какая нагрузка будет на эту обрезанную консоль на картинке. Как в таком случае рассчитывается сосредоточенная и распределенная нагрузка при моем варианте. С Уважением.

    09-03-2018: Доктор Лом

    Сергей, посмотрите статью "Расчет балок равного сопротивления изгибающему моменту", это конечно не ваш случай, но общие принципы расчета балок переменного сечения там изложены достаточно наглядно.

    1. Основные понятия и допущения. Жесткость – способность конструкции в определенных пределах воспринимать воздействие внешних сил без разрушения и существенного изменения геометрических размеров. Прочность – способность конструкции и ее материалов сопротивляться нагрузкам. Устойчивость – способность конструкции сохранять форму первоначального равновесия. Выносливость – прочность материалов в условиях нагрузок. Гипотеза сплошности и однородности: материал, состоящий из атомов и молекул, заменяют сплошным однородным телом. Сплошность обозначает, что сколь угодно малый объем содержит в-во. Однородность обозначает, что во всех точках св-ва материала одинаковы. Использование гипотезы позволяет применять сист. координат и для исследования интересующих нас функций использовать матем анализ и описывать действия различными моделями. Гипотеза изотропности: предполагает, что во всех направлениях св-ва материала одинаковы. Анизотропным явл дерево, у к-ого св-ва вдоль и поперек волокон значительно отличаются.

    2. Механические хар-ки материала. Под пределом текучести σ Т понимается то напряжение, при к-ом происходит рост деформации без заметного увеличения нагрузки. Под пределом упругости σ У понимается такое наибольшее напряжение, до к-ого материал не получает остаточных деформаций. Предел прочности (σ В)– отношение максимальной силы, к-ую способен выдержать образец, к его начальной площади поперечного сечения. Предел пропорциональности (σ ПР) – наибольшее напряжение, до к-ого материал следует закону Гука. Величина Е представляет собой коэф пропорциональности, называемый модулем упругости первого рода. Величина G назыв модулем сдвига или модулем упругости 2 рода. (G=0.5E/(1+µ)). µ - безразмерный коэф пропорциональности, называемый коэф Пуассона, хар-ет св-ва материала, определяется экспериментальным путем, для всех металлов числовые значения лежат в пределах 0,25…0,35.

    3. Силы. Взаимодействие между частями рассматриваемого объекта хар-ют внутренние силы. Они возникают не только между отдельными взаимодействующими узлами конструкции, но также и между всеми смежными частицами объекта при нагружении. Внутренние силы определяются методом сечений. Различают поверхностные и объемные внешние силы. Поверхностные силы могут быть приложены к малым участкам поверхности (это сосредоточенные силы, например Р) или к конечным участкам поверхности (это распределенные силы, например q). Они хар-ют взаимодействие конструкции с другими конструкциями или с внешней средой. Объемные силы распределены по объему тела. Это силы тяжести, магнитного напряжения, силы инерции при ускоренном движении конструкции.

    4. Понятие напряжения, допустимое напряжение. Напряжение – мера интенсивности внутренних сил.lim∆R/∆F=p – полное напряжение. Полное напряжение может быть разложено на три составляющие: по нормали к плоскости сечения и по двум осям в плоскости сечения. Составляющую вектора полного напряжения по нормали обозначают через σ и назыв нормальным напряжением. Составляющие в плоскости сечения назыв касательными напряжениями и обознач через τ. Допускаемое напряжение – [σ]=σ ПРЕД /[n] – зависит от марки материала и коэф запаса прочности.

    5. Деформация растяжения-сжатия. Растяжение (сжатие) – вид нагружения, при к-ом из шести внутренних силовых факторов (Qx, Qy, Mx, My, Mz, N) пять равны нулю, а N≠0. σ max =N max /F≤[σ] + - условие прочности при растяжении; σ max =N max /F≤[σ] - - условие прочности при сжатии. Математическое выражение з-на Гука: σ=εЕ, где ε=∆L/L 0 . ∆L=NL/EF – развернутый з-он Гука, где EF – жесткость стержня поперечного сечения. ε – относительная (продольная) деформация, ε’=∆а/а 0 =∆в/в 0 – поперечная деформация, где при нагружении а 0 , в 0 уменьшились на величину ∆а=а 0 -а, ∆в=в 0 -в.

    6. Геометрические хар-ки плоских сечений. Статический момент площади: S x =∫ydF, S y =∫xdF, S x =y c F, S y =x c F. Для сложной фигуры S y =∑S yi , S x =∑S xi .Осевые моменты инерции : J x =∫y 2 dF, J y =∫x 2 dF. Для прямоугольника J x =bh 3 /12, J y =hb 3 /12, для квадрата J x =J у =а 4 /12. Центробежный момент инерции : J xy =∫xydF, если сечение симметрично хотя одной оси, J x у =0. Центробежный момент инерции несимметричных тел будет положительным, если большая часть площади будет находиться в 1 и 3 квадранте. Полярный момент инерции : J ρ =∫ρ 2 dF, ρ 2 =х 2 +у 2 , где ρ – расстояние от центра координат до dF. J ρ =J x +J y . Для круга J ρ =πd 4 /32, J x =πd 4 /64. Для кольца J ρ =2J х =π(D 4 -d 4)/32=πD 4 (1-α 4)/32. Моменты сопротивления : для прямоугольника W x =J x /у max , где у max – расстояние от центра тяжести сечения до границ по у. W x =bh 2 /6, W x =hb 2 /6, для круга W ρ =J ρ /ρ max , W ρ =πd 3 /16, для кольца W ρ =πD 3 (1-α 3)/16. Координаты центра тяжести : x c =(x1F1+x2F2+x3F3)/(F1+F2+F3). Главные радиусы инерции: i U =√J U /F, i V =√J V /F. Моменты инерции при параллельном переносе осей координат: J x 1 =J х c +b 2 F, J y 1 =J uc +a 2 F, J x 1 y 1 =J х cyc +abF.

    7. Деформация сдвига и кручения. Чистым сдвигом называется такое напряженное состояние, когда на гранях выделенного эоемента возникают только касательные напряжения τ. Под кручением понимают вид движения, при к-ом в поперечном сечении стержня возникает силовой фактор Mz≠0, остальные Мх=Му=0, N=0, Qx=Qy=0. Изменение внутренних силовых факторов по длине изображаются в виде эпюры с использованием метода сечений и правила знака. При деформации при сдвиге касательное напряжение τ связано с угловой деформацией γ соотношением τ =Gγ. dφ/dz=θ – относительный угол закручивания – это угол взаимного поворота двух сечений, отнесенный к расстоянию между ними. θ=М К /GJ ρ , где GJ ρ – жесткость поперечного сечения при кручении. τ max =M Kmax /W ρ ≤[τ] – условие прочности при кручении круглых стержней. θ max =М К /GJ ρ ≤[θ] – условие жесткости при кручении круглых стержней. [θ] – зависит от типа опор.

    8. Изгиб. Под изгибом понимают такой вид нагружения, при к-ом ось стержня искривляется (изгибается) от действия нагрузок, расположенных перпендикулярно оси. Изгибу подвергаютя валы всех машин от действия сил, пары сил – момента в местах посадки зубчатых колес, шестерен, полумуфт. 1) Изгиб назыв чистым , если в поперечном сечении стержня возникает единственный силовой фактор – момент изгибающий, остальные внутренние силовые факторы равны нулю. Образование деформаций при чистом изгибе можно рассматривать как результат поворота плоских поперечных сечений одно относительно другого. σ=М у /J x – формула Навье для определения напряжений. ε=у/ρ – продольная относительная деформация. Диф зависимости: q=dQz/dz, Qz=dMz/dz. Условие прочности: σ max =М max /W x ≤[σ] 2) Изгиб назыв плоским , если силовая плоскость, т.е. плоскость действия нагрузок, совпадает с одной из центральных осей. 3) Изгиб назыв косым , если плоскость действия нагрузок не совпадает ни с одной из центральных осей. Геометрическое место точек в сечении, удовлетворяющее условию σ=0, назыв нейтральной линией сечения, она перпендикулярна к плоскости кривизны изогнутого стержня. 4) Изгиб назыв поперечным , если в поперечном сечении возникает момент изгибающий и поперечная сила. τ=QS x отс /bJ x – формула Журавского, τ max =Q max S xmax /bJ x ≤[τ] – условие прочности. Полная проверка прочности балок при поперечном изгибе заключается в определении размеров поперечного сечения по формуле Навье и дальнейшей проверки по касательным напряжениям. Т.к. наличие τ и σ в сечении относится к сложному нагружению, то оценку напряженного состояния при совместном их действии можно вычислить, используя 4 теорию прочности σ экв4 =√σ 2 +3τ 2 ≤[σ].

    9. Напряженное состояние. Исследуем напряженное состояние (НС) в окрестностях точки А, для этого выделим бесконечно малый параллелепипед, к-ый в увеличенном масштабе поместим в сист координат. Действия отброшенной части заменяем внутренними силовыми факторами, интенсивность к-ых можно выразить через главный вектор нормальных и касательных напряжений, к-ые разложим по трем осям – это компоненты НС точки А. Как бы сложно не было нагружено тело, всегда можно выделить взаимно перпендикулярные площадки, у к-ых касательные напряжения равны нулю. Такие площадки назыв главными. Линейное НС – когда σ2=σ3=0, плоское НС – когда σ3=0, объемное НС – когда σ1≠0, σ2≠0, σ3≠0. σ1, σ2,σ3 – главные напряжения. Напряжения на наклонных площадках при ПНС: τ β =-τ α =0,5(σ2-σ1)sinα, σ α =0.5(σ1+σ2)+0.5(σ1-σ2)cos2α, σ β =σ1sin 2 α+σ2cos 2 α.

    10. Теории прочности. В случае ЛНС оценка прочности выполняется по условию σ max =σ1≤[σ]=σ пред /[n]. При наличии σ1>σ2>σ3 в случае НС опред экспериментальным путем опасное сост трудоемко из-за большого кол-ва экспериментов при различных сочетаниях напряжений. Поэтому используют критерий, позволяющий выделить преимущественное влияние одного из факторов, к-ый будет назван критерием и будет положен в основу теории. 1) первая теория прочности (наибольших нормальных напряжений): напряженное сост равнопрочны по хрупкому разрушению, если у них равны растягивающие напряжения (не учит σ2 и σ3) – σ экв =σ1≤[σ]. 2) вторая теория прочности (наибольших растягивающих деформаций-т Мариотта): н6апряжен сост равнопрочны по хрупкому разрушению, если у них равны наибольшие растягивающие деформации. ε max =ε1≤[ε], ε1=(σ1-μ(σ2+σ3))/E, σ экв =σ1-μ(σ2+σ3)≤[σ]. 3) третья теория прочности (наиб касат напряжений – Кулон): напряж сост равнопрочны по появлению недопустимых пластич деформаций, если у них равны наиб касат напряжения τ max =0.5(σ1-σ3)≤[τ]=[σ]/2, σ экв =σ1-σ3≤[σ] σ экв =√σ 2 +4τ 2 ≤[σ]. 4) четвертая теория удельной потенциальной энергии формоизменения (энергетическая): при деформировании потенц энергия расход на изменение формы и объема U=U ф +U V напряжен сост равнопрочны по появлению недопустимых пластич деформаций, если у них равны удельные потенц энергии изменения формы. U экв =U ф. С учетом обобщенного з-на Гука и матем преобразований σ экв =√(σ1 2 +σ2 2 +σ3 2 -σ1σ2-σ2σ3-σ3σ1)≤[σ], σ экв =√(0,5[(σ1-σ2) 2 +(σ1-σ3) 2 +(σ3-σ2) 2 ])≤[τ]. В случае ПНС σ экв =√σ 2 +3τ 2 . 5) пятая теория прочности Мора (обобщ теория предельных сост): опасное предельное сост опред двумя главными напряженияи, наиб и наим σ экв =σ1-кσ3≤[σ], где к-коэф неравнопрочности, к-ый учитывает способность материала неодинаково сопротивляться растяжению и сжатию к=[σ р ]/[σ сж ].

    11. Энергетические теоремы. Перемещение при изгибе – в инженерных расчетах встречаются случаи, когда балки, удовлетворяя условию прочности, не обладают достаточной жесткостью. Жесткость или деформативность балки опред перемещениями: θ – угол поворота, Δ – прогиб. Под нагрузкой балка деформируется и представляет собой упругую линию, к-ая деформируется по радиусу ρ А. Прогиб и угол поворота в т А образован касательной упругой линией балки и осью z. Рассчитать на жесткость значит опред максимальный прогиб и сравнить его с допустимым. Метод Мора – универсальный метод опред перемещений для плоских и пространственных систем с постоянной и переменной жесткостью, удобен тем, что может быть запрограммирован. Для опред прогиба рисуем фиктивную балку и прикладываем единичн безразмерную силу. Δ=1/EJ x *∑∫MM 1 dz. Для определения угла поворота рисуем фиктивную балку и прикладываем единичн безразм момент θ=1/EJ x *∑∫MM’ 1 dz. Правило Верещагина – удобно тем, что при постоянной жесткости интегрирование можно заменить алгебраическим перемножением эпюр изгибающих моментов грузового и единичного сост балки. Явл осн методом, к-ый применяется при раскрытии СНС. Δ=1/EJ x *∑ω p M 1 c – правило Верещагина, в к-ом перемещение обратно пропорционально жесткости балки и прямо пропорционально произведению площади грузового сост балки на ординату центра тяжести. Особенности применения: эпюру изгиб моментов делят на элементарные фигуры, ω p и M 1 c берутся с учетом знаков, если на участке одновременно действуют q и Р или R, то эпюры необходимо расслаивать, т.е. строить отдельно от каждой нагрузки или применять различные приемы расслоения.

    12. Статически неопределимые системы. СНС назыв те сист, у к-ых уравнений статики недостаточно для определения реакций опор, т.е. связей, реакций в ней больше, чем необходимо для их равновесия. Разность между общ числом опор и кол-вом независимых уравнений статики, к-ые можно сост для данной сист назыв степенью статической неопределимости S . Связи, наложенные на сист сверхнеобходимых назыв лишними или дополнительными. Введение дополнительных опорных закреплений приводит к уменьшению изгибающих моментов и максимального прогиба, т.е. повышается прочность и жесткость конструкции. Для раскрытия статич неопределимости дополнительно условие совместимости деформации, к-ое позволяет опред дополнительные реакции опор, а затем решение по опред эпюр Q и М выполняется как обычно. Основная система получается из заданной- путем отбрасывания лишних связей и нагрузок. Эквивалентная система – получается путем нагружения основной системы нагрузками и лишними неизвестными реакциями, заменяющими действия отброшенной связи. Используя принцип независимости действия сил, находим прогиб от нагрузки Р и реакции х1. σ 11 х 1 +Δ 1р =0 – каноническое уравнение совместности деформации, где Δ 1р – перемещение в точке приложения х1 от силы Р. Δ 1р – Мр*М1, σ 11 -М1*М1 – это удобно выполнить методом Верещагина. Деформационная проверка решения – для этого выбираем другую основную систему и опред угол поворота в опоре, должна быть равна нулю, θ=0 - М ∑ *М’.

    13. Циклическая прочность. В инженерной практике до 80% деталей машин разрушаются по причине статической прочности при напряжениях гораздо меньших, чем σ в в тех случаях, когда напряжения являются знакопеременными и циклически изменяющимися. Процесс накопления повреждений при циклически измен. напряжениях называется усталость материала. Процесс сопротивления усталостному напряжению наз циклической прочностью или выносливостью. Т-период цикла. σmax τmax это нормальные напряжения. σm, τm – среднее напряжение; r-коэффициент ассиметрии цикла; факторы, влияющие на придел выносливости: а) Концентраторы напряжения: проточки, галтели, шпонки, резьба и шлицы; это учитывается эффективным коэффиц конц напряжений, которые обозначаются К σ =σ -1 /σ -1к К τ =τ -1 /τ -1к; б)Шероховатость поверхности: чем грубее выполнена механическая обработка металла, тем больше пороков металла имеется при литье, тем придел выносливости детали будет ниже. Любая микро трещина или углубление после резца может явиться источником усталостной трещины. Это учитывается коэф влияния качества поверхности. К Fσ К Fτ - ; в) Масштабный фактор влияет на придел выносливости, с увеличением размеров детали вероятность наличия пороков увеличивается, следовательно чем больше размеры детали, тем хуже при оценке ее выносливости это учит коэф влияния абсолютных размеров поперечного сечения. К dσ К dτ . Дефектный коэф: K σD =/Kv ; Kv – коэф упрочнения зависит от вида термообработки.

    14. Устойчивость. Переход системы из устойчивого состояния в неустойчивое называется потерей устойчивости, а соответствующая ей сила называется критической силой Ркр В 1774 г Э. Эйлер провел исследование и определил математически Ркр. По Эйлеру Ркр – сила необходимая для самого малого наклонения колонны. Ркр=П 2 *Е*Imin/L 2 ; Гибкость стержня λ=ν*L/i min ; Критическое напряжение σ кр =П 2 Е/λ 2 . Предельная гибкость λ зависит только от физико-механических свойств материала стержня и она постоянна для данного материала.

    gastroguru © 2017